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Abstract. In this paper, we discussed Runge-Kutta method (R.KM) and Block-by-Block method (B by BM)
for used to solve (NVIE) of the second kind with continuous kernel. Numerical examples are presented and
results are compared with the analytical solution to demonstrate the validity and applicability of this methods.
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1.Introduction:

The integral equation methods are widely used for solving many problems in mathematical physics,
engineering and basic science. There are many numerical methods to solve the linear and nonlinear
integral equations(seeBaker [1],Delves and Mohamed [2], Atkinson [3, 4] and Golberg [5]).In [6],
Badr solved nonlinear Volterra- Fredholm integral equation by using Block-by-Block method.
Katani and Shahmorad in [7], studied the new Block-by-Block method for solving Two- dimensional
linear and nonlinear Volterra integral equations of the first and second kind. In [8], EL-Kalla and
AL-Bugami used Adomian and Block-by-Block methods to solve nonlinear Two- dimensional
Volterra integral equation. In [10], Markroglou studied the convergence of Block- by- Block method
for nonlinear Volterraintegro- differential equations.

In this paper, we use R. KM and B by BM to discuss numerically the solution of the (NVIE) of the
second kind with continuous kernel of the form

pp(x) =t (X)+/1}k(x,t)7(t,¢(t))dt (1)

where wis a constant defines the kind of the integral equation. ¢(x ) is an unknown function, the
functionf (x)andk (x ,t) are given analytical functions defined respectively on j =[0,x ]. # and 4 are

constants that have many physical meanings.
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2. Existence and unique solution of NVIE:

the existence of a unique solution of equation (1) under certain conditions will be discussed and
proved using Picard method.

In order to prove the existence of a unique solution of equation (1) we assume the following
conditions:

1) The given continuous functionf (x)in 0<x <X <o, such thatf (x)[ = maJx|f (x)| <A

2) The kernel k (x,t) satisfies the continuity condition|k(x ,t)|£ N ™, ( N isa constant).
3) The known continuous function y(t,4(t)) in0<t <X, satisfies for the constant
B >B,,B >B,, the following conditions:

-t 4] < B, [¢(x))
-l (¢, (%)) = 7 (% 4, ()] < By J () = 4,3,

where |@(x)| = (r)rglteg<|¢(x )|

Now, we prove the existence of a unique solution of equation (1), under the conditions (1-3) by using
successive approximation method (Picard method).

Theorem 1:

The solution of nonlinear Volterra integral equation (1) with continuous kernel is exist and a
unique under the condition:

|

B A< 2
A< (2)

To proof this theorem we must state the following lemmas

lemma 1:

Beside the conditions (1-3), the infinite series Zé’i (x) s uniformly converge to a continuous
i=0
solution ¢(x ).
Proof:

We construct the sequence of the function ¢, (X ) such as

g, (x) =f (x)+/1xjk(x,t)y(t,¢nl(t))dt,n -12,... (3)
With
f(x) =f (x) @)
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Here, it is convenient to introduce
0,(x)=¢,(xX)—¢,,(X) (5)
Where

4,060=36,0) and () =1 (x) (6)

Using the properties of the modules, the relation (5) takes the from

|6, (x)] < £
U

[k D[t 2 @) =7 (@) (7)
Using the condition (3-ii), we obtain:

16, ()| <

ﬁ, X

—\B T GO, 40~ O ®)
Hi %

With the aid of (5) and take the maximum over X we get

maXx

0<x <X

6, (x)|<

/1 X
;‘ B £|k (x,t)[max|6, , (t)]dt
Then we have
1 X
001 410,01 e oo |
0

By using the condition (2), we obtain

1
ool o (1218 e 0] ©

Inequality (9) takes the from
6] < @6, (10)

Where

1y
alsz (4B )<1

If we let n =1 in (7) and using the condition (1) we get, |¢]|< a,A", then, by using the mathematical
induction, we obtain

6, <e"A", n=012,... (11)
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This bound makes the sequence {4, }converges under the condition (2), and hence the sequence
{¢,(t)} converges to:

$(x)=6,(¢) (12

The infinite series (12) is uniformly convergent series the terms &, (x ) are dominated by (¢,).

