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Abstract 

Standard perturbative quantum gravity formalism is applied to compute the lowest order corrections to 
the spatially flat cosmological FLRW solution governed by ordinary matter. The presented approach is 
analogous to the one used to compute quantum corrections to the Coulomb potential in electrodynamics, 
or to the approach applied in computation of quantum corrections to the Schwarzschild solution in 
gravity. In this framework, it is shown that the corrections to the classical metric coming from the one-loop 
graviton vacuum polarization (self-energy) have (UV cutoff dependent) repulsive properties, which could 
be not negligible in the very early Universe. 
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1. Introduction 

The aim of our work it to explicitly show the appearance of ―repulsive forces‖ of quantum origin, which could be 

not negligible in the very early evolution of the Universe. Actually, we apply the method used earlier in the case of 

the spatially flat Friedmann–Lemaître–Robertson–Walker (FLRW) solution governed by radiation [1] (see also 

[2,3]). It appears that the cosmological FLRW case with ordinary matter as a source is similar to the radiation one. 

Namely, the lowest order quantum corrections coming from the fluctuating graviton vacuum are ―repulsive‖, 

resembling the situation well-known in loop quantum cosmology (LQC) [4-6]. The phenomenon is obviously 

negligible in our epoch, but it could be not so in the very early Universe. One should stress that the derivation is a 

lowest order approximation—the graviton vacuum polarization (self-energy) is taken in one-loop approximation, 

and the approach assumes the validity of the weak-field regime. 

2. One-Loop Corrections 

Our starting point is a general spatially flat FLRW space-time 

𝑑𝑠2 = 𝑔𝜇𝜈 𝑑𝑥𝜇𝑑𝑥𝜈 = 𝑑𝑡2 − 𝑎2(𝑡)𝐝𝐫2,    (1) 

with the cosmic time-dependent scale factor 𝑎(𝑡). To satisfy the condition of weakness of the gravitational field 

𝜅ℎ𝜇𝜈  near the reference time 𝑡 = 𝑡0 in the perturbative expansion 

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + 𝜅ℎ𝜇𝜈 ,     (2) 

(𝜅 =  32𝜋𝐺𝑁 , with the Newtonian gravitational constant 𝐺𝑁), the metric is rescaled in such a way that it is exactly 

Minkowski one for 𝑡 = 𝑡0, i.e. 

𝑎2(𝑡) = 1 − 𝜅ℎ(𝑡),   ℎ(𝑡0) = 0.     (3) 

Then 

ℎ𝜇𝜈 (𝑡, 𝐫) = ℎ(𝑡)ℐμν and ℐ𝜇𝜈 ≡  
0 0
0 𝛿𝑖𝑗

 .    (4) 
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In view of the standard harmonic gauge condition (see the second eq. in (8)), which we impose, we perform the 

following gauge transformation: 

𝜅ℎ𝜇𝜈 → 𝜅ℎ𝜇𝜈
′ = 𝜅ℎ𝜇𝜈 + 𝜕𝜇𝜉𝜈 + 𝜕𝜈𝜉𝜇 with  𝜉𝜇  𝑡 =  −

3𝜅

2
∫

0

𝑡
ℎ(𝑡′) 𝑑𝑡′,  0,  0,  0 . (5) 

For simplicity, skipping the prime, we get 

ℎ𝜇𝜈 (𝑡, 𝐫) = ℎ(𝑡)  
−3 0
0 𝛿𝑖𝑗

  and  ℎ𝜆
𝜆(𝑡) = −6ℎ(𝑡),   (6) 

where the indices are being manipulated with the flat Minkowski metric 𝜂𝜇𝜈 . Switching from ℎ𝜇𝜈  to standard 

(―better‖) perturbative gravitational variables, namely to the ―barred‖ field ℎ𝜇𝜈  which is defined by 

ℎ𝜇𝜈 ≡ ℎ𝜇𝜈 − 1 2 𝜂𝜇𝜈 ℎ𝜆
𝜆 ,     (7) 

we get 

ℎ𝜇𝜈 (𝑡, 𝐫) = −2ℎ(𝑡)ℐ𝜇𝜈  with 𝜕𝜇ℎ𝜇𝜈 = 0.    (8) 

