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2
Abstract: In this paper, we study the special (a,B)-metric F = ;TB + 3 on a manifold M. Then prove that F is of

scalar flag curvature and isotropic S-Curvature if and only if it is isotropic Berwald metric with almost isotropic flag
curvature.
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1. Introduction

Curvatures are the central concept of Finsler geometry. For a Finsler manifold (M, F), the flag curvature is

a function K (P, y) to the tangent planes P c T, M and non zero y € P. A Finsler metric F is of scalar flag curvature

if for any non-zero vector yeT, M, K = K (x,y) is of independent P containing yeT, M (hence K = a(x) when F is
Riemannian) It is of almost isotropic flag curvature if

3c,my™

F

K +o0, (1.1)

where ¢ = c¢(x) and ¢ = a(x) are scalar functions on M. It is one of the important problems in Finsler geometry
is to study and characterize Finsler manifolds of almost isotropic flag curvature [11].

To study the geometric properties of a Finsler metric, one also considers non-Riemannian quantities. In Finsler
geometry, there are several important non-Riemannian quantities: the Cartan torsion C , the Berwald curvature B,
the mean Landsberg curvature J and S-curvature S, etc ([6] [9] [13] [20]). these are geometric quantities which
vanish for Riemannian metrics.

Among the non-Riemannian quantities, the S-curvature S = S(x,y) is closely related to the flag curvature which
constructed by Z. Shen for given comparison theorems on Finsler manifolds. An n-dimentional Finsler metric F is
said to have isotropic S-curvature if

S = (n + 1)cF, (1.2)

for some scalar function ¢ = c(x) on M. In [13], it is proved that if a Finsler metric F of scalar flag curvature is of
isotropic S-curvature (1.2), then it has almost isotropic flag curvature (1.1).

The geodisc curves of a Finsler metric F = F (x,y) on a smooth manifold M, are determined by ¢ + 2G(¢) =
0, where the local functions G¢ = G'(x, y) are called the spray coefficients. A Finsler metric F is called a Berwald
metric, if G are quadratic in yeT, M for any xeM.
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A Finsler metric F is said to be isotropic Berwald metric if its Berwald curvature is in the following form
Bly = c{F 1,18 + F 18] + F 1,18k + F e 1), (1.3)
where ¢ = c(x) is a scalar function on M [6].

As a generalization of Berwald curvature, Basco-Matsumato proposed the notion of Douglas curvature [1]. A
Finsler metric is called a Douglas metric if G = %]I‘}k (x)y/y* + P(x,y)y". In order to find explicit examples of
Douglas metrics, i.e we considered some (a, 8) —metrics. An (a, ) —metric is a Finsler metric of the form

F=agp (g) where @ = @(s) is a C* on (—by, by) with certain regularity, a = /aij (x)y'yJ is a R iemannian
metric and g = b;(x)y' is a 1-form on M.

2
In this paper, we consider special metric F = :‘TB+B with some non-Riemannian curvature properties and
prove the following.

2
Theorem 1.1. LetF = ;—_B + (3 be a non-Riemannian special metric on a manifold M of dimention n. Then F is

of scalar flag curvature with isotropic S-curvature (1.2), if and only if it has isotropic Berwald curvature (1.3) with
almost isotropic flag curvature (1.1). In this case, F must be locally Minkowskian.

2. Preliminaries

Let M be an n-dimensional C* manifold. Denote by TxM the tangent space at x € M, by TM =U,y TxM
the tangent bundle of M and by TM, = TM\{0} the slit tangent bundle on M is a function F: TM — [0, )
which has the following properties:

a) FisC”onTM\{0};
b) F is positively 1-homogeneous on the fibers of tangent bundle TM;

c) Foreachy € T, M, the following quadratic form g, on T, M

1 2
R F2 = T M
gy (w,v) 5 asat[ (y +su+tv)]ls, t = 0,u, veT,
Letx € M and F, := F|_T,,M. To measure the non-Euclidean feature of F,, define C,: T\M ® T.M ® T,M - R by

1 d

Cy(u, Vv, W) = T x [gy + tw(u,v)]lt =0, u,v,we T, M.

