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1.Introduction: 

The integral equation methods are widely used for solving many problems in mathematical physics, 

engineering and basic science. There are many numerical methods to solve the linear and nonlinear 

integral equations(seeBaker [1],Delves and Mohamed [2], Atkinson [3, 4] and Golberg [5]).In [6], 

Badr solved nonlinear Volterra- Fredholm integral equation by using Block-by-Block method. 

Katani and Shahmorad in [7], studied the new Block-by-Block method for solving Two- dimensional 

linear and nonlinear Volterra integral equations of the first and second kind. In [8], EL-Kalla and 

AL-Bugami used Adomian and Block-by-Block methods to solve nonlinear Two- dimensional 

Volterra integral equation. In [10], Markroglou studied the convergence of Block- by- Block method 

for nonlinear Volterraintegro- differential equations.  

In this paper, we use R. KM and B by BM to discuss numerically the solution of the (NVIE) of the 

second kind with continuous kernel of the form 

0

( ) ( ) ( , ) ( , ( ))

x

x f x k x t t t dt     
 

where  is a constant defines the kind of the integral equation. ( )x  is an unknown function, the 

function ( )f x and ( , )k x t are given analytical functions defined respectively on  0, .J X   and  are 

constants that have many physical meanings. 

 

 

(1) 
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2. Existence and unique solution of NVIE: 

the existence of a unique solution of equation (1) under certain conditions will be discussed and 

proved using Picard method. 

In order to prove the existence of a unique solution of equation (1) we assume the following 

conditions: 

1) The given continuous function ( )f x in 0 ,x X    such that ( ) max ( )
x J

f x f x A 


   

2) The kernel ( , )k x t  satisfies the continuity condition ( , ) ,k x t N   (  N   is a constant). 

3) The known continuous function ( , ( ))t t   in 0 ,t X   satisfies for the constant

1 2, ,B B B B    the following conditions: 

i- 1( , ( )) ( )t t B x    

ii- 1 2 2 1 2( , ( )) ( , ( )) ( ) ( ) ,x x x x B x x         

where 
0

( ) max ( )
t T

x x 
 

  

Now, we prove the existence of a unique solution of equation (1), under the conditions (1-3) by using 

successive approximation method (Picard method). 

Theorem 1: 

     The solution of nonlinear Volterra integral equation (1) with continuous kernel is exist and a 

unique under the condition: 

B
N





   

To proof this theorem we must state the following lemmas 

lemma 1: 

     Beside the conditions (1-3), the infinite series 
0

( )i

i

x




    is uniformly converge to a continuous 

solution ( ).x  

Proof: 

     We construct the sequence of the function ( )n x such as 

 1

0

( ) ( ) ( , ) , ( ) , 1,2,

x

n nx f x k x t t t dt n         

With  

0( ) ( )x f x   

(2) 

(3) 

(4) 
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Here, it is convenient to introduce  

1( ) ( ) ( )n n nx x x      

Where 

0

( ) ( )
n

n i

i

x x 


    and 0( ) ( )x f x   

Using the properties of the modules, the relation (5) takes the from 

   1 2

0

( ) ( , ) , ( ) , ( )

x

n n nx k x t t t t t dt


    


    

Using the condition (3-ii), we obtain: 

1 2

0

( ) ( , ) ( ) ( )

x

n n nx B k x t t t dt


  


    

With the aid of (5) and take the maximum over x we get 

1
0 0

0

max ( ) ( , ) max ( )

x

n n
x X t T

x B k x t t dt


 



   

   

Then we have 

1

0

1
( ) ( ) ( , )

x

n nx t B k x t dt  




 
  

 
  

By using the condition (2), we obtain 

  1

1
( ) ( )n nx N B t  


  

Inequality (9) takes the from 

1 1n n     

Where  

 1

1
1N B 



   

If we let 1n   in (7) and using the condition (1) we get,
1 1 ,A   then, by using the mathematical 

induction, we obtain 

1 , 0,1,2,n

n A n     

(5) 

(6)  

(7)  

(8)  

(9) 

(10) 

(11) 
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This bound makes the sequence  n converges under the condition (2), and hence the sequence 

 ( )n t  converges to: 

0

( ) ( )i

i

x x 




  

The infinite series (12) is uniformly convergent series the terms ( )i x  are dominated by 1( ).  

Lemma 2: 

     A continuous function ( )x  represents a unique solution of equation (1). 