Lemma 2:

A continuous function ¢(x) represents a unique solution of equation (1).
Proof:

to proof that¢(x)represents a unique solution of equation (1), we prove that #(X)
defined by(12), satisfies equation (1), setg(x)=¢,(X)+9g,(x),whereg, (x) >0asn —>oo
then we get:

¢(x)—gn(x)=%f (x)+§jk(x,t)(y(t,¢<t))—gn1(t))dt
Therefore, usingthe condition (3-i) we have:

max

0<x <X

PO -1 ()= [k ()7 (t, #(0)
u My

A
< oo, 0 -2

0<x <X

B!|k (x,t)| max|g, ., (©)]dt (13)

In view of the condition (2), the previous inequality takes the from:

Where alzﬁN "
U

PO =21 (0 -2 [k (x.t)r (t.g0))ct
H xS

<[g, )] -ex 9,0 (14)

A|B}.

So that, by taking N large enough, the right hand side for relation(14) can be made as small as
desired, thus, the function @(x ) satisfies:

u¢(><)—/1]k (x,t)y(t, 4t))dt =f (x) (15)

and therefore it is a solution of equation (1).

Now, to show that ¢(x ) is the only solution, Iet;75(x) is also a continuous solution of (1), hence:
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[p0)—(x)| <

%‘Ilk(x,t)l‘y(t,fzﬁ(t))—y(t,475(0)‘0“ (16)

With the aid of conditions(3-ii), the equation (15) then

_N°

P {|/1|B}<1 (17)

[60)-00)]| < e J6) -4, @

Since ¢, <1, then the inequality (17) is true only if ¢(x)=g¢(x) which is the solution of (1).

3. Runge- Kutta method

Consider the nonlinear Volterra integral equation of the second kind
p0) =f )+ [k (x,t,g))dt, x>0 (18)

with the continuous kernel, and the solution k(x,t,¢(t))exist uniquely and satisfies

[k (x,t,4(,)) -k (x,t,4(,))| <M |gt,) - ()| letx, =a+nh, n=0,1...,N,with p :bN;a,(N >1),

F00=f 00+ [k(x.LgO)dt,  x 2x,,(1=01....N) (19)
And let F (x) be approximation to F, (x).

F (X, +¢,h)=hiAijk (X, +4,h.t, +4,h,F (x, +4,h)).F(0)=0 (20)

=

¢ :ZA”’ i=12,...,m (21)

Where A; are the weights.

The number F, (¢4 h) s the required O(h™*) approximation to F (¢ h) for m <4.

For i = 4 we get:
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AlO :AZl :E’Azo :Aso :A31 :O’Asz =1
1 1

A40 :A43 ZE’AM :A42 :é

Suppose that

k.t 40) = 30, 0, 0,900)
Then compensation in the integral equation
#x) =1 (x)+1(§(us(x)vs(t),¢(t))]dt
1 00+ X, x )z(vs(t),qﬁ(t))dt
96) =1 )+ X, 0OF, ()

Where F, (x)=}(vs(t),¢(t))dt

F/(x)=(v,(t).¢(t)).F, (0)=0
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(22)

(23)

(24)

Now, we apply the Runge- Kutta to (20) we get:

F (X, +¢,h)=hiAij (Vi (X, +4,0).8(x,.8h)), i =1..,m

#(x, +gh)=f (x, +&h)+ D u (x, +&h)F (x, +4h)

=f (x, +¢,h)+hiAijk (X, +dh.x, +40.8(x,.4h)),  i=L...m

In this way we obtain @(4 h) as the approximation to ¢(¢ h) .

We now state in full Pouzet'sversinon in the case m = 4 for the general nonlinear equation.
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p;(x;) =T,

q.(x)=F|x , +1hk X 1,X, P
j j it )2 i itMj
rr(x)=F. |x +£hk X X

T ) 2 ! j%'qj

5;00) =F; (X0 ) +hk (x )

¢ (x)=F, (xj+1)+%{k (xjﬂ,xj P )+2k [xj+1,xj+1,qu+
2

+2k [xm,x_ 11er+k (Xj+l,X,-+1,SJ- )},(FO(X)=f (x))

4. Block by block method:

Consider the nonlinear Volterra integral equation of the second kind.
p0) = () +A[k (x ., g(t))dt (25)
0

Where the function f (x)and Kk (X,t,#(t)) are given, we shall assume thatf (x)is continuous and

satisfies|f (x )| <M andk (x,t,¢(t)) satisfies a uniform Lipschitz condition.

