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Abstract  

Let N be a near-ring and  is a mapping on N. In this paper we introduce the notion of generalized 

( )-3-derivation in near-ring N. Also we investigate the commutativity of addition of near-rings  

satisfying  certain  identities  involving  generalized ( )-3-derivation on prime near-rings.  
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1. Introduction 

Let N be a near-ring and  is a mapping on N. This paper consists of two sections. In section one 

,we  recall some basic definitions and other  concepts, which be used in our  paper, we explain 

these concepts by examples and remarks. In section two, we define the concepts of generalized 

( )-3-derivation in  near-ring  N and we explore the commutativity of addition and ring 

behavior of prime near-rings satisfying certain conditions involving generalized ( )-3-

derivations . 

2.BASIC CONCEPTS 

Definition 2.1:[1] A right near-ring (resp. a left near-ring ) is a nonempty set  N equipped with 

two binary operations + and . such that  

 (i) (N, +)  is a group ( not necessarily abelian ) 

(ii) (N, .) is  a semigroup . 

(iii) For all x,y,z  N , we have  

   (x+y)z = xz + yz ( resp. z(x+y) = zx + zy ) 

Example 2.2:[1]  Let G be a group ( not necessarily abelian ) then all mapping of G  into itself 

form a right near-ring M(G) with regard to point wise addition and multiplication by composite . 
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Lemma 2.3:[1] Let N be left ( resp. right ) near-ring , then  

   (i)x0 = 0  ( resp. 0x = 0 ) for all x N . 

    (ii) – (xy) = x(-y) ( resp. – (xy) = (-x)y ) for all x,y N . 

Definition 2.4:[2] A right near-ring (resp. left near-ring ) is called zero symmetric right near-

ring ( resp. zero symmetric left near-ring ) if x0 = 0 ( resp. 0x = 0 ) , for all x N . 

Definition 2.5:[2] Let {Ni } be a family of near-rings (i I , I is an indexing set ) . N = N1 x N2 

x…x Nn  with regard to component wise addition and multiplication , N is called the direct  

product of near-rings  Ni . 

Definition 2.6:[2] A near-ring N is called a prime near-ring  if  aNb = {0}, where a,b N, 

implies that either  a = 0 or b = 0 . 

Definition 2.7:[3] Let N be a near-ring . The symbol Z will denote the multiplicative center of N 

, that is   Z = {x N /xy = yx  for all  y N } . 

Definition 2.8:[3] Let N be a near-ring . For any x,y N the symbol  (x,y) will denote the 

additive commutator  x + y - x – y . 

Definition 2.9:[3] Let N be a near-ring . For any x,y N the symbol  [x,y] = xy – yx stands for 

multiplicative commutator of x and y . 

Properties 2.10:[3] Let R be a ring , then for all x,y,z R, we have : 

 1-[x,yz] = y[x,z] + [x,y]z 

 2-[xy,z] = x[y,z] + [x,z]y 

 3-[x+y,z] = [x,z] + [y,z] 

 4-[x,y+z] = [x,y] + [x,z] 

Definition 2.11:[4] Let N be a near-ring .An 3-additive  mapping d: N x N x N  N  is  said to 

be  3-derivation  if  the relations  

d( x1x1
/
,x2,x3) = d(x1,x2,x3) x1

/
 + x1 d(x1

/
,x2,x3) 

d(x1,x2x2
/
,x3) = d(x1,x2,x3) x2

/
  + x2 d(x1,x2

/
,x3) 

d(x1,x2,x3x3
/
)  = d(x1,x2,x3) x3

/
  + x3 d(x1,x2,x3

/
)   

hold for all x1 ,x1
/
,x2  , x2

/
 ,x3, x3

/
 N . 
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Definition 2.12:[4] Let N be a near-ring and n be a fixed positive integer . An n- additive 

mapping d : N x N x….x N  N  is  called - n-derivation of N  if  there exist functions  

: N  N such that  the  relations  

d( x1x1
/
,x2,….,xn) = d(x1,x2,…,xn) x1

/
) + x1) d(x1

/
,x2,….,xn) 

d(x1,x2x2
/
,…..,xn) = d(x1,x2,….,xn) x2

/
) + (x2) d(x1,x2

/
,…,xn) 

                                       ….. 

