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In this article we use a new type of nonlinear elliptic operators A” :W," (R',d'x) —>W_‘i(R',d'X)
that are associated with left side of elliptic equation and studied their properties. We draw up the form, that is
associated with non-linear elliptic operator AP :W," (R',d'x) —>W/ (R',d'x), studying the properties this

operator by means of form.
We proved some a priori estimates which are theorems about properties of solutions under certain

conditions on the function that forming this equation. We proved the existence of solution of quasi-linear
evolution equation with singular coefficients in R', 1 >2 space by Galerkin method and showed that a given
equation has a solution in the Sobolev space.

Keywords: differential form; parabolic equations; evolution equations; a priori estimate; weak solution;

singular coefficients.

1 Introduction

The main objects of article are obtaining some a priori estimates and existence of weak solution in
certain functional set provided that system coefficients belonging to given functional classes.

We consider quasi-linear parabolic differential system in divergence form in whole Euclidean space
R I>2:

guk+/1uk—__z %{aﬁ(t,x,U)%uk]+bk(t,x,ﬁ,VU):fk(t,x), k=1..,N (1)

]

with initial condition
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where is the unknown vector-function u* (t,x)=(u,...,u"), (t,x)e[0,0)xR',1>2, 2>0 is real number and
f(t,x)=f*=(f',..,f") is given function. Here b(t,x,u,Vu)=b*(t,x,d,vi) is vector - function of four
variables. Measurable matrix a;(t,x,u) dimension IxI satisfies ellipticity condition: 3v: O0<v<c and

executed the following inequality i <a(t,x,u), foralmostall te[t,T], xeR', that

V(U)Z§i2 S--, a; (t, X, 0)&;¢; S,U(U)Zfiz véeR 2

i=1 ij
We will call weak solutions of quasi-linear differential system of parabolic type in W (R',d'x) the

element u(t, x) that almost all t [0, T] satisfies integral identity:

(u@), V(@) +j(—<u(r),8tv(r)>+ﬂ<u(r),v(z')>)dr+
; [ , 3)

+j< > a—xju,aixv>dr+j;<b,v>dr = [(f.v)de

0 \i.i=L..l i 0

and for any vector - element veW} .

i=1,..,N

Where (u,v)= > (u,v;) vuel’(R")wel'(R'") and ||u||Lp(R.) =<_ |Ui|p>'D :(_ > <|Ui|p>jp'

Usually, u*(t,x)=(u",...,u"), (t,x)e[0,)xR',I>2 is ordered set of N elements certain elements of
functional space, such as u, eW?(R',d'x),i=1,..,N .

There are many versions of theorems of functional embedment almost all related to the establishment

k—m

of specific functional estimations. If K>m i 1< p<q <o, (k —m) p <I and the equality 1 = l—l—

, then embedment spaces W, (R' ) W (R' ) is continuous.
H | | - | | . ..
Conjugated to space W,P(R",d x) is space W (R',d"x), which by definition can be entered as a
space of linear functionals on the linear space W.P(R',d'x) . Let p+q= pqthen
&’ p 1 q
<f,g> S”f"LP(R') "g"L“(R') S?”f” LP(R") +E"g" (R
where f eL’(R"), geL?(R"), >0 and

(FFTP) =0 e

1 1 -2
L e Ul

fef

L9 (R") -

p-1
=||f||pr(R')'

L9(R")
We consider the conditions under which we study and parabolic system (1): first, b(t,x,y,z) is

measurable function and its arguments bel, (R'); second, function b(t,x,y,z) satisfies estimation

[o(t, %,u, Vu)| < 14, (t. X)[VU|+ 11, (t, ) |u] + 15t X) ~ Where > e PK,(A), 1, ePK,(A), 4 el’(R) and
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5N

% p p-1 p %1 P\ p-1
o) ={ Z00) = ZAeF) = E r) =<;@wq>=w e
> uiui|ui|P2>

o (t, %,u, Vu)=b(t,,v, V)| < 1, (&, X) [V (u=V)| + 5 (t, X)|u —v| , where z,” € PK (A), s € PK,(A).

ESA

p

0
—Uu
29

and ||u||"=< <ZN:uiui|u|p2>. Similarly, the growth of b(t,x,y,z)
i=1

The condition on coefficients of evolution system. Let matrix a;(t,x,u) is measurable dimension
IxI and satisfies ellipticity condition: 3v: 0<v < executed following inequality v <a(t,x,u), for almost
all te[t,T], xeR'.

We consider the conditions under which we study and parabolic system (1): 1. Here b(t,x,y,z) is
measurable function and its arguments bel; (R') ; 2. Function b(t,x,y,z) satisfies almost everywhere,
almost all te[0,T] :

o (t, %,u, V)| < 4 (t, X) VU + 2, (€, X) Ju] + 245 (t, X) - (4)
In the condition (4) function *ePK (A), u, e PK,(A), function ., eL’(R') . 3. The growth function

b(t, x, y,z) almost everywhere satisfies the condition almostall t<[0,T]:

[o(t, %,u, Vu)=b(t,%,v, V)| < 14, (&, )|V (u=V)|+ 5 (t, X) ju =] (5)
where x> e PK,(A), us € PK,(A).

Coulomb potential is satisfied these conditions.