The family C == {Cy}yeTMOis called the cartan torsion. It is well known that C = 0 if and only if F is Riemannian

[17]. For yeT,M,, mean cartan torsion I, by I,(u) = I;(y)u’, where I; := g/*C;;,, By Diecke theorem, F is
Riemannian if and only if I, = 0.

The horizantal covariant derivatives of | along geodiscs give rise to the mean Landsberg cur-vature J, (u) =
J;(y)ul, where J; == I;|,y*. A Finsler metric is said to be weakly Landsbergian if J = 0.

Given a Finsler manifold (M, F ), then a global vector field G is induced by F on T M,, which in a standard

coordinate (x;,y;) for T M, is given by G = y* % —2G'(x,y) aiyl where
2 2 2
L2 FD . a(F?)

i _
G = 9" axkay1Y " Baxl

,yeT, M.

Let G is called the spray assosiated to (M, F ). In local coordinates, a curve c(t) is geodesic if and only if its
coordinates c!(t) satisfy ¢t + 2G1(¢) = 0,
For a tangent vector y € T, M, define B,:T\M Q T.M ® T,M - T,M and E,,: T.M @ T,M — R by

B, (u,v,w) = Bjy W v*w' = |, and E, (u,v) = E (y)w v, where
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. 0%G! 1

B = 3yrayrayr ik =z Plim-

Let B and E are called the Berwald curvature and mean Berwald curvature, respectively. Then F is called a Berwald
metric and weakly Berwald metric if B = 0 and E = 0, respectively.

A Finsler metric F is said to be isotropic mean Berwald metric if its mean Berwald curvature is in the following
form

n+1
ij = T Chij!
where ¢ = c(x) is a scalar function on M and hij is the angular metric [6].

Define D,: T,M @ T,M @ T,M — T, M by D, (1, v,w) := Dj, (y)u'v/w¥ == |, where

. . 2 . . . .
Djjy = Bjjy — m{Ejk 8| + Ej 6k + Endi + Ey, ly'}.

We call D:={ D, = {D } the Douglas curvature. A Finsler metric with D = 0 is called a Douglas metric. The
Y Y)yermy

notion of Douglas metrics was proposed by Basco-Matsumato as a generalization of Berwald metrics [1]. For a
Finsler metric F on an n-dimentional manifold M, the Busemann-Hausdorff volume form dVr = oz (x)dx' ....dx"
is defined by

Vol(B™(1))
Vol{(y)eR*|F(x,y) < 1}
In general, the local scalar function a(x) can not be expressed in terms of elementary func-tions, even F is locally

expressed by elementary functions. Let G¢ denote the geodisc coeffi-cients of F in the same local coordinate system.
The S-curvature can be defined by

oF (x) =

0
[Inor(x)],

aG! .
SY) =—(x,y) =y pp

dy

where Y = y"% | €T, M. . It is proved that S = 0 if F is a Berwald metric. There are many non-Berwald metrics
satisfying S = 0. S said to be isotropic, if there is a scalar functions c¢(x) on M such that S = (n + 1)c(x)F.

The Riemann curvature R, = Ridx* ® dx'|,:T,M - T, M is a family of linear maps on tangent spaces, defined by

i _ 20G! a2¢!

i 0%Gt Gt aG)
R} = t

_ j 426t L2 2= T
axk axfayky + dylayk  ayl ayk

For a flag P = span{y,u} c T, M with flagpole y, the flag curvature K = K(p,y) is defined by

gy (R, @)
9, g, wu) — g,y w)?

We say that a Finsler metric F is of scalar curvature if for any y € T, M, the flag curvature K = K(x,y) is a scalar
function on the slit tangent bundle T M,. In this case , for some scalar function K on T M, the Riemann curvature is
in the following form

K(P,y) =

R = KFX{6}, — F7'F xy'}.

If K=constant, then F is said to be of constant flag curvature. A Finsler metric F is called isotropic flag curvature, if
K = K(x).

