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Abstract

In this paper, w e review the one capacitor problem with a new approach. We will study how
to minimize the energy transfer between the power supply and the capacitor by choosing a
voltage with a specific time behavior. We will introduce a new stepping method to charge a
capacitor that almost cancel the resistive losses. We will for the first time explain the
mathematical reasons why an irreversible process becomes reversible by such a method.
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1 INTRODUCTION

There is a well-known problem that appears in the literature, the so-called: One or Two
capacitor problem. The problem concerns an uncharged capacitor which is connected at timet = 0
to a battery or a charged capacitor. Simple calculations show that after the charging process is
completed, half of the initial electrostatic energy disappears, apparently giving rise to a paradox.
For several decades, this paradox has not received a satisfactory explanation even to day.

The search for answering this paradox allows to highlight many subtleties about energy
transfer processes and about the role played by the dissipative phenomena during the transfer of
energy from one system (the source) to another system (the receiver). In this regard, it is very
useful comparing the two capacitors system with others similar systems showing the same energy
behavior.

This is the case of two identical tanks Singal [1] connected by a hose at their bottoms and
filled with water. We let the water flows from the filled tank into the empty tank and we measure
the fluid level in the empty tank as a function of time. The water flows from where the level is
higher to where it is lower. The system reaches equilibrium when the levels become equal. Fuchs
[2,p.39] demonstrated that the time behavior of the tank problem is the same as in the RC model
examined in this paper. Bonanno [3] in his paper quotes several other systems.

Different solutions are given in the literature for solving the capacitor problem. Some
authors think that the missing energy is radiated away by the accelerated charges circulating
in the connecting wires and the capacitor plates. To resolve this situation, Boykin [4] has
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adopted the magnetic dipole model and has shown that just the radiation effect due to the
magnetic dipole model can explain the missing energy. Other authors as C'hoy [5] considers
that the electric dipole radiation from the capacitor part can also explain the missing energy.
Some author as Al — Jaber [6] calculates the energy balance based on the Poynting vector,
other author as Powell [T] adds a self-inductance in the circuit.

Singal [1] in the section 4 of his paper argues that the missing energy as possible radiation
losses calculated from Larmor’s formula cannot resolve the paradox. In fact, the radiation
losses, due to the acceleration of the charges will be extremely small and can be made
arbitrarily small by making a quasi static charging process. We can also argue against
the radiation solution in the RC problem by noting that in the tank problem, there is no
radiation effect possible in that case. Finally, we can quote several papers [8-12] which are
worth to be read concerning this problem.

2 THE LAW OF ENERGY CONSERVATION VS THE LAW OF BALANCE

A system or a body is usually defined as a set of particles in interaction with one another.
This system can interact or not with another system. We say that a system is closed if the
system has no exchange of mass and energy with its surroundings. However, this definition is
too loose and we need an accurate mathematical definition to define what is a closed system.
There is only one condition to define a closed system. namely the forces of interaction of the
particles or the body must verify the Newton’s third law as explained by Cornille [13-14]
and Pinheiro [15]. The law of motion for a body of mass m has for expression:

m% - F, =F, (1)
where we have introduced a partition of forces between the internal force which follows the
Newton's third law for that body and the external force which can be any force including a
force deriving from a potential function but this force is applied to the center of mass of the
system or the body.

The partition of forces between internal and external forces is a fundamental property
of the physical world because this partition allows a system to evolve freely with a motion
of its own, the external forces being present or not. If this partition did not exist, then we
will not have, for example, the freedom to walk on earth while the earth is rushing through
space with a speed of 200 kilometers per second around the Milky Way.

If we assume that the internal force derives from a potential function Ep|[R({)] which
does not depend explicitly on time, then we can scalar multiply both sides of the previous
equation by U and write the equation in a well known form:

dEpy

M _ ., 2
m (2)

where the mechanical energy Fj; has for definition:

Ey = ;mU2 + Ep(R) (3)
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Therefore, the system is closed if the mechanical energy is constant, that is to say the external
force is zero. We have defined the classical conservation law of energy that some physicists
consider as the most important concept in physics. This is not so for several reasons: the
first one is the presence of an external force which can change the energy of the system, for
example if the force is a dissipative force, then the total energy of the system will decrease
or on the contrary the energy of the system may increase as in the case of the harmonic
oscillator examined in the appendix where the gravitational force as an external force will
increase the energy of the spring.

It is important to note that we classify the dissipative force Guemez [16] as an external
force since the dissipation mechanism as the resistance of the wires connecting the battery
to the capacitor in the RC model is really outside the capacitor.