2. Quasi-linear elliptic operator

We study the elliptic system in space R':

VIEEDY %[aﬁ,—(x,ﬁ)%uk}rbk(x,a,wﬂ=fk, k=1,.,N
J

i,j=1,..1 OX
where U(X) is unknown function and f(x)=f*=(f..,f") is given function. Here
b(x,u, Vu) =b*(x,u*,vu*) is given function of three variables. Measurable matrix a;(X,u) dimension x|

satisfies ellipticity condition: 3v: 0 <v <oo and using the following inequality vl <a(x,u), for almost

=1,

all xeR', scilicet v(l])ifizs D> a(x0)&EE VEER'.

If we define the function |u

D'y

w=[z@mm+2|
i 1s\s\sm

=1..N

P
|pD , We can instead elliptic system in

space R' consider the elliptic equation
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0 0
ﬂ,u—a—)(i£aij(x,u)auJ+b(x,u,Vu)= f, (6

J

where u(x) is the unknown function and f (x) = f is given function.

Definition 1. We call weak solution in W,”(R',d'x) an element u(x) which satisfies the integral

identity:
o 8 B
/1<u,v>+<' z aij&u,&v>+<b,v>—<f,v>, 7)

for any element v erf*O(R' : d'X) . Equation (4) is a scalar integral identity. Based on this definition we build
the form h} :W,” xW? — R:

h?(u,v) = A{u,v)+(VveaoVu)+(b(x,u,Vu),v), (8)
which will assume correctly defined (conditions on the coefficients specify below) for all items
ueW,(R',d'x),veW (R',d'x).

If we have elliptic system then we define (u,v)= > (u,v,) vue L’(R")vwe*(R").

Function b(x,y,z) is measurable function and its arguments be i (R'); b(x,y,z) almost

everywhere satisfies the inequality:
‘b(x,u,Vu)‘sM(x)|Vu|+y2(x)|u|+y3(x). (9)
where functions 24’ € PK,(A), u, € PK (A), function s eLP(R'). The growth function b(X,y, 2)
almost everywhere satisfies the condition:
‘b(x,u,Vu)—b(x,v,Vv)‘ < ,u4(x)‘V(u —v)‘+y5(x)|u -V, (10)
where 1; € PK (A), u; € PK,(A).

We estimate form (8), which made up the equation (6) for the conjugate element u |u|p_2 :

<

hf(u,u|u|p72)‘ = ‘ﬂ<u,u|u|p2>+<V(u|u|p2)oaoVu>+<b(x,u,Vu),u|u|p2>

4(p-1)

< 2w + .

(Vwoao Vw) +<yl(x)|Vu|+/J2 (x)|u|+y3(x),|u|p_l> <

4(p-1)
p2

+p(Vwoaovw)+c(B) i +as]ul”,

<Al + <onaovW>+%<M|vW|,|w|>+
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b2 b2
where by the definition used vector function wW=ulu| 2, according VW:§|U| 2 Vu we have the

estimation:
(V) = o™ ool =2 o o ),
<,uz(X),W2>Sﬂ<VWoaOVW>+C(ﬂ)”W”2,

PRCIT A

by Holder and Young estimations

") = el

2 2
2 a9 ) <2 g

[

= (1w’ )7 <(p(Vwoaov) o )i

SO

=

2 o v o) =2 ] = 2 [ s <

=

g%||vW||(,g<onaovw>+c( ) <

11 2 2
SE(?”VW” ve(B(vweas )+ (B )j

Then we get estimation

ol

) sﬂ||w||2+4(z_l) (Vwoaovw)+

11 2 2
+B(?||VW|| ve( B(vweasvw)+c(B)|w] )j+

+p(Vweaovw)+c(B) + |’ +—Jul’.
p " &g

finally

o'q

h?(u,u |u|p_2)‘ < (/1+[8—;+ljc(ﬂ)+i}||w||

+(4(p_1)+18‘92 +ﬂ]<VWoaoVW>+li“VW“ _” 3”
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It is shown that ||w||22 ") = Jull’s ), Coefficient 4 depends on the data of (smoothness coefficient equation (

L
4;)); coefficient C( ,B) depends on g ; coefficients ¢ i o — arbitrary positive; coefficients ¢ selected based
on the matrix a constants ellipticity, coefficient o shifts affect the range of the value, it is less substantial.

So for every fixed ueW,” form h? (u,v) is a continuous linear in v.eW,® functional of W,*, and
therefore each ueW,” is associated with an element conjugate to W," space W, so function exists that
AP W, —>W?". Operator AP:W,° —>W/" takes the following action: h? (u,v)z(Ap(u),v>. First

suppose that the functions that form the equation quite smooth and prove the existence of solution Galerkin
method with a special basis of uniqueness of the solution is the result of strict accretive operator generated by
form, which is composed from equation. Then suppose that coefficients are measurable and by it cutting and
smoothing we reduce the problem to the previous case. Next step is removal of the conditions of cutting and

smoothing.
Theorem 1. Weak solutions of equations (6) with conditions (9, 10) uniformly limited in W,".
Proof. We form an integral identity:

AU, &) +{d&oaodu)+(b(x,u,Vu), & =(f,5),

We put £=u, |u, |°?, obtain:

_ p-2 P2
2’<uk’uk|uk|p2>+4(p—21)<d(uk |uk| 2 Joaod(uk |Uk| 2 j>+
p

+(b,u, [u [Py =(f,u, Ju, [7?).
With conditions (9), using Young's and Holder inequalities , we find:
[bu Ju P I
s%(énwnz b (,B(VWoaoVW>+c(ﬂ)||W||2)j+
+p{vwoasvw) o ()l + Z sl + = Ju
Y cq