3. Proof of theorem 1.1
Let F = a @(s),s =§ be an (a,B) — metric, where @ = @(s) is a C* on (—by, by) with certain regularity,

a= /aij (x)y'y/J is a Riemannian metric and 8 = b;(x)y" is a 1-form on a manifold M. Let
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ry = 5 (b + by), sy =5 by — by,

— pi — pi
s; =Db'sy, 1 =b'ry;.

where b;;; denote the coefficients of the covariant derivative of g with respect to a. Let

Tio = rijyj' Sip = Sijyj' To = ij’ So = Sj)’j-
Put
’ A " 7
0=—2 0=_ @50 )¢ —s¢¢ W= ¢
p—sp"’ 20((p —s@) + (b2 —s2)p" )’ 2((p —s9) + (b% —s2)¢")

Then the S-curvature is given by
s =[Q - 2¥Q, — 2(¥Q) (b — s2) — 2(n + 1QO + 2] 5

+2(F + Mg + a7 [(02 = sHY + (0 + 1)0] . (3.2)
Let us put
A= 1+ sQ + (b*— s?)Q’
® = —{nA+1+ sQ}Q-sQ)— (b*— s + sQQ",
In [5], Cheng- Shen characterize (a, 8) —metrics with isotropic S —curvature.

Lemma 3.1. ([5]) Let F = a<p(§) be an (a, B)-metric on an n-manifold. Then, F is of isotropic S-curvature
S = (n + 1)cF, if and only if one of the following holds

(i) P satisfies
— 2 —
Tij = E{b ai]' - bibj}l S] = O, (33)
Where € = e(x) is a scalar function and ¢ = ¢(s) satisfies
2
_ @A
o = —2(11 + 1)kbz——52'
where Kk is a constant. In this case, ¢ = ke.
M P satisfies
In this case, ¢ = 0.
Let
1[Ver=s? |
¥, = [b?2-s2A2|———0],
AZ

v, =2(n + 1D(Q-sQ)+ 3%.

_ 0-sQ
0 = TR (3.6)

Then the formula for the mean Cartan torsion of an (a, ) —metric is given by following
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"

10 [(n+ Do (—=2)s¢"  3s¢ — (b2 —s2)g

FT20y| e p—s¢  p-—s¢ +(b2—sD)g"

(0 - 50"

1= =220 (ab, - sy)). (37)
In [7], it is proved that the condition @ = 0 characterizes the Riemannian metrics among (e, 8)-metrics. Hence, in
the continue, we suppose that @ # 0.

Let G' = Gi(x,y) and G = G} (x,y) denote the coefficients of F and « respectively in the same coordinate system.
By definition, we have

G'=G,+Py +Q',
where
P:=a10[—2Qasg + roo]

Q' = aQs) + Y[—2Qasy + I'O()]bi.
Simplifying (3.8) yields the following

G' = G} +aQs) + 6{-2aQs; + oo} {& + QQSQ b}, (3.9)

Clearly, if B is parallel with respect to a (r; = 0 and s; = 0),then P = 0 and Q' = 0. In this case, G! = G. are
quadratic in y, and F is a Berwald metric.

For an (a, f) —metric F = a¢(s), the mean Landsberg curvature is given by

1 r
Ji= T {7b2 — [%+ (n+1)(Q-s0Q )] (sg + 1)h;
+ﬁ [lpl + 59] (roo — 2Qasg)h; + a[—aQ'soh;
A

+aQ(a’s; — y;50) + a’Asy] + [a®(rip — 2aQs;) — 1o — 2aQs0)y;] 2} (3.10)
A

Besides, they also obtained

J=Ib' = ~ a2 {1 (rop — 2aQ50) + a¥, (rp + 50} (3.11)
The horizontal covariant derivatives J;.,, and J;,, of J; with respect to F and a respectively are given by
a/; 9/; 9/; a/;
]i;m ax,ln ]l im a ll N‘rlnt]z|m = axin ]l im ayl Nrgv
i aG! 1 _ G_Gl _ aG! Vi 6_Gl
Where L = ayiay}.,l\lj %7 and T, =5y N =5

Then we have,
m _— (1«1 il 9); NL — NL \ym
]i;my = ]i|m_]l im — tim _6_311( m — Nm | Y }
p— a i —
Jumy™ ~h(N} = N}) =255 (6" = 6. (312)
Let F be a Finsler metric of scalar flag curvature K. By Akbar-Zadeh’s theorem it satisfies following
F2