The second reason is the existence of well known forces which do not satisfy the Newton’s
third law, in that case the mechanical energy is not conserved. We can quote two famous
laws which violate this principle: the Lorentz force Cornille [17] and the Coriolis force
Cornille [14]. Moreover, there is a third case when the potential function has an explicit
time dependence. All what we have discussed until now may seem trivial to the reader. we
will prove in this paper that it is not the case.

Equation (2) defines what we call an equation of energy transfer between two independent
systems when the external force is present. The fact that we have an equation with a sign
equal is considered by some physicists as a conservation law of energy. This is not the case
since the equation is not related to the classical definition of the mechanical energy. Some
authors such as Fuchs [2, p.20] defines rightfully this equation as a law of balance. This
definition is well chosen since the equation of energy transfer depends on a variable which
quantifies this unbalance as the voltage difference between two capacitors, the difference of
level of the fluids in two tanks or the temperature difference between two heat baths.

All the previous discussion leads naturally to the different concepts of entropy, reversibil-
ity versus irreversibility, equilibrium states versus non equilibrium states which are very dif-
ficult subjects to apprehend. However, these concepts do not concern only thermodynamics
but apply to all branches of physics, this is the reason why this subject is so important. We
will take a simple example often given in the literature to make our point of view very clear.

Consider the case of an egg that we let drop on the ground from a height /., we know that
the mechanical energy is conserved since we have for the initial state Ex = 0 and E'p = mgh
and for the final state Ex = 0.5%mU? = mgh and Ep = 0, the egg breaks irreversibly when
it reaches the ground and the kinetic energy is transformed into heat which results in an
increase of the entropy of the system. The egg with the gravitational potential function form
a closed system and there is no ambiguity. The physical situation examined in this paper is
quite different since it involves the transfer of energy between two independent systems: the
source and the receiver. Indeed, this is what is done in thermodynamics when we consider
the transfer of heat between two different heat baths.

The fact that we can minimize the heat losses during the transfer of energy between the
source and receiver by processing the energy transfer by small steps is known for a long time
but no clear understanding and mathematical demonstration of the phenomena have been
given in the literature to date in spite of the fact that this principle, as the Newton’s third
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law, is one of the most important principle in physics since many practical applications can
use this principle, some of them will be examined in this paper.

Another explanation to the missing energy problem is given by Al — Jaber [18], the
author assumes that the missing energy is taken into account by the kinetic energy of the
recoiling system during the process of energy transfer. We know that the recoil motion in
a closed system is due to Newton’s third law and that the conservation law of energy takes
into account the recoil kinetic energy.

In the capacitor problem, this hypothesis would imply a motion of the capacitor during
the charging process. Therefore, if we suspend a capacitor by a wire to the ceiling of the
laboratory, we can expect to observe a motion as in the famous Trouton-Noble experiment
which was replicated recently by Gabillard [19] where a torque motion is indeed observed
when the capacitor is charged with a high voltage. But this motion is not due to the Newton's
third law. On the contrary, this motion is the consequence of the violation of the Newton’s
third law by the magnetic part of the Lorentz force Cornille [14].

3 THE ONE CAPACITOR SOLUTION

The magnitude of the voltage V' across a capacitor with capacitance C' charged via a
resistance [ by a power supply with a voltage U is solution of the first order differential
equation:

RC ﬂ +V=U (4)
dt

The general solution of the above equation is given by the formula:
t
Vi(t) = a-e_o‘t/ e U(s)ds + Upe™®t (5)
0

with the definition & = 1/RC" and the initial condition V(0) = Uy.
Let us multiply by I(t) = C' % dV/dt the equation (4) and integrate each term to obtain
the equation:

T T T
f RI%(t)dt + / V(t)I(t)dt = ] U(t)1(t)dt (6)
0 0 0
The energy equation above can be written in the symbolic form:

Ej(T)+ Ec(T) = Eg(T) (7)

Let assume that the voltage of the power supply is written in the form U(t) = Ug f(t) where
Ug is a constant. The first case is the classical RC' problem of charge of a capacitor by a
battery:

fit) =1 V(t) = Us(l —e Y (8)
Ej(T) = Eo(1 — e 22T Eo(T) = Eo(1 — e =T)? (9)
Es(T) = 2Fy(1 — eT) (10)
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with the definition Ey = CUZ/2.