                                        ….. 

d(x1,x2,….,xnxn
/
)  = d(x1,x2,…..,xn) xn

/
)  + xn) d(x1,x2,…,xn

/
)   

hold for all x1 ,x1
/
,x2  , x2

/
 ,…..,xn, xn

/
 N . 

Definition 2.13:[4] Let N be a near-ring and n be a fixed positive integer . Let  d : N x N x….x 

N  N  be a - n-derivation of N . An n- additive mapping f : N x N x….x N  N  is  called 

a right generalized - n-derivation associated with - n-derivation d  if the relations  

f( x1x1
/
,x2,….,xn) = f(x1,x2,…,xn) x1

/
) + x1) d(x1

/
,x2,….,xn) 

f(x1,x2x2
/
,…..,xn) = f(x1,x2,….,xn) x2

/
) + (x2) d(x1,x2

/
,…,xn) 

                                       ….. 

                                        ….. 

f(x1,x2,….,xnxn
/
)  = f(x1,x2,…..,xn) xn

/
)  + xn) d(x1,x2,…,xn

/
)   

hold for all x1 ,x1
/
,x2  , x2

/
 ,…..,xn, xn

/
 N .  

An n- additive mapping f : N x N x….x N  N  is  called a left  generalized - n-derivation 

associated with  - n-derivation d  if the relations  

f( x1x1
/
,x2,….,xn) = d(x1,x2,…,xn) x1

/
) + x1) f(x1

/
,x2,….,xn) 

f(x1,x2x2
/
,…..,xn) = d(x1,x2,….,xn) x2

/
) + (x2) f(x1,x2

/
,…,xn) 

                                       ….. 

                                        ….. 

f(x1,x2,….,xnxn
/
)  = d(x1,x2,…..,xn) xn

/
)  + xn) f(x1,x2,…,xn

/
)   

hold for all x1 ,x1
/
,x2  , x2

/
 ,…..,xn, xn

/
 N . 
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Lastly  an  n- additive mapping f : N x N x….x N  N  is  called a  generalized - n-

derivation associated with  - n-derivation d  if  it is both  right 

generalized - n-derivation  as well as  left  generalized - n-derivation of  N 

associated with  - n-derivation d  . 

3.GENERALIZED ( )-3-DERIVATIONS 

First we introduce the basic definition in this paper 

Definition 3.1:  Let N be a near-ring and  is a mapping on N. Let  d : N x N x N  N  be a 

( )-3-derivation of N . An 3 - additive mapping f : N x N x N  N  is  called a right 

generalized ( )-3-derivation associated with ( )-3-derivation d  if the relations 

f( x1x1
/
,x2,x3) = f(x1,x2,x3) x1

/
) + x1) d(x1

/
,x2,x3) 

f(x1,x2x2
/
,x3) = f(x1,x2,x3) x2

/
) + (x2) d(x1,x2

/
,x3)                                                                                

f(x1,x2,x3x3
/
)  = f(x1,x2,x3) x3

/
)  + x3) d(x1,x2,x3

/
)   

hold for all  x1 ,x1
/
,x2  , x2

/
 ,x3, x3

/
 N .  

An 3- additive mapping f : N x N x N  N  is  called a left  generalized ( )-3-  derivation 

associated with  -3-derivation d  if the relations  

f( x1x1
/
,x2,x3) = d(x1,x2,x3) x1

/
) + x1) f(x1

/
,x2,x3) 

f(x1,x2x2
/
,x3) = d(x1,x2,x3) x2

/
) + (x2) f(x1,x2

/
,x3)                                                                                

f(x1,x2,x3x3
/
)  = d(x1,x2,x3) x3

/
)  + x3) f(x1,x2,x3

/
)   

hold for all x1 ,x1
/
,x2  , x2

/
 ,x3, x3

/
 N .                                                                           

Lastly an 3-additive mapping f : N x N x N  N  is  called a  generalized ( )-3- derivation  

associated with  - 3-derivation d  if  it is both  right generalized - 3-derivation  as 

well as  left  generalized - 3-derivation of  N associated with  - 3-derivation d  . 

