

SCITECH

Volume 11, Issue 3

Published online: March 24, 2017

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

SEMIGLOBAL TOTAL DOMINATION IN GRAPHS

T.Nicholas,

Department of Mathematics, St.Judes College, Thoothoor, TamilNadu, India.

RESEARCH ORGANISATION

T.Sheeba Helen,

Department of Mathematics, Holy Cross College (Autonomous), Nagercoil - 4, TamilNadu, India.

ABSTRACT

A subset D of vertices of a connected graph G is called a semiglobal total dominating set if D is a dominating set for G and G^{sc} and < D > has no isolated vertex in G, where G^{sc} is the semi complementary graph of G. The semiglobal total domination number is the minimum cardinality of a semiglobal total dominating set of G and is denoted by $\gamma_{sgt}(G)$. In this paper exact values for $\gamma_{sgt}(G)$ are obtained for some graphs like cycles, wheel and paths are presented as well.

Subject Classification: 05C69

KEYWORDS: Semicomplete grap; global total domination number; semicomplementary graph; semiglobal total domination number.

1. INTRODUCTION

For a comprehensive introduction to theoretical and applied facts of domination in graphs the reader is directed to the book [4]. A set D of vertices is called a dominating set of G if each vertex not in D is joined to some vertex in D. The domination number $\gamma(G)$ is the minimum cardinality of the dominating set of G [4].

Many variants of the domination number have been studied. For instance a dominating set D is called a Global dominating set of G if D is a dominating set of both G and G^c. The global domination number of G, denoted by $\gamma_g(G)$ is the minimum cardinality of the global dominating set of G. This concept was introduced independently by Brigham and Dutton [1] (the term factor domination number was used) and Sampathkumar [7]. A dominating set D of a graph G is a total dominating set if the induced sub graph $\langle D \rangle$ has no isolated vertices. The total domination number $\gamma_t(G)$ is the minimum cardinality of a total dominating set of G. This concept was introduced by Cockayne, Dawes and Hedetniemi in [2].

A dominating set D of a connected graph is called a independent dominating set of G if the induced subgraph $\langle D \rangle$ is a null graph [4].G be a connected graph, then the semi complementary graph of G, denoted by G^{sc}, has the same vertex set as that of G and has edge set {uv / u,v \in V(G), uv $\notin E(G)$ and there is w \in V(G) such that uw,wv \in E(G)} [6]. In this paper, we introduce a new graph parameter, the semiglobal total domination number, for a connected graph G. We call D \subseteq V(G) a semiglobal total dominating set, if D is a dominating set for G and G^{sc} and $\langle D \rangle$ has no isolated vertices in G, where G^{sc} is the semicomplementary graph of G. The semiglobal total domination number is the minimum cardinality of a semiglobal total dominating set of G and is denoted by $\gamma_{sgt}(G)$.

2. MAIN RESULTS

Theorem 2.1 For any graph of order n, $2 \le \gamma_{sgt}(G) \le n$.

Proof: By definition a semiglobal total dominating set needs at least 2 vertices and so

 $\gamma_{sgt}(G) \ge 2$. The set of all vertices of G is clearly a semiglobal total dominating set of G so that $\gamma_{sgt}(G) \le n$.

In the following theorems we give the exact values of some graphs.

Theorem 2.2 $\gamma_{sgt}(K_{m,n}) = 2 m, n \ge 2.$

Proof: Let V_1 and V_2 be the partite sets of $K_{m,n}$ with $|V_1| = m$, $|V_2| = n$. Every vertex in a partite set dominates every other vertex of the other. Then $D = \{u_i, v_j\}$ is a minimal dominating set for $K_{m,n}$ where $u_i \in V_1, v_j \in V_2$, for some i and j. Then the induced subgraph < D > has no isolated vertex. The semicomplementary graph of the complete bipartite graph $K_{m,n}$ is a disconnected graph $K_m \cup K_n$, where $<V_1> = K_m$ and $<V_2> = K_n$. Any two vertices in V_1 or that of V_2 are adjacent in $K_{m,n}^{sc}$. Hence D

= { u_{i}, v_{j} } is a dominating set for the semicomplementary graph of $K_{m,n}$. Thus $\gamma_{sgt}(K_{m,n}) = 2, m, n \ge 2$. ■

Corollary 2.3 $\gamma_{sgt}(K_{1,n}) = 2, n \ge 2.$

The crown graph $C_n \odot K_1$ is the graph obtained from cycle C_n by attaching a pendant edge to each vertex of the cycle.