Mita [20] made a wrong assumption in their equation (17) namely that the voltage across
the capacitor is the same that the voltage of the power supply which cannot be true since
the voltage across the capacitor is a solution of the differential equation (4). However, we
can choose the voltage of the power supply as the same as the voltage across the capacitor
which is our second case:

fa(t) =1 — e~ V(t) =Us(l —e @t —ate®?) (11)
Es(T) = % Eoll — (1+2a T + 222 T?)e 2T (12)
Ec(T) = Eo(1 —e T —aqTe T2 (13)
Es(T) = % Eo[3 =401 +aT)e T 4 (14 2aT)e™2T] (14)
The third case is:
fa(t) = % V(t)=Us(e™™ +at —1)/(aT) (15)
Ej(T) = Eol2aT +4e T —e 2T —3]/(aT)? (16)
Ec(T) = Egle=*T +aT —1)%/(aT)? (17)
Es(T) = Eo[(aT)? +2e7 2T +aTe 22T _9)/(a T)? (18)

The above RC model shows that there is no missing energy for finites values of R and
T since the equation (7) is rigorously verified, therefore, there is no paradox. If we assume
the presence of non-zero resistance K connecting the capacitor to the power supply, then
the amount of energy loss in the resistance is exactly the same as the missing energy. We
cannot set the resistance to zero in equation (4) because the equation V' = U would imply
an instantaneous transfer of energy from the source to the capacitor which is physically
impossible. Therefore, a resistance is needed in any electrical circuit to account for a finite
time for the transfer of energy between the source and the receiver.

Actually B — 0 is a mathematical idealization which may not hold good when we go
below certain very low resistance values. Indeed, one can imagine using superconducting
wires for the connections, but even in that case, a critical field limit must exist in the
superconducting state. If we lower its temperature, the resistance of the conductor will
reduce steadily up to a certain point below which it may suddenly become zero as the
material turns into a superconductor. At this turnover point, there is a discontinuity in the
resistance and one does not have R — 0 as a limit.

Some authors state that the energy loss is independent of the resistance K. This con-
clusion arises because the quantity 7' in the preceding equations is taken to infinity. In
experiments, we always deal with a finite value of the quantity 1. We can also see by com-
paring the three cases that the amount of dissipation energy is not always half of the supplied
energy when T" — oc.
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Therefore, the fundamental question we should ask is how to minimize the energy loss
during the transfer of energy between the source and the receiver. This question is not often
investigated in the literature except in the recent french thesis C'ornogolub [21]. 1t suffices
to look for an extremum of the dissipative power function P(t) = RI2(t), namely:

qP dl qV
o™ _o= ri=rC™ 19
it a dt (19)

The above constraint gives the following definition for fi(#) which is very similar to f3(t):

M) =({t+RC)/T V() =Ust/T (20)

EjT)=2E/(aT)  Eg(T)=2E(1+2/aT) (21)

By comparing the definitions of f4(¢) and fi(¢), we see that the constant RC/T in f4(t)
cancels the exponential term in the voltage expression across the capacitor in equation (15).
We note that indeed, the energy loss Ej(T°) can be a small quantity for T >> RC.

We can give a numerical example by taking ' = 10 uF, R = 100, Ug = 100V, we get
Ep = 0.05 J and plot versus time in the figures 1 and 2 the voltage V' (f) and the current
1(t) to see the difference in behavior for the four cases.
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Figure 1. Capacitor voltage versus time
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Figure 2. Capacitor current versus time
Until now, we have considered the case where the capacitor was not initially charged,
let us assumed now that the capacitor is charged at time ¢ = 0 with a voltage such that
3 =Uy/Ug =1/10. The solution is given by the equations:

fs(t) =1 V(t) = Ug[l + (3 —1)e Y] (22)
Ef(T) = Eo(1 — 3)?(1 —e 22Ty Eg(T) = 2Ey(1 — 8)(1 — e—2T) (23)
Eo(T) = Eo[(1+ (53— 1)eT)2 = 52| (24)

Table 1. Capacitor energies versus the source function

Funetion E(T) Ec(T) Es(T) Ec(T)/Es(T)
£1(T) 5000 | 49.99 | 99.99 0.499
f2('T) 25.00 49.95 74.95 0.666
£3('T) 8.50 40.50 50.00 0.810
£A(T) 1000 | 50.00 | 60.00 0.833
f5('T") 40.05 49.49 89.99 0.549

In table 1, the different energies are given in m.J. We note that the ratio Ec(T)/Es(T) is
better with an initial condition than without, even if we take into account the initial energy
of the charged capacitor since we have Eq(T)/(Es(T) + Ec(0)) = 0.547.
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This can be explained by the fact that the initially charged capacitor sent a negative
current, towards the source which partially compensates the positive current making the total
current more constant. We proved previously that the energy loss is decreased in this case.
This is the key of understanding why a charging process by steps where the initial voltage of
the capacitor is also increased by step will almost cancel the energy losses by Joule heating
as we will show hereafter.