We now explain this definition  by the following example  

Example 3.2 : Let R be a commutative ring and S be zero symmetric left near-ring which is not 

a ring such that (S,+) is abelian , it  can be easily verified that the set M = R x S is a zero 

symmetric left near-ring  with respect to component wise addition and multiplication . Now 

suppose that  
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N =  . 

It  can be easily seen that N is a non commutative zero symmetric left near-ring with respect to 

matrix addition and matrix multiplication . 

Define d , f : N x N x N  N  and  : N  N   such that  

  

=   

 = 

    

And  

  =      

It  can be easily seen that  d is  - 3-derivation of  N  and  f is a nonzero generalized 

- 3-derivation  associated  with d ,where  is an automorphism on N . 

The following  lemmas help us to prove the main theorems : 

Lemma 3.3 : Let N be a prime near-ring , d a nonzero - 3-derivation of  N  and  x  , 

where  is an automorphism on N . 

  (i)If  d(N,N,N) x = {0} , then x = 0 . 

  (ii)If  x d(N,N,N) = {0} , then x = 0 . 

Proof : (i) By our  hypothesis  d(N,N,N) x = {0} 

i.e.: d(x1,x2,x3) x = 0  , for all x1 , x2 , x3                                                                    (3.1)  

Putting  x1x1
/
  in place of  x1 , where x1

/
 , in (3.1)  and using  [2 ,Lemma 4 ] we get 
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d(x1,x2,x3) x1
/
) x  + x1) d(x1

/
,x2,x3) x = 0 , for all x1  ,x1

/
 , x2 , x3   . 

Using (3.1)  in previous equation , we get  

d(x1,x2,x3) x1
/
) x  = 0  , for all x1  ,x1

/
 , x2 , x3   . 

Since   is an automorphism , then we have  

d(x1,x2,x3) N x = {0} , for all x1  , x2 , x3  . Since d  0 , primeness of N  implies that  x = 0 . 

(ii)  It  can be proved in a similar way . 

Lemma 3.4 : Let N be a near-ring admitting a generalized ( )-3- derivation  f associated with  

- 3-derivation d  of N  , where  is an automorphism on N, then  

( d(x1,x2,x3) x1
/
) + x1) f(x1

/
,x2,x3) ) y = d(x1,x2,x3) x1

/
)y + x1) f(x1

/
,x2,x3)y 

(d(x1,x2,x3) x2
/
) + (x2) f(x1,x2

/
,x3) )y = d(x1,x2,x3) x2

/
) y + (x2) f(x1,x2

/
,x3)y 

(d(x1,x2,x3) x3
/
)  + x3) f(x1,x2,x3

/
) )y = d(x1,x2,x3) x3

/
)y + x3) f(x1,x2,x3

/
)y   

hold for all x1 ,x1
/
,x2  , x2

/
 ,x3, x3

/
 N .  

Proof : For all  x1 , x1
/
, x1

//
  , x2 , x3  , we have  

f(( x1x1
/
)x1

//
,x2,x3) = f(x1x1

/
,x2 ,x3) x1

//
) + x1x1

/
) d(x1

//
,x2 ,x3)  

Therefore  

f(( x1x1
/
)x1

//
,x2,x3) = (d(x1,x2,x3) x1

/
) + x1) f(x1

/
,x2 ,x3) ) x1

//
) + 

                                x1) x1
/
) d(x1

//
,x2,x3)                                                                       (3.2) 

Also  

f( x1(x1
/
x1

//
),x2,x3) = d(x1,x2 ,x3) x1

/
x1

//
) + x1) f(x1

/
x1

//
,x2 ,x3)  

