

Analysis of proton structure function at small *x*

Akbari Jahan^{1,*} and Dipak Chauhan²

^{1,2} Department of Physics, North Eastern Regional Institute of Science and Technology,

Nirjuli - 791109, Arunachal Pradesh, India.

*Email: aj@nerist.ac.in

Received: September 16, 2020; Accepted: November 11, 2020; Published: November 20, 2020

Cite this article: Jahan, A., & Chauhan, D. (2020). Analysis of proton structure function at small x. *Boson Journal of Modern Physics*, 7(1), 36-39. Retrieved from http://scitecresearch.com/journals/index.php/bjmp/article/view/1936

Abstract.

Deep Inelastic Scattering (DIS) is one of the phenomenological events in order to understand the structure of proton along with the density of partons. The HERA run had given a new understanding of the structure of hadrons. In the present work, we have plotted the graphs between four momentum transfer squared $Q^2 = 8.5 \text{ GeV}^2$ and $Q^2 = 1600 \text{ GeV}^2$ and found that the proton structure function $F_2(x, Q^2)$ decreases gradually with the increase in scaling factor x. This conforms well with the existing theories. The structure function rises at small Bjorken x but with the increase in x, it gradually decreases. The larger the x value, the chances of understanding the structure function seemingly become less.

Keywords: Deep Inelastic Scattering, HERA, Structure function.

PACS Nos.: 12.38.-t; 13.60.Hb; 24.85.+p

Introduction

Deep inelastic scattering (DIS) has been a basic source in understanding the substructure of proton. The DIS experiments had been carried out at HERA in the years 1992, 1993, 1994 and 1995 where the lepton-proton, like electron-proton or positron-proton, collisions took place and provided us new sets of data for analysis of the structure of proton [1-3]. The main task of HERA was the measurement of inclusive DIS lepton-proton cross section. HERA extended the previous kinematic range with large $Q^2 > 5 \times 10^4$ GeV² and $x < 10^{-4}$. It was observed in 1993 for the first time that the structure function rises with decreasing *x*. The electron was provided with an energy of 26.7 GeV and that of proton with energy 820 GeV[4]. The HERA data was analyzed to understand the variation of structure function $F_2(x, Q^2)$ with the Bjorken scaling factor *x*, the squared four momentum transfer Q^2 and the inelasticity *y*. In the present work, we briefly review some of the established literature of proton structure function and check the conformity by plotting some graphs keeping Q^2 fixed, wherein its range is taken as $8.5 \le Q^2 \le$ 1600 GeV^2 .

Methodology

The HERA experiment operated with 84 colliding electron and proton bunches. The kinematics used were basically the electron method (E), double angle method (DA) and summation method (Σ) [4-6].

The basic formulae for Q^2 and y for the E method are:

$$y_e = 1 - \frac{E_e'}{E_e} \sin^2 \frac{\theta_e}{2}$$
 and $Q_e^2 = \frac{E_e'^2 \sin^2 \theta_e}{1 - y_e} = 4E_e' E_e \cos^2 \frac{\theta_e}{2}$ (1)

where E_e is the incident electron energy. E_e and θ_e are the energy and polar angle of the scattered electron.

and for the Σ method are:

$$y_{\Sigma} = \frac{\Sigma}{\Sigma + E_e (1 - \cos\theta_e)}$$
 and $Q_{\Sigma}^2 = \frac{E_e ^{2} \sin^2 \theta_e}{1 - y_{\Sigma}}$ (2)

$$y_{\Sigma} = \frac{y_h}{1 + y_h - y_e} \tag{3}$$

with the standard definition

$$\Sigma = \sum_{h} (E_h - p_{z,h}) \quad \text{and} \quad y_h = \frac{\Sigma}{2E_e}$$
(4)

Here, E_h and $p_{z,h}$ are the energy and longitudinal momentum component of a particle h and the summation is over all hadronic final state particles.

For double angle (DA) method,

$$y_{DA} = \frac{\tan(\theta_{h/2})}{\tan(\theta_{e/2}) + (\theta_{h/2})}$$
 and $Q_{DA}^2 = 4E_e^2 \frac{\cot(\theta_{e/2})}{\tan(\theta_{e/2}) + \tan(\theta_{h/2})}$ (5)

Among the above three methods, it was found that the double angle method does not contribute much to the structure function as compared to the other two methods. From Ref. [7, 8], it is clear that in QCD approach, the structure function can be understood in terms of parton distributions. It has been shown that the DGLAP evolution equation [9-13] governs the structure function $F_2(x, Q^2)$ as a function of Q^2 . The rise of proton structure function with x is described by the DGLAP evolution equation. Using the data given in Ref. [4], we have plotted the graphs of proton structure function versusx, keeping Q^2 fixed, in Figure 1.

Figure 1: Plot between $F_2(x, Q^2)$ and x where $8.5 \le Q^2 \le 1600 \text{ GeV}^2$.

Conclusion

From the plotted graphs, we observe that at very small values of Q^2 the structure functions do not increase with decrease in x, implying that when x decreases beyond a certain limit the regular behaviour of gradual rise of structure function is not shown. The Q^2 and x dependence of the structure function in the small x region, as measured at HERA, has been clearly observed. For certain range of Q^2 , the structure function rises steeply and thus helps researchers to understand the substructure of proton.

References

- [1] M. Hentschinski, "Proton structure functions at small x", J. Phys.: Conf. Ser. 651, 012011 (2015).
- [2] Iris Abt, "*The proton as seen by the HERA collider*", Ann. Rev. Nucl. Part. Sci.66, 377 (2016).
- [3] R. G. Roberts, *The Structure of the Proton*, Cambridge University Press, Cambridge (1990).
- [4] H1 Collaboration: T. Ahmed *et al*, "A Measurement of the Proton Structure function $F_2(x, Q^2)$ ", Nucl. Phys.**B439**, 471 (1995).
- [5] C. Adloff *et al*, "A measurement of the proton structure function $F_2(x, Q^2)$ at low x and low Q^2 at HERA", Nucl. Phys. **B497**,3 (1997).
- [6] H1 Collaboration: S. Aid *et al*, "A measurement and QCD analysis of the proton structure function $F_2(x, Q^2)$ at HERA", Nucl. Phys.**B470**, 3 (1996).
- [7] Rahul Basu, "Low x physics and Structure Functions", Pramana 51, 205 (1998).
- [8] H1 Collaboration: C. Adloff *et al*, "On the rise of the proton structure function F_2 towards low x", Phys. Lett. **B52**, 183 (2001).
- [9] Yu. L. Dokshitzer, "Calculation of structure functions of deep-inelastic scattering and e^+e^- annihilation by perturbation theory in quantum chromodynamics", Sov. Phys. JETP **46**, 641 (1977).
- [10] V. N. Gribov and L. N. Lipatov, "Deep inelastic e p scattering in perturbation theory", Sov. J. Nucl. Phys. 15, 438 (1972).
- [11] L. N. Lipatov, "The parton model and perturbation theory", Sov. J. Nucl. Phys. 20, 94 (1974).
- [12] G.Altarelli and G.Parisi, "Asymptotic freedom in parton language", Nucl. Phys. B126, 298 (1977).