Theorem 2.4 $\gamma_{\text{sgt}}(C_n \odot K_1) = n$

Proof: Let $G = C_n \odot K_1$. $V(G) = \{ v_0, v_1, v_2, \dots, v_{n-1} \} \cup \{ u_0, u_1, u_2, \dots, u_{n-1} \}.$

 $E(G) = \{ v_i v_{i+1} / i = 0, 1, 2, ..., n-1, \text{ subscript modulo } n \} \cup \{ u_i v_i / i = 0, 1, 2, ..., n-1 \}. \text{ Let } D \text{ be a minimal semiglobal total dominating set of } G. Then D must contain n vertices of the cycle in <math>C_n \odot K_1$. Since $\langle D \rangle = C_n$ and D dominate the vertices of G as well as G^{sc} ,

 $\gamma_{\text{sgt}}(C_n \bigcirc K_1) = n \blacksquare$

Theorem 2.5 Let G be a complete graph, then $\gamma_{sgt}(K_n) = n$.

Proof: Let D be a minimal semiglobal total dominating set of G. Obviously $|D| \le n$ by Theorem 1.4. If |D| < n, then D can only dominate vertices of G and D does not dominate G^{sc} , since G^{sc} is totally disconnected.

Remark 2.6 The bounds in Theorem 1.4 are sharp. For the complete graph K_n ($n \ge 2$), $\gamma_{sgt}(K_n) = n$. For the complete bipartite graph $K_{m,n}$ ($m \ge 2$, $n \ge 2$), $\gamma_{sgt}(K_{m,n}) = 2$. Thus K_n ($n \ge 2$) has the largest possible semiglobal total domination number n and the complete bipartite graph have the smallest semiglobal total domination number 2.

Theorem 2.7 For any wheel W_n , $\gamma_{sgt}(W_n) = 3$, $n \ge 4$.

Proof: $V(W_n) = \{w, v_0, v_1, v_2, v_3, \dots, v_{n-1}\},\$ be the vertex set of the wheel W_n .

Let $D = \{w, v_0, v_{n-1}\}$ be the semiglobal total dominating set of W_n . The vertex w is the only in the semi complementary graph of W_n . Hence D must contain w. The vertices v_0 , v_{n-1} that is the initial and end vertices of the cycle of the wheel dominate all the other vertices in G^{sc} . Hence D is the minimal semiglobal total dominating set of W_n . Hence $\gamma_{sgl}(W_n) = 3$ if $n \ge 4$.

Theorem 2.8 For a path P_n on n vertices,

$$\gamma_{\text{sgt}}(P_n) = \begin{cases} \frac{n}{2} \text{ if } n \equiv 0 \pmod{4}; \\ \frac{n+1}{2} \text{ if } n \equiv 1,3 \pmod{4}; \\ \frac{n}{2} + 1 \text{ if } n \equiv 2 \pmod{4}. \end{cases}$$

Proof: Let P_n be the path of order n. $V(P_n) = \{v_0, v_1, v_2, v_3, ..., v_{n-1}\}.$

If $G = P_n$ ($n \ge 3$) then $G^{sc} = P_{\frac{n}{2}} \cup P_{\frac{n}{2}}$ if n is even,

$$= P_{\frac{n+1}{2}} \cup P_{\frac{n-1}{2}} \text{ if n is odd.}$$

Let D be a minimal semiglobal total dominating set in G, which must contain v_{n-1} , the end vertex of P_n .

If $v_0, v_1, v_2, v_3, ..., v_{n-1}$ are the vertices of G then $v_0, v_2, ..., v_{n-2}$ induce $P_{\frac{n}{2}}$ and vertices $v_1, v_3, ..., v_{n-1}$ induce another $P_{\frac{n}{2}}$, when n is even. When n is odd, $P_{\frac{n+1}{2}}$ and $P_{\frac{n-1}{2}}$ are respectively induced by { v_0 , $v_2, ..., v_{n-1}$ } and { $v_1, v_3, ..., v_{n-2}$ }. Let $v_0 \notin D$. If $v_1 \in D$ then v_2 should be in D to ensure the totality property. Now we consider four cases.

Case i)
$$n \equiv 0 \pmod{4}$$
.

Then $D = \{v_{4i+1}, v_{4i+2} / i = 0, 1, \dots, \frac{n}{4} - 1\}.$

Case ii) $n \equiv 1 \pmod{4}$.

Then D = { $v_{4i+1}, v_{4i+2} / i = 0, 1, ..., \frac{n-1}{4} - 1$ } U { v_{n-2} }.

Case iii) $n \equiv 2 \pmod{4}$.

Then D = $\{v_{4i+1}, v_{4i+2} / i = 0, 1, \dots, \frac{n-2}{4} - 1\} \cup \{v_{n-3}\} \cup \{v_{n-2}\}.$

Case iv) $n \equiv 3 \pmod{4}$.