Thus , we get  

f( x1(x1
/
x1

//
),x2,x3) = d(x1,x2 ,x3) x1

/
) x1

//
) +  x1) f(x1

/
,x2 ,x3)  x1

//
) + 

                                 x1) x1
/
) d(x1

//
,x2,x3)                                                                       (3.3) 

Combining  relations  (3.2) and (3.3) , we get  

(d(x1,x2 ,x3) x1
/
) + x1) f(x1

/
,x2 ,x3) ) x1

//
)  = d(x1,x2 ,x3) x1

/
) x1

//
) +   

        x1) f(x1
/
,x2 ,x3)  x1

//
)   , for all  x1 ,x1

/
, x1

//
  , x2 , x3  .  
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Since   is an automorphism , putting y in place of  x1
//
) , we find that   

(d(x1,x2 ,x3) x1
/
) + x1) f(x1

/
,x2 ,x3) ) y  = d(x1,x2 ,x3) x1

/
) y +   

        x1) f(x1
/
,x2 ,x3)  y   , for all  x1 , x1

/
  , x2 , x3 , y  .  

Similarly  other  ( n -1 )  relations can be proved . 

Lemma 3.5 : Let N be a prime  near-ring admitting a generalized ( )-3- derivation  f 

associated with a nonzero  - 3-derivation d  of N and x   , where  is an automorphism 

on N .  

(i)If  f( N , N , N ) x = {0} , then x = 0 .  

(ii)If  x f( N , N , N ) = {0} , then x = 0 . 

Proof : (i) By our hypothesis  we have  

f(x1,x2,x3) x = 0  , for all x1 , x2 , x3                                                                             (3.4)  

Putting  x1x1
/
  in  place of  x1 , where x1

/
 , in (3.4)  and using  lemma 3.4  we get 

d(x1,x2,x3) x1
/
) x  + x1) f(x1

/
,x2,x3) x = 0, for all x1  ,x1

/
 , x2 , x3   . 

Using (3.4)  in previous equation , we get  

d(x1,x2,x3) x1
/
) x  = 0  , for all x1  ,x1

/
 , x2 , x3   . 

Since   is an automorphism, then we have  

d(x1,x2,x3) N x = {0} , for all x1  , x2 , x3  . Since d  0 , primeness of N  implies that  x = 0 . 

(ii)  It  can be proved in a similar way. 

Now , we will prove the  main  theorems :  

Theorem 3.6 : Let N be a prime near-ring and f1 , f2  be any two  generalized ( )-3- 

derivations  of N with  associated  nonzero  - 3-derivations  d1 and d2  respectively , 

where  is an  automorphism on N . If [ f1 (N , N , N) , f2 (N , N , N)] = {0} , then  (N , +)  is 

abelian.  

Proof : Assume that  [ f1 (N , N , N) , f2 (N , N , N)] = {0} . If  both  z and z + z  commute  

element wise with  f2 (N , N , N) , then  for all x1  , x2 , x3  we have 

z f2(x1,x2,x3) = f2(x1,x2,x3) z                                                                                                  (3.5)  

And  

(z +  z) f2(x1,x2,x3) = f2(x1,x2,x3) (z + z)                                                                                (3.6) 
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Substituting  x1  + x1
/
   instead of  x1  in  (3.6) we get     

(z +  z) f2(x1+ x1
/
 , x2 ,x3) = f2(x1+ x1

/
 , x2 ,x3) (z + z)  for all x1  ,x1

/
 , x2 , x3  . 

