Zero field splitting parameter of Mn2+ doped guanidine zinc sulphate crystal -a theoretical study

  • Ram Kripal EPR Laboratory, Department of Physics, University of Allahabad, Allahabad-211002, India
  • Lal Chandra Shukla EPR Laboratory, Department of Physics, University of Allahabad, Allahabad-211002, India
  • Upendra Mani Tripathi EPR Laboratory, Department of Physics, University of Allahabad, Allahabad-211002, India
Keywords: A. Organic compounds; A. Single crystal; D. Crystal fields; D. Optical properties; D. Electron paramagnetic resonance.

Abstract

A theoretical investigation of crystal field parameters (CFP) and zero-field splitting (ZFS) parameter D of Mn2+ doped guanidine zinc sulphate (GZS) crystals at room temperature (RT) is done with the help of superposition model and the perturbation theory. The ZFS parameter D determined here is in good agreement with the experimental value reported earlier. The conclusion of experimental study that Mn2+ substitutes for Zn2+ in GZS is supported by our theoretical investigation. The values of D without and with local distortion are 11174.3×10-4 cm-1 and 702.4 ×10-4 cm-1, respectively, while the experimental value is 702.0×10-4 cm-1.

Downloads

Download data is not yet available.

References

[1] C. Rudowicz, S. K. Misra, Appl. Spectrosc. Rev. 36 (2001)11-63.
[2] Z.Y.Yang, C. Rudowicz, Y. Y. Yeung, Physica B 348 (2004) 151-159.
[3] Z.Y. Yang, Y. Hao, C. Rudowicz, Y.Y. Yeung, J. Phys.: Condens. Matter 16 (2004) 3481 - 3494.
[4] T. H. Yeom, Y. M. Chang, S. H. Choh, C. Rudowicz, Phys. Stat. Sol. b185 (1994) 409-415.
[5] P. Gnutek, Z. Y. Yang, C. Rudowicz, J. Phys.: Condens. Matter 21 (2009) 455-402.
[6] Y. Y. Yeung, D. J. Newman, Phys. Rev. B 34 (1986) 2258-2265.
[7] D. J. Newman, D. C. Pryce, W. A. Runciman, Am. Mineral, 63 (1978) 1278-1281; A. Edgar, J. Phys. C 9 (1976) 4304; G. Y. Shen, M. G. Zhao, Phys. Rev. B 30 (1984) 3691- 3703.
[8] S. K. Misra in: Handbook of ESR (Vol.2), eds. C. P. Poole Jr., H. A. Farach, Springer, New York, 1999, Chapter IX, p. 291.
[9] H. Anandlakshmi, K. Velavan, I. Sougandi, R. Venkatesan, P. S. Rao, Pramana 62 (2004) 77- 86.
[10] P. S. Rao, Spectrochim. Acta A 49 (1993) 897-901.
[11] S. K. Misra, Physica B 203 (1994) 193-200.
[12] B. R. Mc Garvey, Electron Spin Resonance of Transition Metal Complexes, in: Transition Metal Chemistry, Vol. 3, ed. R. L. Carlin, Marcel Dekker, New York, 1966.
[13] S. Natarajan and J. K. Mohana Rao, Curr. Sci. 45, (1976) 490-491.
[14] A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford, 1970.
[15] H. A. Kuska, M.T. Rogers, Radical Ions, E. T. Kaiser, L. Kevan, Eds., Interscience, New York, 1968.
[16] V. S. X. Anthonisamy, M. Velayutham, R. Murugesan, Physica B. 262 (1999) 13-19.
[17] T. H. Yeom, S. H. Choh, M. L. Du, J. Phys.: Condens. Matter 5 (1993) 2017-2024.
[18] M. J. D. Powell, J. R. Gabriel, D. F. Johnston, Phys. Rev. Lett. 59(1960)145-146.
[19] H. Watanabe, Prog. Theor. Phys. 18 (1957) 405-420.
[20] C. N. Morimoto, E. C. Lingafelter, Acta Cryst. B26 (1970)335-341.
[21] M. G. Zhao, M. L. Du, G. Y. Sen, J. Phys. C: Solid State Phys. 18 (1985) 3241-3248.
[22] W. L. Yu, Phys. Rev. B 39 (1989) 622-632.
[23] Z. Y. Yang, J. Phys.: Condens. Matter 12 (2000) 4091-4096.
[24] D. J. Newman, B. Ng, Rep. Prog. Phys. 52 (1989) 699-763.
[25] W. L. Yu, M. G. Zhao, Phys. Rev. B 37, (1988) 9254-9267.
[26] K. D. Singh, S. C. Jain, T. D. Sakore, A. B. Biswas, Acta Cryst. B31 (1975) 990-993.
[27] C. Rudowicz, H. W. F. Sung, Physica B 300 (2001) 1-26.
[28] C. J. Radnell, J. R. Pilbrow, S. Subramanian, M. T. Rogers, J. Chem. Phys. 62 (1975), 4948-4952.
[29] J. A. Weil, J. R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, second ed., Wiley, New York, 2007.
[30] W. L. Yu, M. G. Zhao, J. Phys. C: Solid State Phys., 18(1984) L525-L527.
[31] J. F. Clare, S. D. Devine, J. Phys. C 17(1984) L581-l584.
[32] R. M. Macfarlane, J. Chem. Phys. 47 (1967) 2066-2073; Phys. Rev. B 1 (1970) 989-1004.
[33] M. H. L. Pryce. Phys, Rev. 80 (1950) 1107-1108.
[34] R. R. Sharma, R. Orbach, T. P. Das, Phys. Rev.,149 (1966) 257-269.
[35] W. L. Yu, M. G. Zhao, Phys. Stat. B 140 (1987) 203-212.
[36] Y.Y. Yeung, Superposition model and its applications, in: Optical Properties of 3d-Ions in Crystals, Spectroscopy and Crystal Field Analysis (Chapter 3, pp.95-121), M. G. Brik and N. M. Avram (Eds.), Springer: Heidelberg, New York, Dordrecht, London, 2013.
[37] Q. Wei, Acta Phys. Polon. A. 118 (2010) 670-672.
[38] R. Kripal, H. Govind, S. K. Gupta, M. Arora, Physica B, 392 (2007) 92-98.
[39] T. T. Hoa, N. D. The, S. McVitie, N. H. Nam, L. V. Vu, T. D. Canh, N. N. Long, Opt. Mat. 33(2011)308-314.
[40] K. Gruszka, R. Hrabanski, J. Ozga, Z. Czapla, Nukleonika 58 (2013) 387-390.
Published
2021-03-29
How to Cite
Kripal, R., Shukla, L. C., & Tripathi, U. M. (2021). Zero field splitting parameter of Mn2+ doped guanidine zinc sulphate crystal -a theoretical study. Boson Journal of Modern Physics, 8(1), 18-23. Retrieved from http://www.scitecresearch.com/journals/index.php/bjmp/article/view/2032
Section
Articles