Next, we get:

[CEu Tu P2 I I u P2 < E DI 1P
Then, using arguments similar to the previous one, we obtain

lu NI+ 1IVu l<e(4, p 1 A4, N) [ ]

So, since ||u, |LNp < C, where constant has depends on function coefficient (structure of equations), then
1

because of weak compactness of space W," (R' : d'x) we find that there exists a subsequence (uk, (x)) that
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is a property: U, ———>U, weak i AP(u )———>Y weak. Show that y = AP (u,)= f . We form the
il n 1
integral identity:
<Ap(uk,),vi*> :<f,vi*>,i =1,...,k'
and go to the limit k" — +o00. Then we obtain:
limA? (u.)=y=f,
the limit in Wj(R',d'x) space.
We have:

)R~

= <y_ AP (V), (Uy —V)|U, —v|p_2> > 0.
We put v=u,—tz,t >0, z erp(R',d'x) and reducing both sides of the resulting inequality in t°*,
obtain <y— A’ (u, —t2), z|z|p72> > 0.
With semi-continuity of operator A" :W,” —W/, given the arbitrary element z er"(R',d'x),

obtain y = AP (uo) = f , ie for given initial data constructed sequence {uk,} and proved its convergence to

the element u, W,”(R',d"x), therefore element u, €W, (R',d'x) will be solutions of the conditions

mentioned above.
The uniqueness of this solution follows from the properties of accretiveness of operator AP().

Indeed, let u,, U, are two such solutions. Then, just equality:
(AU w) = f,  (AP(),w)=f vweW(R',d'x),
that ( A" (Up) — A® (ug), W) = 0.
Let w=(u, —u})|u, —u; |°?, so:
0= ( AP(Uy) — AP (Up), (U —Ug) [ Uy —ug [P2)

> A up—ug |1 +(p—1)<V(u0 —ug)eaoV (Uy—Ug),| Uy —Ug |p‘2>—

)
p >Z

—<ﬂ4(X)\V(Uo ~Up)

'(uo _u())|uo —U(')

2 -S40 c(p) o

+,L15(X)|U0 —Ug

P
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4(p-1 2
+ M—ﬂg—— 12 - B |(VwoaoVw) >0,
p p  pev

that equivalent equality u, = Uy, that solutions of equations coincide.

Let the functions that form the quasi-linear equation (6) is measurable and satisfy the above conditions
for the growth and power of the singularities.

Let u(x) is Lebesgue measurable function at R'. We denote by u, and s, cutting and support,
respectively

u—-9%, u>Jg,
ug=40;] ul<§,
u+94, u<-4,

s,(u) = {xeR" Ju(x)[> 99> 0}.
Let a™(x), f™(x), b™(x,y,z) are cutting for argument X functions a(x), f(x), xeR'
b(x,V,2), (x,Y,2) e{R' xRxR'}, respectively.
Consider the "smooth" approximation of functions a™(x); b™(x,y,z), f™(x) for argument X :
a™™(x) = jR, o, (x—t)a"(t)dt = p, *a",

where p._(t) is smooth integral approximation 1in R'.

We go to the limit is as follows initially removed smoothing, that go to the limit with n — oo then
remove the cut, that go to the limit with m — oo (sequence of limits is important).

The equation of equations:
Au—doa™ odu+b™"(x,u,Vu)=f™", 1 >0, (11)
and form
h?™ (u,v) = AU, V) +{dvea™" odu) +(b™",v). (12)
For every fixed vector u eW,” the form h}™ (u,v) is a continuous linear at v eW,* functional of
W,?, and therefore each u € W," is associated with an element conjugate to W,* space W !, there is mapping
AP™ WP —W ! generated by this form.
Theorem 2. The equation (11) under condition (9, 10) has unique solution in W,".

Theorem 3. Generalized solutions of equation (11) with the conditions (9) uniformly limited in W,".
Proof. We form the integral identity:
AU, &) +(dEoam odu™) +(b™" (x, ™", VU™), &) =(f ™", 8),
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Let £=u™"|u™" |2, we obtain:

l<um,n'um,n |um,n |p72>+

- b2 b2
+4(p2 1) <d (um,n |um,n | 2 ]Oam,nod(um,n |um,n | 2 ]>+
P

+<bm,n1um,n | um,n |p—2> = < f m,n,um,n | um,n |p—2>.
With conditions (9), using Holder and Young's inequality, we find:

™, U™ U™ P2 f
< IRI IR Ib™" ()| p, (x=t)u™" (x) [u™"(x) |°* dtdx <
<[ [ @vum (0 +
2 (U™ (X) + 227 (1)) o, (X —1) xxu™" (x) [u™" (x) |P~2 ditdx <
< [ ]G @ TVU™ (0 | o, (x=u™ () [u™ (x)["* ditcx +
G2 1U™ (9] o, (x=U™ () [u™" () " dtax +

+ IR. L(ﬂa"‘ () o, (x=t)u™" (x) [u™" (x) [P~* dtdx <
<2 [ ©1YWO) o, G Codcs

+IR| J‘R(:ugn W ? (X) p(x —t)dtdx + LI J‘R(lu3m ('[),0n (x _t)um'“ ()| u™" (x) |P—2 dtdx,
estimate can be written:

IR| IR(/JQ“ (W2 (x) p(x —t))dtdx =
[ ([ ®lo, =0 W P o) =
= IR| (IRA!E" (t)dt)|,0n(X)|W2(X—t)dx -

= [, [, 00| [ OW2(x—tydt)dx < [ |0, (00| (B VW () [ +

+C(B) IIVW () [5)dx = 8| VW |I; +c(B) | VW |13,

we estimate integrals:

[ [ 4 @ 1VW ()] o, (x W ()dtax <
<([ [ x=0 1YW (O dtax | *

H(Jaa a0 0] 4 @ 1W (9 ) e )7
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P2
where W =u™" |[u™" | 2

m,n |
Then again used Young inequality and form- bounded ,uf , we have:

J R(f 1P (X= W () dx (" (t))zdt) =
= [ ([ 0y dt) o, 00 W (x=0) [ ox =

- fRIPn(X)L((ﬂI" (t))2 |W (x—t) |2 dt)dx <
< [ o (O_(BIVW (x-t) |} +

+C(B) [W (9 [3)dx = Bl VW |[; +c(B) W I3
Then

IR. IR(ﬂé“ () p, (x—t)u™"(x) [u™"(x) |"? dtdx <

_ p-1
<leal fumc01u™ 0 2], = e, o™ 0]
Using the properties of approximation of function f we obtain:
[CEmum U™ PRl ot P
™ P ™ ]
Then, using Young's inequality, for sufficiently large m, n and considerations such as the previous one,
obtain [[u™" || +]| Vu™" ||<c(4, p,1, 4, N) || f ||p.

3. A priori estimations for quasi-linear parabolic differential equations

We study the parabolic equation in whole space R',1>2:

0 0 0 B
ELHM_ > &(aij(t,x,u)auj+b(t,x,u,Vu)_f(t,x),

i,j=1,..1 i j

so by definition of weak solution, we have the integral identity

" t t a a t t
(u@@),v(@)) s +£(—<u(r),atv(r)> +l(u(r),v(r)))dr+‘([<i'jzl;ul 3, a—xju,&iv>dr +_([<b,v>dr = !( f,v)dz

for all u(t,x) eW,},, te[0,T] and for all veW},.

We rewrite identity for t [0, T] in the form of

t t

(u(@), V@), +j[—<u(r),a,v(r)>+< > 3, a%u,%v»dr = j( f ,V>dr—J(ﬂ<u(7),v(r)>)dr—J<b,v>dT. Let

ij=l.., 0 0

"

element v(z) =ulu|” " () and we estimate
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dr+

<u(r),u|u|p_2 (r)> 3 +/1“<u(r),u|u|p_2 (f)>
+j.(—<u(r),6,(u|u|p2(T))>+<- Y 6iu ol IUI“(T))>]drs
< (e (o1 @)

Further, we estimate each term on the right side separately

(.0 @) < el @< Z 1+

<Z gt ol 2(’))> 4(22_ : <V(“|Ulp52 (f)]°a°v(‘1|u|pz'2 (T>J>,

dr+_[<yl(t X)|Vu|+ 22, (t, X) |u] + 225 (t, %), ulu]™ (T)>dz'

. . P2 . p-2
we use denoting of function w=ulu| z (z) and respectively Vw=g|u| 2 Vu .

(s ) =% V0l )= 2 9 )

<y2(x),w2> < B(Vwoaovw)+c(B)|W°,

(0.1 < Dl =l

next use the Holder and Young estimates E<;¢1|Vw|,|w|> Sg",ulW""VW" :
p P

-

(oWl = <(;¢lw)2 >E < (ﬂ(VWo aovw)+c ()W’ )% ,

SO

1

2 2 2 3
2 v )= 2 o] - 2 v (s} =

< 27w (B (vweasvw) se(p)u ) <

1 2
SE( |Vl + 22 (B {vweas ) +o( 5)]w] ))
s%(g—leWoaoVW>+gz(ﬂ(VWoaoVW>+c(,B)||W||2)j.

Then we get estimations
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I[<5 @), (ulul”* @)+ <,_Z ai,-ai;ju,g(u|u|“(f))>]dr
[ o)
I
(3 2ol oo (swese s ) oo

dr+ <

dr+

IA

A +—H e @

+

7q

|
I

1 p
o ptswoacvwpre(a s i+ 2l o

We use the equality <u(r),u|u|"‘2 (r)>|;= pj<6ru(r),(u|u|p_2 (z’))>d‘r that is true for almost all real
0

values t

l

p

—||W|| o +4
I
+~[(E[?"VW"2 + & (ﬁ(VWo aovw)+c(f)|w|’ )J (r)]dr +

0

Al +—H ™ @f

dr+

IA

2 1 2 P P
B{VweaoVw)+c(B)[w] +WHWH +?"ﬂs" de.

ot—\

Because of ”u|u|"'2 (z’)”q =<|u|("‘1"*> =|ulf” =W}, then we obtain inequality
L 4L [(Vwoacv))des 2w dr <
pt ot " Pt > -
t
<
!
[ [ L ivuf < (,B(VWOaoVW>+C(ﬂ)||w||z)](r)]d1+
B

O.P

AP ool

dr+

+

|
I

(Pweas ol +E + o
Let p=2 then

t t
%||u||2 | +[(Vuoaovu)dr+ A[|uf dr <
0 0

1 ¢ 2 1\ 2
g(?‘z+@g +c(ﬁ)+—2JJ.||u|| dr+

+ l(iJrﬁg j j[ VanoVu dr+
2\ & 0

10_2
+_([?||f||2dr+}[%||ﬂ3||zdr.
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If we put that &*

1 11 ., . B
:ﬁthen E(?u}g j+ﬁ_\/ﬁ+ﬁ_\/ﬁ(1+\/ﬁ) and then

—||u|| Iy +J (VuoaoVu) dr+/1_[||u| dr<[ 1

LS o
\/—(1+\j—)j VuoaoVu>dr+@£”f"2d2'+\/;2_.([||,u3||2d1.