From  (3.5) and (3.6)  the  previous equation can be reduced to  

z  f2(x1+ x1
/
 - x1  - x1

/
 , x2 ,x3) = 0   for all x1  ,x1

/
 , x2 , x3 . 

i.e.; z f2( (x1, x1
/
) , x2 ,x3) = 0    for all x1  ,x1

/
 , x2 , x3  .putting z = f1(y1 ,y2 ,y3 ) , we get    

f1(y1 ,y2 ,y3 ) f2( (x1, x1
/
) , x2 ,x3) = 0  for all x1  ,x1

/
 , x2 , x3, y1 ,y2 ,y3  . By  Lemma 3.5 (i)  we 

conclude that    f2( (x1, x1
/
) , x2 ,x3) = 0  

 for all x1  ,x1
/
 , x2 , x3 .                                                                                                  (3.7) 

Since we know that for each  w  , w(x1, x1
/
) = w (x1+ x1

/
 - x1  - x1

/
 ) = w x1  + w x1

/
 - w x1  -    

w x1
/
  = (  w x1  , w x1

/
  )  which is again an additive commutator  of  a near-ring N , putting  

w(x1, x1
/
)  in  place of  additive commutator  (x1, x1

/
)  in (3.7) we get  

f2(w (x1, x1
/
) , x2 , x3) = 0    for all x1  ,x1

/
 , x2 , x3 , w .    

i.e.;  d2 (w , x2 , x3) (x1, x1
/
)  +  w) f2( (x1, x1

/
) , x2 ,x3) = 0   for all x1  ,x1

/
 , x2 , x3 , w .   

Using (3.7)  in  previous equation  yields    d2 (w , x2 , x3) (x1, x1
/
)  = 0  for all x1  ,x1

/
 , x2 , x3 , w 

 . Since    is an automorphism , using Lemma 3.3  we conclude  that    (x1, x1
/
) = 0 . Hence  

(N ,+)  is abelian .  

Theorem 3.7 : Let N be a prime near-ring and f1 , f2  be any two  generalized ( )-3- 

derivations  of N with associated  nonzero  - 3-derivations  d1 and d2  respectively , where 

 is an  automorphism on N . If  f1(x1 ,x2 ,x3) f2 (y1 ,y2 ,y3 )  +  f2(x1 , x2 , x3) f1(y1 ,y2 ,y3 ) = 0   

for all x1 , x2 , x3 , y1 , y2 , y3  , then  ( N , + )  is abelian.  

Proof : By hypothesis  we have ,  

f1(x1 ,x2 ,x3) f2 (y1 ,y2 ,y3 )  +  f2(x1 , x2 , x3) f1(y1 ,y2 ,y3 ) = 0                                                       

for all x1 , x2 , x3 , y1 , y2 , y3  .                                                                                          (3.8) 

Substituting  y1 + y1
/
  instead of  y1  in  (3.8)  we get  

f1(x1 ,x2 ,x3) f2 (y1+ y1
/
 ,y2 ,y3 )  +  f2(x1 , x2 , x3) f1(y1+ y1

/
 ,y2 ,y3 ) =  0   for all x1 , x2 , x3 , y1 , y1

/
 

, y2 , y3  .                                      

So  we get  

f1(x1 ,x2 ,x3) f2 (y1 , y2 ,y3 ) + f1(x1 ,x2 ,x3) f2 ( y1
/
 , y2 , y3 ) + f2(x1 , x2 , x3) f1(y1,y2 ,y3 ) +        

f2(x1 , x2 , x3) f1( y1
/
 , y2 , y3 ) = 0   for all x1 , x2 , x3 , y1 , y1

/
 , y2 , y3  .                                      

Using  (3.8)  again in last equation we get   
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f1(x1 ,x2 ,x3) f2 (y1 , y2 ,y3 )+ f1(x1 ,x2 ,x3) f2 ( y1
/
, y2 , y3 )+ f1(x1 ,x2 ,x3) f2 ( -y1 , y2 ,y3 ) +        

f1(x1 ,x2 ,x3) f2 (-y1
/
 , y2 , y3 ) = 0   for all x1 , x2 , x3 , y1 , y1

/
 , y2 , y3  .   

Thus , we get  

f1(x1 ,x2 ,x3) f2( (y1, y1
/
) , y2 ,y3) = 0   for all x1 , x2 , x3 , y1 , y1

/
 , y2 , y3  . 

Now using Lemma 3.5 (i)  we conclude that  f2( (y1, y1
/
) , y2 ,y3) = 0   for all y1 , y1

/
 , y2 , y3  .   