Aijiism¥*y™ + KFZAUk + 5 [hy Kic + b K + hia 5] = 0, (3.13)

where A, = FCjy, is the Cartan torsion and K; = P [ ]. Contracting (3.13) with g¥ yields

JimY™ + K F2I, + Z2F2K; = 0. (3.14)
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By (3.12) and (3.13), for an (a, B) —metric F = ag(s) of constant flag curvature K , then
Jom¥™ = J, "(G ac=¢) ~ 206! - GY + Ka?g?l; = 0. (3.15)
Contracting (3.15) with b* implies that
Jom = Ji@* b y™ —],6(6 —6) pi —20(6' = G + Ka?g?Lb' = 0. (3.16)

There exists a relation between mean Berwald curvature E and the S-curvature S. Indeed, taking twice vertical
covariant derivatives of the S-curvature gives rise the E-curvature. It is easy to see that, every Finsler metric of
isotropic S-curvature (1.2) is of isotropic mean Berwald curvature (2.1). Now, is the equation S = (n+
Icequivalent to the equation £=n+12cF—1/47

Recently, Cheng-Shen prove that a Randers metric F = a + f is of isotropic S-curvature if and only if it is of
isotropic E-curvature [4]. Then, Chun-Huan-Cheng [3] extend this equivalency to the Finsler metric F =
a ™ (a+ B)™ + 1 for every real constant m, including Randers metric .

To prove Theorem 1.1, we need the following.

Theorem 3.2. Let F = —ﬁ + B be a special metric on a manifold M of dimention n. Then the following are
equivalent
(i) F isofisotropic S-curvature,S = (n + 1)c(x)F ;

(if) F is of isotropic mean Berwald curvature, E = nzil

cF1n;
; where ¢ = c(x) is a scalar function on the manifold M.
In this case, S = 0. Then g is a Killing 1-form with constant length with respect to a, that is, 7y = 0.

Proof: (i) — (ii) is obvious. Conversely, suppose that F has isotropic mean Berwald curvature, E = HTHCF_lh. Then
we have

= (n + D[c(x)F +n], (3.17)
where 7 = 1;(x)y" is a 1-form on M. For the special metric
_ stn __1 s(s3+3s—4) _ 1
Q - s(s=2) "’ - 2 (s+s2-1)(-s3+2b2)’ ¥= —s3+2b2° (318)

By substituting (3.17) and (3.18) in (3.2), we have
2(—3s* + 2sb? + 253 — 2b% + 25%b% — 25?) N 2(—3s% + 4s° + 4s2b? — 55* + 853 + 4sbh? — 4b?) y

S=1= s2(s — 2)2(—s3 + 2b?) s2(—s3 + 2b2)2(s — 2)2
(n+ 1D(s?+1)(—4+s3 +3s)
(b* = s*)- Go(—1+s+s)(=s3+2b5) T 22150 +2 [ 34 2b2 }‘] o
3s52(b? — 52) (n+ 1s(s® +3s—4)
B [a(—s3 + ZbZ)Z] Too = [20:(—1 + 5+ 52)(—s3 + 2b2) K
(n+1) [ca (1 +s +§) +n]. (3.19)

Multiplying (3.19) with s(1 + s + 52)(s® + 2b%)%(s + 2)a® implies that
M; + Mya? + Mza* + Mya* + Msa® + Mga®a[M; + Mga? + Mga* + Myya® + My;a® + Mj,a'°]1 =0, (3.20)

where

My = [B2c(n+ 1) + 28A(so + 1) = Br(n + 1) + 5 (n + 1] 67,
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M, = —%[10320(71 +1) = 12BA(So + ro) + 12850 + 68n(n + 1) + 319 (n + 3)157,