0

Hoélder smoothness and continuity of generalized solutions of (1). We will call limited generalized solution
of equation (1) the element u(t,x) V%  such that vraimax|u(t,x)|<o , and which satisfies the integral

identity

U@V, +i( (U(e).6.9()) + 2{u(2) v(2)) dr+j< -iu,axiv>dr+i<b,v>dr=j;<f,v)dr

..... i i

forall te[0,T] and for any function veW;; and vraimax|v(t,x)| <, te[0,T] .
We use conditions and obtain estimation for all t<[0,T] and for any function veW/, and

vrai max|v(t, x)| <o, t [0, T]

(U@ +j[ u(2),0.v(r)) <.,,Z Iaija%u ai v>]drs

o'—.r‘

dz' j u(r) V(r) dr+

I<y1(t, X)|VU|+ 1, (t, X) |u] + 5 (t, %), V() )d 7

Let u(t,x) is a generalized solution, we define v_(t,x) is averaging of function v(t,x) by formula

t+h

v (8, x)_—jv(r x)dz, u,(, x)_—ju(r x)dr

we transform
T T
Iuav dt— .[uhav Iauv ,
0 0 0
because
T T-h
j u(t)v; (t)dt = j u, (Hv(t)dt
0 0

where the function v(t, x) identically equal zero inthe interval t<0 i T>t>T-h.

Remark. We can change the order averaging and differentiation in x.

We rewrite as
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I ((2.uy, V) +A(uy,v))dz +
0
.

. jMzaa%uJ ,ai;iv>+<bh,v>Jdr:Eh(fh,v)dr

The last equality holds for any element v eW? , therefore we put in v=u, , by integrating at t and go

to the limit at h — 0 , then we get
t t
%(u,u)lg +j[<_ )3 a”.ai;ju,axiiu>+<b,u>]df+z£||u||2dr=
t
= [(f.u)dz.
0

Tlh[<(i,j;,,,.aiiai;j”l a%v>+<b V>Jdr, T£h<fh,v>dr

.
limitat h—0 to I[< > a iuaiv>+ bv}dr,
X

f v dr, and thus it is true for v=u .

o-_,—c

ij
i,j=1,...1 8X i

Using (6) and introduced the denote for any t,,t, e[h, T —h] we write

t

J.(<aruh,v>+/1<uh,v>)d7+
+T(<Z Iaij ai;ju’ai;ivh>+<b'vh>]dT:T<fh,V>dr,

4
if we put v=u, where u(t,x)=u*(t,x)=max[u(t,x)-k,0], and we denote the set of points in space
R'.1>2, R(t)={xeR :u(t,x) >k te[0,T]}, and a set of points

P.(t) ={(t.x) [0, z]xR" :u(z,x) >k, 7 €[0,T], 1 > 2}, then we get

dr+/1j||u

dr <
R (1)

%"uk(t) +j vu* oaoVu
0

Pk() R (1)

[% 7 ]J )| [l ' d

t

+f(1+f)j (Vueaovu),  dr+

AL, L )

R (t) R (t)

We use elementary estimation (a+b) <2(a’+b?) , we get

t t
[l ., d7 < 2[||u K[, o, +K* [mes P, (z) drj :
0 0
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Lemma 1. Letelement u eV, satisfies the following identity

ot—

(—(u,0,0)+ 2 (u,@))dr +

+](<Z aijai;ju,aixi(o>+<b,go>}dr=!<f,¢)>dr, fel?

0
where ¢ is arbitrary element of the space Wfo([o, T '3, while element ueV? belong to space
VZ ([0T]xR") .

2

Space V?, ([0.T]xR') is subset of space W/, ([0,T]xR') consisting of all elements of continuous at t
2

in norm LZ(R') with the norm

Jull, = max Ju®] +[Viulyy e

te[0, T

and the condition

T-p

! <%|u(t+h,-)—u(t,.)|2>dt&>0_

t
Proof. We put ¢ j z,x)dz for any oW ([0.T]xR"), then we have

:rll—\

(—(uy.0.0)+ A{u,,p))dz +

+.T[[<{' J;-.,I % G%UJ 'ai;i¢>+<bh:(/’>Jdr :];< f..@)dr,

and we denote ¢(t,x)= x(t)w(x), where y(t) - smooth function of the time variable, y veO(R') . Then we

Sy —

T (=0, 2@ Uy p) + 22 () (U, ) )7 +

+| ;((T)MH; a, ai;juJ ,ai;iz//>+<bh,1//>Jdr :I;;((Tx f..p)dz,

SO
0, (U, )+ AUy v )+
0 0
+<(i j;,,Ja”@_Xjul’axi W>+<bh"//> < hv'»”>V‘//e 1,0( )7
and