Putting  w (y1, y1
/
)  in place  of (y1, y1

/
)  , where  w  , in the  previous equation  and using it 

again  we get   d2 (w , y2 , y3) (y1, y1
/
)  = 0  for all y1  ,y1

/
 , y2 , y3 , w  . Since    is an 

automorphism , using Lemma 3.3  we conclude  that    (y1, y1
/
) = 0 . Hence  (N ,+)  is abelian.  

Theorem 3.8 : Let N be a prime near-ring , f1 and  f2  be any two  generalized ( )-3- 

derivations  of N with associated  nonzero  - 3-derivations  d1 and d2  respectively , where 

 is an  automorphism on N, such that  

  f1(x1 ,x2 ,x3)  f2 (y1 ,y2 ,y3 )  +  f2(x1 , x2 , x3) f1(y1 ,y2 ,y3 ) = 0   for all x1 , x2 , x3 , y1 , y2 , y3 

 , then  ( N , + )  is abelian .  

Proof : By hypothesis  we have ,  

f1(x1 ,x2 ,x3)  f2 (y1 ,y2 ,y3 )  +  f2(x1 , x2 , x3) f1(y1 ,y2 ,y3 ) = 0                                                 

for all x1 , x2 , x3 , y1 , y2 , y3  .                                                                                       (3.9)  

Substituting  y1 + y1
/
  , where  y1

/
  , for   y1  in  (3.9)  we get  

f1(x1 ,x2 ,x3)  f2 (y1+ y1
/
,y2 ,y3 )  +  f2(x1 , x2 , x3) f1(y1+ y1

/
,y2 ,y3 ) = 0   for all x1 , x2 , x3 , y1 , 

y1
/
 , y2 , y3  .  

Thus , we get  

f1(x1 ,x2 ,x3)  f2 (y1 ,y2 ,y3 ) + f1(x1 ,x2 ,x3)  f2 (y1
/
, y2 , y3 ) +  f2(x1 , x2 , x3)    

f1(y1 , y2 , y3 ) +  f2(x1 , x2 , x3) f1( y1
/
,y2 ,y3 ) = 0   for all x1 , x2 , x3 , y1 , y1

/
 , y2 , y3  .  

Using  (3.9)  in  previous  equation implies  

f1(x1 ,x2 ,x3)  f2 (y1 ,y2 ,y3 ) + f1(x1 ,x2 ,x3)  f2 (y1
/
, y2 , y3 ) + f1(x1 ,x2 ,x3)  f2 (-y1 ,y2 ,y3 ) + 

f1(x1 ,x2 ,x3)  f2 (-y1
/
, y2 , y3 ) = 0  for all x1 , x2 , x3 , y1 , y1

/
 , y2 , y3  .  

Therefore  

f1(x1 ,x2 ,x3)  f2( (y1, y1
/
) , y2 ,y3) = 0   for all x1 , x2 , x3 , y1 , y1

/
 , y2 , y3  . 

Now  using Lemma 3.5 , in  previous  equation , we conclude  that 
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 f2( (y1, y1
/
) , y2 ,y3) = 0   for all  y1 , y1

/
 , y2 , y3  .  

Since    is an automorphism of N , we  conclude that  f2( (y1, y1
/
) , y2 ,y3) = 0    

For all  y1 , y1
/
 , y2 , y3 . Putting  w (y1, y1

/
)  in place  of (y1, y1

/
)  , where  w , in the  

previous equation  and using it again  we get   d2 (w , y2 , y3) (y1, y1
/
)  = 0  for all y1  ,y1

/
 , y2 , y3 

, w  . Since    is an automorphism, using Lemma 3.3  we conclude  that    (y1, y1
/
) = 0. 

Hence  (N ,+)  is abelian.  

Conclusion  

In  present  paper we define the notion of generalized ( )-3- derivations  in near-rings . Also 

we study and discuss the commutativity of  addition of prime near-ring  with  generalized ( )-

3- derivations . 
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