The Fourier transform of ℎ𝜇𝜈  is of the form 

ℎ
 
𝜇𝜈 (𝑝) = −2ℎ (𝐸) 2𝜋 3𝛿3(𝐩)ℐ𝜇𝜈 .    (9) 

To obtain quantum corrections to classical field we should supplement the classical line with a vacuum polarization 

(self-energy) contribution and a corresponding (full) propagator. Therefore, the lowest order quantum corrections 

ℎq 
𝜇𝜈  to the classical gravitational field ℎc 

𝜇𝜈  are given, in the momentum representation, by the formula (see, e.g. 

[7] , or §114 in [8] for an electrodynamic version—the so-called Uehling potential) 

ℎq 
𝜇𝜈 (𝑝) =  𝐷𝛱ℎc 

 
𝜇𝜈

(𝑝),     (10) 

Where 

𝐷𝜇𝜈
𝛼𝛽

(𝑝) =
𝑖

𝑝2 𝔻μν
αβ

      (11) 

is the free graviton propagator in the harmonic gauge with the auxiliary (constant) tensor 𝔻 defined below in 

Eq.(12), and  (
𝛼𝛽
𝜇𝜈 𝑝) is the (one-loop) graviton vacuum polarization (self-energy) tensor operator. Now, we define 

the auxiliary tensors: 

𝔻 ≡ 𝔼 − 2ℙ,  where 𝔼𝜇𝜈
𝛼𝛽

≡ 1 2  𝛿𝜇
𝛼𝛿𝜈

𝛽
+ 𝛿𝜈

𝛼𝛿𝜇
𝛽
  and ℙ𝜇𝜈

𝛼𝛽
≡ 1 4 𝜂𝛼𝛽 𝜂𝜇𝜈 ; (12) 

which satisfy the following useful identities: 

𝔼2 = 𝔼, ℙ2 = ℙ,  𝔼ℙ = ℙ𝔼 = ℙ and 𝔻2 = 𝔼.   (13) 

By virtue of the definition (7) we find that 

ℎ𝜇𝜈 =  𝔻ℎ 𝜇𝜈 .      (14) 

Multiplying Eq.(10) from the left by 𝔻, we get (using (11), (14), and the last identity in (13)) 

ℎq 
𝜇𝜈 (𝑝) =

𝑖

𝑝2  𝛱ℎc 
 

𝜇𝜈
(𝑝).    (15) 

Actually, a substantial simplification takes place in Eq.(15), namely, 

ℎq 
𝜇𝜈 𝑝 =

𝑖

𝑝2  𝛱′ℎc 
 

𝜇𝜈
 𝑝 ,    (16) 

where 𝛱′(𝑝) is an ―essential‖ part of the full (in the sense of the one-loop approximation) graviton polarization 

operator 𝛱(𝑝). The ―essential‖ part 𝛱′ 𝑝  of the full (one-loop) graviton vacuum polarization operator 𝛱 𝑝  can be 

obtained from 𝛱 𝑝  by skipping all the terms with the momenta 𝑝 with free indices (e.g. 𝛼, 𝛽, 𝜇, or 𝜈). Such a 

simplification follows from the gauge freedom the ℎq 
𝜇𝜈  enjoys, and from the harmonic gauge condition the ℎc 

𝛼𝛽  

should satisfy. In general, by virtue of the symmetry of the indices, 𝛱 𝑝  consists of 5 (tensor) terms. Each 𝑝𝜇  can 

be ignored in 𝛱 𝑝  because it only gives rise to a gauge transformation of ℎ 𝜇𝜈 . Moreover, since ℎ 𝛼𝛽  satisfies the 

harmonic gauge condition, the terms with 𝑝𝛼  in 𝛱 𝑝  are annihilated. In other words, schematically 
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𝛱 𝑝 = 𝛱′ 𝑝 +  ⋯ 𝑝 ⋯ .     (17) 

Since the momenta 𝑝 in the ellipses posses free indices, they can be ignored, and only the first two terms with 

dummy indices (i.e. 𝑝2) survive, i.e. 