(0,up )+ AUy w)+
+<[ > a%uJ ,axii://>+<bh,y/>:<fh,y/>vl//veO(R'),

i,j=1,...1

and then for any positive h, h, , we have
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(0.u, =0.uy )+ A{u, —u, y)+

+<{”; A %Jm _[Z W %Jm ’axii"’>+<bh1 b, ) =(f, — f,.v) Yy Wi (R),

we put y =u, —u, then we get

0 0 0

+<er —bhz,uhl —uh2>:<fh1 - fhz,uhl —uh2>,

we are integrating at time variable and we get

15
2

1 2
E"uhl _uhz t

K 0 o o
. - ) —(u_ — d
+£<{11;l W gu]hl ["j; 'a” aulz % (Uhl " )> -

)
2
+/1J‘||uh1 —Uy, || dr+
't

+tf<bhl —b,,u, —u, Jdr =[(f, 1, u, —u Ydr, t,t,e[0T]
b

We turn to the limitat h, -0, h, -0, we have

(m‘“hz)

Ju, —u,, |+

0 0
a, —u| - a, —u
{i,jzl: P OX, ]hl (i,jzl: P OX th

+ +
...... i i
hy,h, -0
+[o, =By [+ £, = ]| > 0.

Then, we put w(x) =A,u=u(t+h,x)—u(t,x), then we have

T((aruh,u(t+h,x)—u(t,x)>+l<uh,u(t+h,x)—u(t,x)>)dt+

+T > a 2y ,ﬂ(u(t+h,x)—u(t,x)) dt+T<b,u(t+h,x)—u(t,x)>dt:

o= ! 6Xj . oX; o "

= [ {f,,u(t+h,x)-u(t,x))dt
we change averaging in the first term to the second "factor” and the difference at first, so

I"A ol dt+/1J' Uy, A,u)dt

:j(Ahf,uh>dt,

We use Holder inequality, we obtain

J‘" h ||L2(R)dt< (h) 0,

—0
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so, the lemma 1 is proved.

Estimation of Hdélder constant. Let be the condition parabolicity (ellipticity) conditions (4), (5) and each

a

generalized solution u(t,x) from V' is bounded, show that under these conditions u e H"? forsome a>0

and we will obtain estimation of norm |u” . Thus, element ueV?, for any element ¢ W2 , we obtain

inequality

tj(b,q))dr

4

(u(@), p(0)) j (u(z),0,0(2))+ A(u(2), (7)) dr+j< a..iu,aix<p>drs

t
+J.|<f,(p>|dz',
4

and since for any element ¢ eW? , the following condition on function b

t

[{b.p)de| <

]

t

j<ﬂ1 |VU| + 4, |U| +/”31|(P|>d7

&

then, we estimate

(u(@), ()| j (u(z),0,0(2)) + 2(u(2), p(z)) dr+j< a..iu,i¢>drs

< J (o Vo) + o s o)+ [ . .

then, if necessary, can be re-used by averaging because the calculations are the same as were made above, we
put in the last inequality go(t,x):(g(t,x))zu(t,x)Egzu, and after integration by parts first term on time

variables, we obtain inequality

e, j( (@) 0.£()) #2220, Jar+

+tj‘< Z .a”iu’g(ugz (r))> dr <

J ‘ K(5)

dr,

| < f ’ué:z (T)>K(§)

where K (&) is cubein R' with sides of length 5.

The first part of this inequality look classic and can be investigated by using standard methods
ellipticity, on the second part of it is necessary to use the conditions of form-bounded functions x, i=1,2,3.

Then, we estimate

e R P e B P P ey T

| (O =((&” () )< p(v& e (o) ]

similarly
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(12 (), ) < s (D = (B (V£ 0209) + (Bl ol

Next, we estimate

|||Vu|u||2 s%[g—; i +e° ||u2||2j .

So, we obtain inequality

||u(t2)§(t2 )”2K(5) +K (ﬂ,g,gl ..... |)T< Z a. —u,i(ugz (T))> dr<

K(s)

£ >)K( dr+Kj F(f,& )||u||)

1

<Ju®EW)p, + J(KaIVE+ Ko ]+ Ko (€

that is, obtained a qualitative estimation, where K, K , K,, K, are some positive nuvbers, depending on the
initial data of the problem, constants ¢,¢,,..,&, are arbitrary constants are selected so as to neutralize term that

contains a gradient, for example

P G R R

111 2 2 2112 21 1
sa[g_zmg vV ) ae(B)Ef + o 5(_

2
2 2
ol )

usually it is rationally to choose £* =¢4. Thus, we obtained a priori estimation of the solution of equation (1).
We assume that an element u eV is solution of equation (1), then for any element veW? (R',d'x)

such thatvrai max|v(t,x)| <, te[0,T] make integrated identity

<u(r),v(r)> Iy +j).( <u(r) 6V(r)>+ﬂ,<u(r) V(r) dr+-[<6x, . J;“,I a; aiu V>dr+_:[<b,v>dr:j;<f,v>dr,

by differentiating the third term on spatial variables, we obtain equality

(u(@),v(z)) s +J(—<u(1),8tv(r)>+/1<u(r),v(r)>)dr+

sz gl
+[(b.v)d :£ (f.v)

0

Next, we put v=u, then

L@ +ﬂj||u(r)||2dr+j 2y o P uudes
2 ’ 0 X i Tin OX;
J dr.