The stepping process used in the literature is directly applied to the source or to the
receiver, for example: for the capacitor, it is the voltage of the power supply which is divided
into N steps Heinrich [22] each of them with a voltage increase U = Ug /N, this is a staircase
voltage which in the limit N' — oo gives the continuous functions f3 or f4. For the harmonic
oscillator Fundaun [23], we add N masses successively, each of them being m = M/N. These
stepping processes are not practical from an experimental point of view and do not allow to
get a physical insight in the phenomena.

4 APPLICATION OF THE STEPPING PROCESS

We will now present a different stepping process which consists to switch the energy
transfer between the source and the receiver. The two stepping processes are quite different
since the former gives a capacitor voltage curve below the classical charging curve as for the
cases [3(t) and f4(f) while for the later, the curve is above the classicl voltage curve as shown
in figure 3.
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Figure 3. Capacitor voltage versus time with and without stepping
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With the development of the electric vehicle market, the need for charging rapidly and
efficiently batteries and super capacitors becomes a major concern. The curve 3 shows the
voltage behavior during the charging process of a super capacitor (1 farad) with and without
a stepping method. The measured efficiency is above 90%.

Common alkaline batteries cannot be recharged with an ordinary battery charger because
the resistive losses heat the batteries which can explode. However, a stepping battery charger
can be used to recharge alkaline batteries more than 10 times since the Joule heating is almost
cancel. This special battery charger has been on sale in Europe with many counterfeiters in
Asia. A US patent, Cornille [24] was recently granted to the author for that technology.

We will now generalize the study of section 2 to a more complicated but very interesting
case. An equation of motion describes the behavior of a physical system of mass m in terms
of its motion as a function of time. More specifically, the equation of motion is now given

by the formulation
dP ©

dat
where the momentum has for definition P = m(¢)U. The velocity U of the system is defined
with respect to an inertial reference frame.

if we assume that the force F applied to the system derives from a potential function
Ep(R,t), then the equation above can be rewritten in the form:

(25)

dU  dm
m—+—U=-VE 26
m 7 + 0 VEp (26)

If the preceding equation is scalarly multiplied by U, then we obtain

m dU? dEp _ 0Ep _dm L5

0 d T d o di (27)
where we have used the definition:
dEp  OFEp
=-—4+uU.-VFE 28
i o T P (28)

The second term in the right hand side of equation (27) is a dissipative term if we verify the
condition dm/dt > 0.
We can integrate equation (27):

1 /T qu? T dEp T OEp Tdm
We have the identity
T 2 T T
! [ m au dt = F mUQ] 1 f dm U2 at (30)
2 0 dit 2 0 2 0 dit
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If we substitute the preceding equation in equation (29), we obtain a final equation:

T T - T
é'mUQ—I—Ep]O—/(; %dt—%/ﬂ %Ugdt (31)

The term in the left hand side of the equation is the mechanical energy of the system
while in the right hand side, we have two terms: the first one is the contribution of the
explicit time variation of the potential and the second term is the dissipative term.

Now we can give an explanation concerning the nature of the system described by the
above equation. Let us consider the case of an electrostatic linear accelerator which is a
huge capacitor charged by a power supply. It is either a Cockcroft-Walton accelerator,
which uses a diode capacitor voltage multiplier to produce high voltage or a Van de Graaff
accelerator which uses a moving fabric belt to carry charges to the plates of the capacitor.
An electrostatic accelerator used a static high voltage to accelerate charged particles in an
evacuated tube with an electrode at either end which are the plates of the capacitor. Since
the charged particle passed only once through the potential difference, the output energy
is limited to the accelerating voltage of the machine. This method is still used today, with
the electrostatic accelerators greatly out-numbering any other type, they are more suited
to lower energy studies owing to the practical voltage limit of about 1MV for air insulated
machines.

Einstein predicted in his theory of relativity that no particle having mass can travel as
fast as the speed of light. No matter how much energy one adds to an object with mass,
its speed cannot reach that limit. This limit results from the fact that mass and energy are
tied together by the formula E = mgyc?. This equation predicts that nothing with mass
can move as fast as light.

In modern accelerators, particles are sped up to very nearly the speed of light. For
example, the main injector at Fermi National Accelerator Laboratory accelerates protons to
0.99997 times the speed of light. As the speed of a charged particle gets closer and closer
to the speed of light, an accelerator would require an infinite amount of energy to increase
the kinetic energy of the charged particle and in the process the mass of this particle would
become infinite.