Proof: 

     to proof that ( )x represents a unique solution of equation (1), we prove that ( )x

defined by(12), satisfies equation (1), set ( ) ( ) ( ),n nx x g x   where ( ) 0ng x  as n 

then we get: 

  1

0

1
( ) ( ) ( ) ( , ) , ( ) ( )

x

n nx g x f x k x t t t g t dt


  
 

     

Therefore, usingthe condition (3-i) we have: 

 
0

0

1
max ( ) ( ) ( , ) , ( )

x

x X
x f x k x t t t dt


  

  
    

1
0 0

0

max ( ) ( , ) max ( )

x

n n
x X x X

g x B k x t g t dt





   
    

In view of the condition (2), the previous inequality takes the from:  

  1 1

0

1
( ) ( ) ( , ) , ( ) ( ) ( )

x

n nx f x k x t t t dt g x g t


   
 

     

Where  1

1
.N B 



  

So that, by taking n large   enough, the right hand side for relation(14) can be made as small as 

desired, thus, the function ( )x  satisfies: 

 
0

( ) ( , ) , ( ) ( )

x

x k x t t t dt f x      

  and therefore it is a solution of equation (1). 

Now, to show that ( )x is the only solution, let ( )x is also a continuous solution of (1), hence: 

(12) 

(13) 

(14) 

(15) 
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   
0

( ) ( ) ( , ) , ( ) , ( )

x

x x k x t t t t t dt


     


    

With the aid of conditions(3-ii), the equation (15) then   

 1 1( ) ( ) ( ) ( ) , 1
N

x x t t B      




      

Since 
1 1,    then the inequality (17) is true only if ( ) ( )x x   which is the solution of (1).  

3. Runge- Kutta method 

        Consider the nonlinear Volterra integral equation of the second kind 

 ( ) ( ) , , ( ) , 0

x

a

x f x k x t t dt x     

with the continuous kernel, and the solution  , , ( )k x t t exist uniquely and satisfies

   1 2 1 2, , ( ) , , ( ) ( ) ( )k x t t k x t t M t t      let ,nx a nh  0,1, , ,n N  with , ( 1).
b a

h N
N


   

 ( ) ( ) , , ( ) , , ( 0,1, , )
nx

n n

a

F x f x k x t t dt x x n N      

And let ( )nF x  be approximation to ( ).nF x  

 
1

( ) , , ( ) , (0) 0
m

n n i ij n j n j n n j

j

F x h h A k x h t h F x h F   


        

( 1, , ).i m   

Where  i  satisfied 1 20 1m        and we  will assume that  

1

, 1,2, ,
m

i ij

j

A i m


    

Where ijA   are the weights. 

The number ( )n iF h is the required 1( )mh  approximation to ( )iF h for 4.m   

For 4i  we get: 

(18) 

(19)  

(20)   

(21) 

(16) 

(17) 
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1 2 3 4

10 21 20 30 31 32

40 43 41 42

1
, 1

2

1
, 0, 1

2

1 1
,

6 3

A A A A A A

A A A A

      

     

   

 

Suppose that  

 ( , , ( )) ( ) ( ), ( )s s

s

k x t t u x v t t   

Then compensation in the integral equation  

 ( ) ( ) ( ) ( ), ( )

x

s s

sa

x f x u x v t t dt 
 

   
 
  

 ( ) ( ) ( ), ( )

x

s s

s a

f x u x v t t dt    

( ) ( ) ( ) ( )s s

s

x f x u x F x    

Where  ( ) ( ), ( )

x

s s

a

F x v t t dt   

 ( ) ( ), ( ) , (0) 0s s sF x v t t F    

Now, we apply the Runge- Kutta to (20) we get: 

 
1

( ) ( ), ( , ) , 1, ,
m

s n i ij s n j n j

j

F x h h A v x h x h i m   


       

( ) ( ) ( ) ( )n i n i s n i s n i

s

x h f x h u x h F x h            

 
1

( ) , , ( , ) , 1, ,
m

n i ij n i n j n j

j

f x h h A k x h x h x h i m    


         

In this way we obtain ( )i h   as the approximation to ( )i h  . 

We now state in full Pouzet'sversinon in the case 4m  for the general nonlinear equation. 

(22) 

(23)  

(24) 
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   

1 1

2 2

1 1 1

2 2 2

1 1 1

( )

1
( ) , ,

2

1
( ) , ,

2

( ) , ,

j j j

j j j j
j j

j j j
j j j

j j j j j j

p x f

q x F x hk x x p

r x F x hk x x q

s x F x hk x x r

 

  

  



   
    

   

   
    

   

 

 

   1 1 1 1

2

( ) , , 2 , ,
6

j j j j j j j j
j

h
x F x k x x p k x x q   



  
     

  
 

 1 1 1 1 0

2

2 , , , , , ( ( ) ( ))j j j j j
j

k x x r k x x s F x f x  


  
   

  
 

4. Block by block method: 

     Consider the nonlinear Volterra integral equation of the second kind. 