The right part estimate similar to how it did before, that is, use the form of form-bounded condition and

+
ot
o=

LM
L
7 N\
K|
Q)|Q)
c
;/
C
—=
ot_,ﬁ

Holder estimation. To estimate the third summand we need additional conditions on derivatives of elliptical
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taken out of spatial integrals.
The ellipticity conditions can be written as

vigl < X asg <ule” veer.

ij=1,...1

Consequently, there is a positive real constant number C, that estimation is correct

0 0
<. > & {a_a_J>C Jaulle,
i j=1 i i

then, we use inequalities of Holder and Young, we get that spatial derivatives of elliptical matrix are bounded
and solution u belong to space W/, i.e. we have improvement of the smoothness of the solution equation.

Theorem 4. If the Cauchy problem

0 0 0
—u+Au——1| a. (t,x,u)—u |+b(t,x,u,Vu) = f (t,x), ,
= ax(( )aX_J ( )=f(t0)

J
u(0,x)=u,,
where is the unknown function u(t,x) and >0 is real number, and f(t,x)=f is given function has a

<0,

. . . . oa,
solution ueW/, , the conditions form-function bounded b and if vrai max‘a—Jk

then the solution u(t,x) will be belong to space W, , that will improve the properties of the solution,

narrowing the class of functions in which we sought solution.
4. The existence of the solution of the system (1)

Theorem 6. If the conditions (4), (5) is in space W,? ([O,T]x R' ) , then there is a solution of equation (1).

Proof. We construct a sequence of approximate solutions {um (t, x)} , m=1,2,.... equation

0 0 0
—u+Au— — a. (t,x,u)—u |+b(t,x,u,Vu) = f,
" 2 {a,( )= ] ( )

]

which will be sought in the form {u, (t,x)} = {icim Qr: (x)} ; where elements {¢, (x)} n=1,2,.... form a basis
i=1

of functional vector space W,*(R') whith the properties: (¢,.¢,)=5; and max|g,¢,|<c <w. Functional
R

U]

coefficients c;'(t) are determined by equation of ordinary differential equations using substitution

foa 10} ={ Zer )0, (0
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(O, 2,) + A{Ur 0+
W3 a, 20, 2 Vo) =(f.g,) n=12..m
. | IJ@X m 6Xi n n n

and initial conditions

,...m for te[0,T]. We will show that

solutions uniformly bounded on t [0, T] this follows from the limitations of the bottom elliptical matrix and
conditions for nonlinear perturbation. We multiply n-th equation at ¢ and on summands at n from 1 to m,

then we obtain inequality
1 t t
E"um Ol +I<Vum caoVu, )dr+ lj"um"z dr <

<[ 22 e(p) o

t

+\/_(1+\/_)J' Vu, caoVu, )dr+

0

APy ae e o

Next, we use a known lemma.

Lemma 2. Let absolutely continuous at te[0, T] positive function y(t) such that w(0)=0 and almost all

t [0, T] satisfies the following inequality

Sy <cOwO+FO

where functions c(t) and F(t) are positive and integrated at t [0, T] . Then we have

w(t) < exp[ j C(r)dr] j F(r)dr,
0 0
and
d t t
FIACE c(t)exp[jc(r)d z’jj F(r)dz+F(t).
0 0
Thus, provided that u, e L*(R") is true we have a priori estimate

X i(cm"()) —max||u I < const .

tE[O n:1 te| [0

Volume 11, Issue 3 available at www.scitecresearch.com/journals/index.php/jprm 1664 |




Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

Functions c:(t):(u”‘(t,x), (pn(X)),m,nzl,Z,.... is continuous on te[0,T]. To study functions
ey (t) =(u"(t,x), ¢,(x)), m,n=1,2,....in the absolute continuity at t<[0,T], we look at integrals at t to t+At,

we use estimation that was obtained above, so we have

(Jun (t+ At x) —u,, (t, %), ) <

il

t+At

[ (10U |+ 11, (€ XUy [+ 115 (1,), 9, ) d 7 <
t
0
a —Uu,

t+At
i ox > dr-Ac, ! ||um||dr+

t+At t+At

+c,const (/) .[ ||um||2dr+cnconst(,8) _[ (Vu,caoVu, )dr+
t t

a a t+At t+At
Zmlaija—xj m’a_xi(”“ dz'+_1[ <f,(pn>dr+l‘t[ (U, @, )dz+

t+At t+At

+cnconst(ﬂ)£ I | f ||2 dr+ j [l 45 ||2 drj < Const(n, ¢, 1)At.
t t

Consequently, constants Const(n,o,1) dependent on n, ¢,1 but do not depend on m provided m>n i.e.