The speed limit is the result of the braking force which is included in the dissipative
term in the right hand side of equation (31). This force is dissipative if the condition
dm/dt > 0 is verified. We know that this force depends on the square of the velocity and
is therefore a magnetic force. Cornille [14,25] demonstrated how the Ampere force which
has a longitudinal component along the direction of motion of the electron can explain the
nature of the braking force. Now we can apply the above analysis of the capacitor problem to
our capacitor accelerator with a charged particle —¢g in motion between two plates separated
with a distance D charged with the charges —Q(t) and +Q(t). We can define two potential
functions where their sum is:

1 1 JEp C dV[ 1 1 ]

Ep[R(t),t] = )| = o T R
PRI).0=0Q0| 2+ 55| = 5 = C |5 5oR

We can verify that these potentials have the correct form and sign by calculating the forces

(32)

which must have the same direction towards the + Q(t) for an electron but not the same
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magnitude. A more exact formulation of the potential function can be obtained by doing a
numerical integration of the interaction potentials between the electron and the charges on
each plate of the capacitor as done by C'ornille [25].

If the charging process of the capacitor C'is divided into N steps which results in a voltage
increase such that the voltage V' of the power supply verifies the condition dV/dt > 0, then
we should obtain two advantages: first, it should decrease by two the energy necessary to
charge the capacitor, secondly, the two terms in the right hand side of equation (40) should
compensate one another or even cancel opening the possibility to break the light speed limit.
Only an experiment can prove or disprove the validity of this hypothesis.

The last term in equation (31) is a velocity dependent damping force with a non constant
coeflicient which includes an acceleration dependent term since for m(t) = F[U(t)], we have
dm/dt = dF/dU % dU /dt. Since the radiation effect involves the acceleration of the charge,
one can expect a damping force depending on both U and dU/dt. Tt is well known that
the radiation effect can be defined as a resistive term Cornille [14, p. 386]. Therefore, the
dissipation energy term incorporates an Ohmic like resistive force and a radiative resistive
force. One may ask the question whether or not a neutral particle has a light speed limit.

5 CONCLUSION

In the present paper, we have proved that there is no missing energy in the RC problem
and therefore no paradox occurs provided we keep with finite values of the parameters I and
T. We clarified the concept of energy transfer when there is a dissipation effect by showing
the importance of the time behavior of the source voltage. We have also demonstrated
the fundamental role of the initial conditions to explain why we can decrease the heat
losses at will with a new stepping method. Finally, we have examined several experimental
applications where we can minimize the energy transfer between the source and the receiver.

APPENDIX: THE HARMONIC OSCILLATOR MODEL

Let us now consider the case of a harmonic oscillator where a frictional force is present.

If an external force Fe is applied to an object of mass m in a harmonic potential the equation
of motion can be written as follows

*R ~ dR

m-—s +r— +kR=F 33

dt? dt ° (33)
where r and k are respectively the friction constant and the spring constant. If the preceding
equation is scalarly multiplied by U = dR/dt, then we can rewrite the above equation as
follows:

dE v
dt

where the mechanical energy has for definition:

=F., - U—rU? (34)

1 1
Ey =5 mU? + 3 LR? (35)
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Let us assume that the mass m is at rest at time £ = 0 when the spring stretches to balance

the constant gravitational force F, = mg. The mass will come to a complete stop at the
new equilibrium position, therefore the initial and final velocity are both zero, which means
that the variation of the kinetic energy becomes zero. Let us consider the case where the
linear spring is loaded by adding a mass m at each step Gupta [26], then the variation of the

elastic energy stored in the spring due to loading is given by the relation:

R(T) N /R
AEp—/ Fp(R)-dR—Z/ Fp(R)-dR
0 n=1 Rn—l

knowing that the spring force is Fp(R) = kR, then the above equation becomes:

1 L B 1 X | 1
AEp =~k IR? = — k R2_R%2 )= ZEWN?=_-MgH
poghY [, Am =GR - R = 5 Mo

with the definitions: R, = nh, mg = kh, M = Nm, H = Nh
The variation of the gravitational energy of the loaded mass m is given by:

R(T) N [ Ra
AEg = / Fs(R)-dR = / Fs(R) - dR
0 n=1 Rnfl

The gravitational force Fg(R) = nimg is a constant force, therefore, we have:

(36)

(37)

(38)

1 1 1
AFEg =mg dR = mg Ry, — R, 1)==mghN(N+1)=-MgH(1+—) (39
2 N

2

Therefore, the variation of energy dissipated in the form of heat is equal to:

MgH

(40)

Finally. by increasing the number N of steps of the process, we decrease the energy loss as

demonstrated by Gupta [26].
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