Then D = { $v_{4i+1}, v_{4i+2} / i = 0, 1, ..., \frac{n}{4}$ }.

Hence the result follows. ■

Theorem 2.9 For a cycle C_n on n vertices,

$$\gamma_{\text{sgt}}(C_n) = \begin{cases} \frac{n}{2} & if \qquad n \equiv 0 \pmod{4}; \\ \frac{n+1}{2} & if \qquad n \equiv 1,3 \pmod{4}; \\ \frac{n}{2} + 1 & if \ n \equiv 2 \pmod{4}. \end{cases}$$

Proof: The result follows from theorem 1.11. ■

Theorem 2.10 [5] G be a connected graph with vertex set V. Then $G^c = G^{sc}$ if and only if the distance between any pair of nonadjacent vertices is 2.

The following theorem relates the global domination and the semiglobal total domination number of C_n

Theorem 2.11 For C_n where $n = 4, 5, \gamma_g(C_n) = \gamma_{sgt}(C_n)$.

Proof: Consider the graph C_4 and C_5 . The distance between any pair of nonadjacent vertices is 2 in C_4 and C_5 . Hence $G^c = G^{sc}$ by the above theorem. Let D be minimal global dominating set and D_1 be minimal semiglobal total dominating set of C_4 and S be minimal global dominating set and S_1 be minimal semiglobal total dominating set of C_5 . Hence $D = D_1$ and $S = S_1$. Therefore

 $\gamma_g(C_n) = \gamma_{sgt}(C_n)$ where n = 4, 5.

Theorem 2.12 Let G be a graph of order $n \ge 3$. If $G \cong K_n - e$ then $\gamma_{sgt}(G) = n-1$.

Proof: Let $G \cong K_n - e$, where $e = uv \in E$ (K_n). So $uv \neq E$ (G) and hence $uv \in E$ (G^{sc}). The G^{sc} contains n-2 isolated vertices, say $v_2, v_3, \ldots, v_{n-1}$. Hence every minimal semiglobal total dominating set D must contain all the n-2 isolated vertices .Thus $D = \{v_2, v_3, \ldots, v_{n-1}\} \cup \{u\}$ (or $\{v\}$). Thus $\gamma_{sgt}(G) = n-1$.

The following theorem relates the semiglobal total domination number and the minimum degree of G.

Theorem 2.13 Let G be a graph with diam(G) ≤ 2 . Then $\gamma_{\text{sgt}}(G) \leq \delta(G) + 1$.

Proof: Let x be a vertex of minimum degree in G. Since $1 \le d(G) \le 2$, then N(x) is a dominating set for G. Now $\{x\} \cup N(x)$ is a dominating set for G^{sc} and also a total dominating set for G. Thus we have $D = \{x\} \cup N(x)$ is a semiglobal total dominating set for G and

 $|D| = \delta(G) + 1$. Hence the result.

Theorem 2.14 Let T be a non trivial tree where $T \neq K_{1,n}$ or $T \neq P_n$ then $\gamma_{sgt}(T) = n - |L|$, where |L| denotes the number of pendant vertices of T.

Proof: Let T be a non trivial tree where $T \neq K_{1,n}$ or $T \neq P_n$. Let $D = \{v \in V(G) / v \text{ is not a pendant vertex}\}$. Let $u \in D$ be any vertex. Let deg(u) = k (say). Since G is not a star there exists a non pendant vertex $v \in D$ adjacent to u. Then u dominates the vertices of N(u) in G and u dominates them in G^{sc} and vice versa. Hence D is the minimal semiglobal total dominating set.

3. REFERENCES

- [1] R.C.Brigham and R.D.Dutton, Factor domination in graphs, Discrete Math 86(1990)127-136.
- [2] C.J Cockayne, R.M. Dawes and S.T. Hedetniemi, *Total Domination in Graphs*, Networks, 10 (1980) 211-219.
- [3] J.Deva Raj, V.Sujin Flower, A note on Global Total Domination in Graphs, Bulletin of Pure and Applied Sciences Volume 30 E (Math & Stat)Issue (No:1) 2011 P.63 – 70.
- [4] Harary, F. Graph Theory, Addison Wesley, Reading, MA, 1972.
- [5] T. W. Haynes, S. T. Hedetneimi, P. J. Slater, *Fundamentals of Domination in Graphs*, MarcelDekker, New York, 1988.
- [6] I. H. Naga Raja Rao, S. V. Siva Rama Raju, Semi Complementary Graphs, *Thai Journal of Mathematics*. Volume 12 (2014) number 1: 175 183.
- [7] E. Sampathkumar, The global domination number of a graph J.MathPhys.Sci 23 (1989) 377-385.