inequality

¢ (t+At) —cy (B)] < &(at)]g, | 0.
By diagonal way, we construct a subsequence ¢'®,i=1,2,.... coinciding evenly on [0, T] to some continuous

function c,(t),n=1,2,.... for everyone n. The sequence of functions c,(t), n=1,2,.... determines the function

u(t,x) by rule u(t,x) ic. t)o (x). The sequence of functions {u, (t,x)}:{zm:cim(t)@(x)} limits to
i=1

i=1

u(t,x):ici (t)e (x) weakin L*(R') and evenly at t<[0,T]. We have
i=1

(”m(i) ~u,v)= i("vq’n)(“m(i) ‘“’¢n)+(”m(i) —u, i (V’¢’n)¢’nj’

n=1 n=s+1

we use estimation

< const( i (v, 0, )Zf

n=s+1

(v 0. 5 v0)o,

n=s+1

Let the number s sufficiently large, then for any positive number ¢ given in advance we have inequality

const( > (ve,) J sg then for all te[0,T] for sufficiently large m(i) the first amount is also less % to all

n=s+1

te[0,T] , that proved uniformly for all te[0,T], then sequence {u,} limits to u weakly in L°(R")
relatively t [0, T]. There is a subsequence of the sequence {um(i)} which converges to u weak in L*(R') with

its derivatives {0;u,, } , again we denote it as {u,,}.
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We show that the limit function u is the solution of the Cauchy problem for the equation (1). We can

write identity

(U, (@) V@) | +j(—<um (2),0v(2))+ A (u, (r),v(r)))dr +

+j< > axijum,aixiv>dr+j<b,v>dr:j<f,v)dr,

0 0

which is true for any function v = Zm:dim (t)e (x) where d(t) - continuous functions of argument te[0,T],
i=1

which have bounded generalized derivatives. The set of such functions is denoted g, and function u,

belongsto ¢, . Letset g, is formed by the union at m sets g, is dense in W?.

We have for any function v= id{“ (t)o (%), (due to weak in L*(R')) the sequence {u, } convergence to

i=1
function u evenly over te[0,T], sequence {u,} convergence to function u strong in L*([0,T]xR'), henc
follows convergence in L*(R') almost all t<[0,T] and almost everywhere. Using the estimates that were

obtained above go to the limit and we obtain identity

l (u(2),0,v(2)) + 2 (u(2), v(z)) dT+I< a”-%u,§V>dT+

=10 j i

t

(o) dz + () b= [(£.v)de,

0
itis true for any velement of the set o .

Then we use the inequality monotony of type, that is, for any ¢ element of the set o , we must

prove the following inequality

j< > a”-(r,x,um)%um—ai,-(r,x,¢)§¢,§i(um<r)—¢(r))>dr+

=1l i i

+ function |Ju,, —¢]) > 0.

Indeed, let v=u, —¢ then we have

(U, (2), U, =), +j( 2 ()0, (Un =) (0)) + A (U, (2), (U, ) (2)))dr +

+j< z a %u”"%(um —(p)>dr+;<b,(um —(p)>drz£[< f,(u, —go)>d‘[,

and therefore
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:—{<um(r), oL +j( U, (2),8, (U, = @) (0))+ A{u,, (2),(u, — ) (z) )dr+j (p)>d2’]+
+[(f.(u, —9))dr,

and then

[(=(un (0.0, (U = 9) (@) + A (U, (), (U — ) (7)) )d +
0 0 F
<‘ > Iaij a_xjur”’GT(um —go)>dr+.([<b,(um ~p))dr -
- (f.(u, —(o)>dr—%||um||2 =6 +(Up, @) 6 + function(Ju,, —¢[) 2 0

The last inequality at a fixed function ¢ almost all t<[0,T] you can go to the limit m — oo, then we get the
following inequality

j(—<u(r),6t (U=9)(2))+A{u(z),(u-p) (7)) dz +
<Z ,a”G%U'é%(u_w)>dr+j!<b'(u_¢)>dr_
-[{f.(u-9))d r——||u|| i +(u. @) 5 + function (Ju —¢]) = 0

If we take v=u then we have (in order to make this replacement we must use estimates that were obtained

earlier, since the function u , generally speaking are not differentiated by t<[0,T] )

l t
Ll & +4 [l o+
0
t t

0 0

We use arbitrary function ve g, and any m , so for any element ve p = U ©n » We get
m=1

J (0021, (4=) @)+ A{u). (4 -) @) e +

+

<; laij %U’ai;i(u—V)>dr+£<b,(u—v)>d7_

(f,u- v)dr+funct|on(||u v[)=0

I
1

Since the set o which is formed by the union m sets g, which is dense in W/, then for any ¢ >0 and for any

function ¢ e p we can put v=u-cgp, then
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5[ (~(U).00())+ A {u(e), () dr +

o 0 i
+& < z Iaijgu,&(p>dr+g.[<b,(p>dr—

j i 0

we go to the limit £ -0 , we obtain

t

j (u(2),8,0(0)) + 2{u(z), p(r))) dz +

o

+

j-<z 8 axiuvai;i¢>d7+j;<b,¢>df—j;<f,(p)drzo.

As set o is dense in W/?, then the last inequality implies that for every ¢ eW}? is true equality

t

j (u(2),0,0(2)) + A{u(r), p(r)))d7 +

o

A2 Agede)oc fosin-fit oo

j i
which means that the element u ew;? is the solution of a given equation (1).

Conclusions

In this article we developed a new method for studying existence of solution of quasi-linear evolution

N N
system. We build new differential form h? :(Twlp(R',d'x))x (fo‘(R"d'X)j — R and operator associated with

this form A”:Wlp(R',d'x) —>W_§(R',d'x). We proved a priori estimates for quasi-linear parabolic

system. It is shown that quasi-linear parabolic systems possess unique solutions for sufficiently smooth initial

values.
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