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Abstract 

The usual (1+1)-dimensional Schwartz Caudrey-Dobb-Gibbon equation is extended to the general 1)( n -

dimensional system. A singularity structure analysis for the extension system is carried out. It demonstrates 
that the extension system admits the Painlevé property. The exact solutions for the extension system are 
obtained with the Painlevé-Bäcklund transformation. In the meanwhile, some properties of the soliton 
solutions for the extension system are shown by some figures. 
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Introduction 

Modern soliton theory is widely applied in almost all the physics fields, such as field theory, condensed matter physics, 

plasma physics, optics, particle, nuclear physics, etc [1, 2]. However, most of the present studies of the soliton theory and 

soliton applications are restricted in (1+1) and (2+1)-dimensions. The real physical space is (3+1)-dimensional, one 

hopes to find some (3+1)-dimensional integrable models. To find high dimensional integrable models is one of the 

important problems in mathematical physics. There are several ways to obtain high dimensional equations [3, 4, 5, 6, 7, 

8, 9, 10, 11]. It is said that the known (1+1) and (2+1) dimensional integrable models possess Schwartz form which is 

conformal invariant. The conformal invariant forms may be best the candidates in finding higher integrable systems. The 

high-dimensional Painlevé integrable models have been obtained with the Schwartz Korteweg-de Vries, Boussinesq and 

Kadomtsev-Petviashvili equations [9, 10, 11]. Naturally, we hope that the more Schwartz equations can be extended to 

high dimensional Painlevé integrable systems. 

In this letter, we extend the Schwartz Caudrey-Dobb-Gibbon (CDG) equation to high dimension case. The usual CDG 

equation is [12]  

 0.=1803030 2

xxxxxxxxxxxxt uuuuuuuu   (1) 

Since CDG equation possesses typical properties of a soliton equation, a great deal of research works on the CDG 

equation have been carried out. The properties of this equation such as the Bäcklund transformation, Lax pair, Painlevé 

property, the nonlinear superposition formula, muti-soliton have been found [12, 13, 16, 15, 14]. 

The rest of the present paper is organized as follow. The arbitrary dimensional Painlevé integrable system are constructed 

in section 2. In section 3, the exact solutions for the 1)( n -dimensional system are obtained by the Painlevé-Bäcklund 

transformation. Some behaviour of the soliton solutions for the extension system are studied with some figures. The last 

section contains some conclusions. 

(N+1)-Dimensional CDG Extension 

For the CDG equation, the Schwartz form is [13]  
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   is the Schwartz derivative of  . The usual CDG equation and its Schwartz form are 

related to each other by  

        .
6

1
ln=

2

2

x

xxx

x
u




 




 

To extend the Schwartz CDG equation (2) in high dimension, we may take many forms. Here, we take an ( 1n )-

dimensional CDG extension as  
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 where ia , ib , ic  ),1,2,=( ni   are constants. (3) turns into the usual Schwartz form with 0=== iii cba  

),2,3,=( ni  . Meanwhile, (3) is invariant under the Möbious transformation  
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In order to use the Weiss-Tabor-Carnevale (WTC) approach, we make the following transformation  

 ,,1,2,=,=,=,exp= 0 niFuFuF
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Substituting expressions (4) into (3), we get the following system   
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where (5b) is the compatibility condition of transformations (4). 

Now, we use the standard WTC approach to prove the Painlevé property of (2). We effect a local Laurent expansion in 

the neighborhood of a non-characteristic singular manifold 0=1 . It assumes  
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where iju  are analysis functions of ),( ixt  and   is integer to be determined. From the corresponding leading order 

analysis, we obtain  
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Substituting (7) and (8) into (2), we have   
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where f  is a complicated function of 1),,0,1,=,(  jkniuik   and the derivatives of the singularity manifold 

1 . The resonance points are located at  
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The resonance at 1= j  corresponds to the arbitrary singularity manifold 1 . At 1n  resonance 1=j  and two 

resonance 2,3=j , there are 3n  compatibility conditions   
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Fortunately, it is straightforward to see that the conditions (2) are satisfied identically using the results of (8). Therefore, 

the 1)( n -dimensional Schwartz CGD system is integrable in the sense that it possesses the Painlevé property. 

Traveling Wave Solution for (N+1)-Dimensional CDG Extension 
The investigation of the traveling wave solutions of nonlinear evolution equations plays an important role in the study of 

nonlinear wave phenomena. It is considered to be the most effective and direct algebraic method for solving nonlinear 

equations [17]. Here, we shall study the traveling wave solution of the 1)( n -dimensional CDG extension system. 

With the Painlevé-Bäcklund transformation  
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 (2) can be simplified the follow form  
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We assume the traveling wave solution  
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where k  and c  are arbitrary constants to be determined. Substituting (18) into (??), we can easily find that the equation 

is fully satisfied when  
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We can obtain the solution for 1)( n -dimensional equation (2) by substituting (18) into (16)  
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Due to the solution (19) including an arbitrary function  , we can obtain different forms of solution with selection  . 

We shall select the arbitrary function   to be Jacobian elliptic and hyperbolic functions as the explicit example. The 

motivation behind this choice of arbitrary function stems from the fact that the limiting forms of these functions happen 

to be localized functions [18]. Here, we take (2+1)-dimensional extension system as example and choose the arbitrary 

function   as  

 ),,(dn= m  (20) 

where k  and c  are arbitrary constants, m  is the modulus of the Jacobi elliptic function. We can obtain the solution 1u  

of the (2+1)-dimensional system  
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In the left panel of Fig. 1, the solution 1u  of (21) with the parameters 1== ck  and 0.1=m  Furthermore, the solution 

1u  is obtained  
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by selecting  

 .m),dn()(tanhm),dn(=    (23) 

The corresponding solution 1u  of (22) is plotted with the parameters 1== ck  and 0.7=m  in the right panel of Fig. 

1. Solution (22) describes a kind of periodic-kink interaction solitary wave which has been obtained [19]. The left panel 

of Fig. 2 shows the exact solution 1u  by selecting  

 ),,(cn)(cosh= m   (24) 

and choosing the parameters 1== ck  and 0.1=m . While the field   reads as  

 ,)(sech)(sech1= 2   (25) 

the solution 1u  is shown with the parameters 1== ck  in the right panel of Fig. 2.     
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Figure  1: Evolution of the solution 1u  (21) and (22) at 0=t , respectively.    

Figure  2: With selecting   as (24) and (25), the similar kink solution and the soliton solution 1u  at 0=t , 

respectively. 

 

Conclusion 

In summary, we have extended the (1+1)-dimensional Schwartz CDG equation to the arbitrary dimensional system. With 

the standard WTC method, we have shown that the new system satisfies the Painlevé property and invariant under the 

Möbius transformation. By the Painlevé-Bäcklund transform, the traveling wave solutions are obtained for the 1)( n -

dimensional system. Meanwhile, the properties of the soliton solutions for the extension system are shown by some 

figures. More properties of the 1)( n -dimensional integrable system such as multi-soliton solutions, infinitely many 

conservation laws and symmetries are worthy further studying. 
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