𝛱′(𝑝) = 𝜅2𝑝4𝐼(𝑝2)(2𝛼1𝔼 + 4𝛼2ℙ),   (18) 

where the numerical values of the coefficients 𝛼1 and 𝛼2 depend on the kind of the field circulating in the loop, and 

the (scalar) standard loop integral 𝐼(𝑝2) with the UV cutoff denoted by 𝑀 is asymptotically of the form (see, e.g., 

Chapt. 9.4.2 in [9]) 

𝐼(𝑝2) =
1

 2𝜋 4 ∫
𝑑4𝑞

𝑞2 𝑝−𝑞 2 = −
𝑖

 4𝜋 2 log  −
𝑝2

𝑀2 + ⋯ ,  (19) 

where the dots mean terms 𝒪 𝑝2/𝑀2 . A standard way to derive (19) consists in continuing from 𝑞0 to +𝑖𝑞4 

(𝑑4𝑞 → 𝑖𝑑4𝑞E), exponentiating the denominator using a (double) proper-time representation for the propagators, a 

change of proper-time variables, imposing the UV cutoff for a new proper time, and next continuing back to the 

Minkowski momentum variables. Thus, we obtain 

ℎq 
𝜇𝜈 (𝑝) =

𝑖

𝑝2
𝜅2𝑝4  −

𝑖

 4𝜋 2
log  −

𝑝2

𝑀2
   −2ℎc (𝐸) 2𝜋 3𝛿3(𝐩)  (2𝛼1𝔼 + 4𝛼2ℙ)ℐ 𝜇𝜈  

= −2𝜋𝜅2𝐸2log  
𝐸

𝑀
 ℎc (𝐸)𝛿3(𝐩)  

−3𝛼2 0

0  2𝛼1 + 3𝛼2 𝛿𝑖𝑗
 .   (20) 

3. Matter Source 

Now, we specify our input classical metric. To this end, we choose the matter source assuming 

𝑎2(𝑡) =  
𝑡

𝑡0
 

4/3

.      (21) 

According to (3) and (21) the Fourier transform of ℎc(𝑡) is 

ℎc (𝐸) =
2

𝜅𝑡0
4/3 sin 2𝜋/3 𝛤 7/3  𝐸 −7/3 + ⋯,   (22) 

where the dots mean a term (vanishing in (20)) proportional to the Dirac delta. Performing the gauge transformation 

in the spirit of (5), we remove the purely time component of ℎq
𝜇𝜈 , i.e. ℎq

00 → ℎq ′00 = 0. The inverse Fourier 

transform yields now the quantum correction 

ℎq
𝜇𝜈 (𝑡) =

𝛼𝜅

 3𝜋 2𝑡0
4/3 |𝑡|−2/3 log 𝑡/𝑡𝑐 + 𝑐 ℐ𝜇𝜈 ,   (23) 

where 𝑐 ≡ 𝛾 +
3

2
log3 +

𝜋

3
 3 (𝛾 is the Euler–Mascheroni constant), 𝑡𝑐  is an UV cutoff in time units, and 𝛼 ≡ 2𝛼1 +

3𝛼2. According to the table given in [1] only the graviton field yields a non-zero contribution with 𝛼 = − 1 16 . 

Now one can easily check that the second time derivative of (23) is positive for 𝑡 > 𝑡𝑐 . Therefore the quantum 

contribution to the classical expansion is accelerating. 

4. Final Remarks 

In the framework of the standard (one-loop) perturbative quantum gravity, we have derived the formula (23) 

expressing a contribution to the classical metric governing matter-driven expansion of the Universe. As the second 

time derivative of (23) is positive we expect an accelerating role of this contribution, especially in early evolution of 

the Universe. In spite of the fact that (23) is UV cutoff dependent, the (qualitative) result is unchanged as long as 

𝑡 > 𝑡𝑐 . 
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