The idea behind the block-by-block method is to divide the interval [0,x] into a mesh
0=X,<X;<X,<...<X, <...<X, =X, and then we try to evaluate the value of the unknown

function ¢(X ) at these points except at x = 0, where we have that ¢(0) =f (0).

Using any known rule, say Simpson's rule, we have:
h
P(x,) =f (X2)+ﬂ,§{k (Xz’xo'¢(xo))+

+HK (X 5,X,, 8(X,))+K (X0 X5, 6(X,))] (26)

To obtain a value for #(X,) we introduce the point xy = r/,and then we use Simpson's rule again to
2

obtain
$x) =1 () + A K (X, X0, 900)) +

K (X4, Xy, B0Xy) ) +K (X%, 6020} (27)
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Replacing the ¢(x,,) by a quadratic interpolation using the value ¢, , ¢ and ¢, we have

$(Xiz) = HKe) + 5 B S (K,) (28)

So that we can compute ¢(x,) by
h
P(x,) =f (X1)+/1§{k (X1’X01¢(Xo))+

e (X3 %0 3 9060) + 3590~ 3 900k (10 9x)| (29)

Equations (26) and (29) are a pair of simultaneous equations for #(x,) and ¢(x,). For sufficiently

small h,¢(x,)and@(x,) can be found uniquely using any procedure such Netwon's method.

In general, for m =0,1,...,N -1, the approximate solution of (25) is evaluated using the following
two equations

¢(X2m+1):f (X2m+l)+/1hiwik (X2m+1’Xi ’¢(Xi ))+%{k (X2m+1’X2m’¢(X 2m))+

K (X X 338000 + T )~ H 02K (K1 X 1180 )|

¢(X2m+2)=f (X2m+2)+ﬂhzm‘,wik (X2m+2’xi ’¢(Xi))+%{k (X2m+2’x2m’¢(x2m))+

i=0

+4k (X2m+2’X2m+1'¢(X 2m+2))+ k (X 2m+2'X2m+27¢(X 2m+2))}

Where
1 :
W, :5{1,4,2,...,2,4,1}, i=01...m

X2m+% :sz +E

5. Numerical Experiments and Discussions:
Example 1:

Consider the Non- linear Volterra integral equation:

1 . 7 3
P) =X +2x —_([t(¢(t)) dt (30)
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where the exact solution is ¢(x)=x and0<x <1, hereA=-1, x=1. In table (5.1)-(5.2) we present
the exact solution, the approximate numerical solutions andtheir corresponding errors for some

points, we suppose thatN =50, 80.

In tables (5

¢ — approximate solution of R. KM, E** — the error of R. KM, ¢®*® — approximate solution

1)-(5.4):

of B by BM and E ®® — the error of B by BM .

Case 1: N =50,
X Exact sol. ¢R.K ERK ¢B-B EB®B
0 0 0 0 0 0
0.1 | 0.100000 | 0.0997267933 2.7320666x 10~* 0.09983750649 1.6249351x 10~*
0.2 | 0.200000 | 0.1992790511 7.209489x 10~ 0.19972679334 5.813662x 10~
0.3 | 0.300000 | 0.2942789348 5.7210652x 1073 0.2983235545 1.6764455x 1073
0.4 | 0.400000 | 0.3903370122 9.6629878x 1073 0.3969725972 3.0274028x 1073
0.5 | 0.500000 | 0.4903037547 9.6962453x 1073 0.4952277514 4.7722486% 1073
0.6 | 0.600000 | 0.5703260241 2.9673975x 1072 0.5930905809 6.9094191x 1073
0.7 | 0.700000 | 0.6615191696 3.8480830x 1072 0.6905626412 9.4373588x 1073
0.8 | 0.800000 | 0.7396378531 6.0362146x 102 0.7876454799 1.2354520x 102
0.9 | 0.900000 | 0.8344427662 6.5557233x 1072 0.8843406360 1.5659364x 102
1 1.000000 | 0.9055801198 9.4419880x 102 0.9806496407 1.9350359x 1072
Table(5.1)
Case 2:N =80,
X Exact sol. ¢R-K E RK ¢B-B EB®B
0 0 0 0 0 0
0.125 | 0.1250000 0.1248237317 1.762683x 10~* 0.1248588618 1.411382x 10~*
0.250 | 0.2500000 0.2492586214 7.413786x 107* 0.2496358708 3.641292x 10~*
0.375 | 0.3750000 0.3777039148 2.703914x 1073 0.3733052315 1.694768x 1073
0.500 | 0.5000000 0.4950865375 4.913462x 1073 0.4969647705 3.035229% 1073
0.625 | 0.6250000 0.6200232157 4.976784x 1073 0.6202384419 4.761558% 1073
0.750 | 0.7500000 0.7428903601 7.109639x 1073 0.7431274445 6.872555x 1073
0.875 | 0.8750000 0.8651354304 9.864569% 1073 0.8656329718 9.367028x 1073
1 1.0000000 0.9282383052 7.176169x 1072 0.9877562124 1.224378x 1072
Table(5.2)
Example 2:

Consider the Non- linear Volterra integral equation:

X (1—cost)+x2(x —sin2x) rxt

%Y s0) (31)
16 8 ! o (PO)

$(x)=sinx +

where the exact solution is ¢(x)=sinx and 0<x <1 hereA=-1, x=1. In table (5.3)-(5.4) we

present the exact solution, the approximate numerical solutions andtheir corresponding errors for
some points, we suppose thatN =50,80.
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Case 1: N =50,

X Exact sol ¢R.K E R.K ¢B.B E B.B

0 0 0 0 0 0

0.1 | 0.0998334166 0.0998470697 1.36531x 10~ 0.0998252949 8.12173x 107°
0.2 | 0.1986693308 0.1987270218 5.76910x 107> 0.1985975165 7.18143x 107°
0.3 | 0.2955202067 0.2963744738 8.54267x 10~* 0.2952714708 2.48735% 10™*
0.4 | 0.3894183423 0.3913362225 1.91788x 1073 0.3888257187 5.92623x 10~*
0.5 | 0.4794255386 0.4839544320 4,52889% 1073 0.4782741785 1.15136x 1073
0.6 | 0.5646424734 0.5733495071 8.70703x 1073 0.5626772979 1.96517x 1073
0.7 | 0.6442176972 0.6570307644 1.28130x 1072 0.6411526614 3.06502x 1073
0.8 | 0.7173560909 0.7403396458 2.29835% 1072 0.7128849044 4.47118x 1073
0.9 | 0.7833269096 0.8102229618 2.68960% 1072 0.7771348129 6.19209% 1073

1 0.8414709848 0.8878602256 4.63892x 1072 0.8332475625 8.22348x 1073

Table(5.3)
Case 2:N =80,

X Exact sol ¢R.K E R.K ¢B.B E B.B

0 0 0 0 0 0
0.125 | 0.1246747334 0.1246835292 8.7958x 10~° 0.1246737330 1.0004x 10~°
0.250 | 0.2474039593 0.2476985837 2.9462x 107 0.2473120443 9.1915%x 107>
0.375 | 0.3662725291 0.3676282777 1.3557x 1073 0.3659611541 3.1137x 107*
0.500 | 0.4794255385 0.4830800698 3.6545x 1073 0.4786949777 7.3056%x 10~*
0.625 | 0.5850972724 0.5926912852 7.5940% 1073 0.5836975569 1.3997x 1073
0.750 | 0.6816387600 0.6951347139 1.3495x 1072 0.6792836827 2.3550% 1073
0.875 | 0.7675434022 0.7891248129 2.1581x 1072 0.7639272915 3.6162x 1073

1 0.8414709848 0.8734243449 3.1953%x 1072 0.8362869287 5.1840x 1073

Table(5.4)

6. The Conclusion:

From the previous discussions we conclude the following:

1) Asx is increasing in intervaI[O,l],the errors due to Runge-Kutta and Block-by-block

methods are also increasing.

2) AsN is increasing, the errors are decreasing in the Runge-Kutta and Block-by-block
methods.

3) The error in the evaluation of the approximate solution, using the Block-by-block method, is
less than the error in the evaluation of the approximate solution, using the Runge-Kutta
method, in all cases of the two examples.

4) The stability of the Block-by-block method more than the Runge-Kutta method.
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