0

( ) ( ) ( , , ( ))

x

x f x k x t t dt      

Where the function ( )f x and ( , , ( ))k x t t are given, we shall assume that ( )f x is continuous and 

satisfies ( )f x M and ( , , ( ))k x t t satisfies a uniform Lipschitz condition. 

The idea behind the block-by-block method is to divide the interval  0,x  into a mesh

0 1 20 ,n Nx x x x x x          and then we try to evaluate the value of the unknown 

function ( )x at these points except at 0,x  where we have that (0) (0).f   

Using any known rule, say Simpson's rule, we have: 

 2 2 2 0 0( ) ( ) , , ( )
3

h
x f x k x x x      

   2 1 1 2 2 24 , , ( ) , , ( )k x x x k x x x    

To obtain a value for 1( )x we introduce the point 
1

2

,
2

hx  and then we use Simpson's rule again to 

obtain 

 1 1 1 0 0( ) ( ) , , ( )
3

h
x f x k x x x      

   1 1 2 1 2 1 1 14 , , ( ) , , ( )k x x x k x x x    

(25) 

(26) 

(27)  
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Replacing the 
1 2( )x by a quadratic interpolation using the value 0 1, and 2 ,we have 

 1 2 0 1 2

3 3 1
( ) ( ) ( )

8 4 8
x x x x       

So that we can compute 
1( )x  by 

 1 1 1 0 0( ) ( ) , , ( )
3

h
x f x k x x x      

    1 1 2 0 1 2 1 1 1
3 3 14 , , ( ) ( ) ( ) , , ( )

8 4 8
k x x x x x k x x x        

Equations (26) and (29) are a pair  of simultaneous equations for
1( )x and 2( ).x  For sufficiently 

small 
1, ( )h x and 2( )x  can be found uniquely using any procedure such Netwon's method. 

In general, for 0,1, , 1,m N  the approximate solution of (25) is evaluated using the following 

two equations 

       
2

2 1 2 1 2 1 2 1 2 2

0

, , ( ) , , ( )
6

m

m m i m i i m m m

i

h
x f x h w k x x x k x x x      



   

    2 1 1 2 2 1 2 2 2 1 2 1 2 12
2

3 3 14 , , ( ) ( ) ( ) , , ( )
8 4 8m m m m m m mm

k x x x x x k x x x        
     

       
2

2 2 2 2 2 2 2 2 2 2

0

, , ( ) , , ( )
3

m

m m i m i i m m m

i

h
x f x h w k x x x k x x x      



   

   2 2 2 1 2 2 2 2 2 2 2 24 , , ( ) , , ( )m m m m m mk x x x k x x x         

Where 

 
1

1,4,2, ,2,4,1 , 0,1, ,
3

iw i m    

1 22
2 2

mm

h
x x


   

5. Numerical Experiments and Discussions: 

Example 1: 

Consider the Non- linear Volterra integral equation: 

 
35

0

1
( ) ( )

5

x

x x x t t dt      

(28)  

(29)   

(30)   
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where the exact solution is ( )x x  and 0 1,x  here 1   , 1  . In table (5.1)-(5.2) we present 

the exact solution, the approximate numerical solutions andtheir corresponding errors for some 

points, we suppose that 50,80.N   

In tables (5.1)-(5.4): 

.R K  approximate solution of R. KM, .R KE   the error of R. KM, .B B approximate solution 

of B by BM and B.BE   the error of B by BM . 

Case 1: 50N  , 

x  Exact sol. .R K  
.R KE  

.B B  
.B BE  

 0      0          0             0          0          0 

0.1 0.100000 0.0997267933 2.7320666× 10−4 0.09983750649 1.6249351× 10−4 

0.2 0.200000 0.1992790511 7.209489× 10−4 0.19972679334 5.813662× 10−4 

0.3 0.300000 0.2942789348 5.7210652× 10−3 0.2983235545 1.6764455× 10−3 

0.4 0.400000 0.3903370122 9.6629878× 10−3 0.3969725972 3.0274028× 10−3 

0.5 0.500000 0.4903037547 9.6962453× 10−3 0.4952277514 4.7722486× 10−3 

0.6 0.600000 0.5703260241 2.9673975× 10−2 0.5930905809 6.9094191× 10−3 

0.7 0.700000 0.6615191696 3.8480830× 10−2 0.6905626412 9.4373588× 10−3 

0.8 0.800000 0.7396378531 6.0362146× 10−2 0.7876454799 1.2354520× 10−2 

0.9 0.900000 0.8344427662 6.5557233× 10−2 0.8843406360 1.5659364× 10−2 

 1 1.000000 0.9055801198 9.4419880× 10−2 0.9806496407 1.9350359× 10−2 

Table(5.1) 

Case 2: 80N  , 

x  Exact sol. .R K  
.R KE  

.B B  
.B BE  

  0       0          0             0          0           0 

0.125 0.1250000 0.1248237317 1.762683× 10−4 0.1248588618 1.411382× 10−4 

0.250 0.2500000 0.2492586214 7.413786× 10−4 0.2496358708 3.641292× 10−4 

0.375 0.3750000 0.3777039148 2.703914× 10−3 0.3733052315 1.694768× 10−3 

0.500 0.5000000 0.4950865375 4.913462× 10−3 0.4969647705 3.035229× 10−3 

0.625 0.6250000 0.6200232157 4.976784× 10−3 0.6202384419 4.761558× 10−3 

0.750 0.7500000 0.7428903601 7.109639× 10−3 0.7431274445 6.872555× 10−3 

0.875 0.8750000 0.8651354304 9.864569× 10−3 0.8656329718 9.367028× 10−3 

  1 1.0000000 0.9282383052 7.176169× 10−2 0.9877562124 1.224378× 10−2 

Table(5.2) 

Example 2: 

Consider the Non- linear Volterra integral equation: 

   
 

2
2

0

1 cos 2 sin 2
( ) sin ( )

16 8 2

xx x x x x xt
x x t dt 

 
      

where the exact solution is  ( ) sinx x  and 0 1,x  here 1   , 1  . In table (5.3)-(5.4) we 

present the exact solution, the approximate numerical solutions andtheir corresponding errors for 

some points, we suppose that 50,80.N   

(31) 
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Case 1: 50N  , 

x  Exact sol .R K  
.R KE  

.B B  
.B BE  

 0           0          0           0  0  0 

0.1 0.0998334166 0.0998470697 1.36531× 10−5 0.0998252949 8.12173× 10−6 

0.2 0.1986693308 0.1987270218 5.76910× 10−5 0.1985975165 7.18143× 10−5 

0.3 0.2955202067 0.2963744738 8.54267× 10−4 0.2952714708 2.48735× 10−4 

0.4 0.3894183423 0.3913362225 1.91788× 10−3 0.3888257187 5.92623× 10−4 

0.5 0.4794255386 0.4839544320 4.52889× 10−3 0.4782741785 1.15136× 10−3 

0.6 0.5646424734 0.5733495071 8.70703× 10−3 0.5626772979 1.96517× 10−3 

0.7 0.6442176972 0.6570307644 1.28130× 10−2 0.6411526614 3.06502× 10−3 

0.8 0.7173560909 0.7403396458 2.29835× 10−2 0.7128849044 4.47118× 10−3 

0.9 0.7833269096 0.8102229618 2.68960× 10−2 0.7771348129 6.19209× 10−3 

 1 0.8414709848 0.8878602256 4.63892× 10−2 0.8332475625 8.22348× 10−3 

Table(5.3) 

Case 2: 80N  , 

x  Exact sol .R K  
.R KE  

.B B  
.B BE  

   0          0           0          0         0       0 

0.125 0.1246747334 0.1246835292 8.7958× 10−6 0.1246737330 1.0004× 10−6 

0.250 0.2474039593 0.2476985837 2.9462× 10−4 0.2473120443 9.1915× 10−5 

0.375 0.3662725291 0.3676282777 1.3557× 10−3 0.3659611541 3.1137× 10−4 

0.500 0.4794255385 0.4830800698 3.6545× 10−3 0.4786949777 7.3056× 10−4 

0.625 0.5850972724 0.5926912852 7.5940× 10−3 0.5836975569 1.3997× 10−3 

0.750 0.6816387600 0.6951347139 1.3495× 10−2 0.6792836827 2.3550× 10−3 

0.875 0.7675434022 0.7891248129 2.1581× 10−2 0.7639272915 3.6162× 10−3 

   1 0.8414709848 0.8734243449 3.1953× 10−2 0.8362869287 5.1840× 10−3 

Table(5.4) 

 

6. The Conclusion: 

From the previous discussions we conclude the following: 

1) As x is increasing in interval 0,1 , the errors due to Runge-Kutta and Block-by-block 

methods are also increasing. 

2) As N is increasing, the errors are decreasing in the Runge-Kutta and Block-by-block 

methods. 

3) The error in the evaluation of the approximate solution, using the Block-by-block method, is 

less than the error in the evaluation of the approximate solution, using the Runge-Kutta 

method, in all cases of the two examples. 

4) The stability of the Block-by-block method more than the Runge-Kutta method. 
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