M; = —[-5B2c(n + 1) + 28b%sy(n + 2) — 48b%n(n + 1) + 8FAD" (5o + 1) + 2B(so(2n + 3) + 1)
+190(2n — 1)(b? + 2)B°,
M, = =2[-2B%b*c(n + 1) — 2Bb*n(n + 1) + 48b*A(sy + 15) — B((—nsy + 21) + 3s,) + 4Bb*A(sy + 1)
+48b*n(n + 1) — 88b*A(sy + 1p) + 28b%((2n + 3)s + 19) + 190b% (51 + 8)] 8%,
Mg = —=2b?[—4Bc(n + 1) + 10B8b*c(n + 1) — 12b%A(sy + 1p) + 3(nsy — 21) + 6b%*n(n + 1)]52,
Mg = 20b*c(n+ 1)B,
M; = [2BA(sy + 1) + Bso(n + 1) — Bn(n + 1) + roe(n + DB,
Mg = [—4B%b*c(n + 1) — 4BA(sy + 19) — 2n(n + 1) + 88b%A(sy + 1) + 2(19 — 2n(nb? + sp))
+roon((b* +5) — 21y (b* + 2))] B°,
Mgy = [20B%b*c(n+ 1) — 2B%c(n+ 1) + 12Bnb%*(n + 1) — 24Bb*A(sy + 1) + 3B(nsy + 21p)
3B5s0(2b% — 3) + 3ryob%(4 + n)]B*,
My = 2b%[-10B%c(n + 1) — 2nb*(n + 1) + 4Bb*A(sy + 1) + B(4son + 27y + 9sy) + 4199 (n + 1)]182,
My, = 8b2[b*n(n+ 1) — 2b*A(sy + 15) — 19 + 1ol B,
My, = —8b*c(n + 1).

The term of (3.20) which is seemingly does not contain a? is M. Since 8° is not divisible by a?, then ¢ = 0 which
implies that

M, =M, = 0.
Therefore (3.20) reduces to following
M, + Mza? + Mya* + Mga® + Mga® = 0, (3.21)
Mg + Mga? + Myga* + My;a® + My,a® = 0. (3.22)
By plugging ¢ = 0 in M, and Mg, the only equations that don’t contain a? are the following
—B[2A(sg + 19) — (n+ 1)1 + 3r90(n + 3)] = 112, (3.23)
4Bb%[2A(sy +15) — (n + ] + 190(2n — 1)(B? + 2) = 1,02, (3.24)
where 7, = 7% and T, = T,a? are scalar functions on M. By eliminating [2A(s, + 15) — (n + 1)n], we get
Too = TA?, (3.25)
where 7 = (bz+2)(4l:§(_24:—21)1)—3(n+3)'
By (3.23) or (3.24), it follows that
2A(sp+ 1) —(n+1n = 0. (3.26)
By (3.25), we have r, = 7 . Putting (3.25) and (3.26) in Mg and M, yields
Mg = [n(b? + 5) — 2(b% + 2)]ta?B®, (3.27)
My = [[(6b% + 3n — 9)s, — 6118 — 3b%(n + 4)rpeta?|B*. (3.28)

By putting (3.27) and (3.28) into (3.22), we have
[(6b% + 3n — 9)sy — 6118 — 3b%*(n + Drgeta?f* + n(b? + 5) — 2(b? + 2)Ta? B
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—M10a2 + M11a4 + M12a6 = U. (329)
The only equations of (3.29) that do not contain a? is [n(b? + 5) — 2(b? + 2)t8 + (6b% + 3n — 9)s, — 61, 5°.

Since (¢ is not divisible by a?, then we have

[n(b? + 5) — 2(b? + 2)TB° + (6b% + 3n — 9)sy — 67p] = 0. (3.30)
By lemma 3.1, we always have s; = 0. Then (3.30), reduces to following
[n(b? +5) — 2(b? + 2)]zB — 671y = 0. (3.31)
Thus
[n(b% + 5) — 2(b* + 2)]7b; — 61b; = 0. (3.32)

By multiplying (3.32) with b*, we have
T=0.

Thus by (3.28), we getn = OandthenS = (n + 1)cF. By (3.25), we get r; = 0. Therefore lemma 3.1, implies
that S = 0. This completes the proof.

Proof of Theorem 1.1: Let F be an isotropic Berwald metric (1.3) with almost isotropic flag curvature (1.1). In [22],
it is proved that every isotropic Berwald metric (1.3) has isotropic S-curvature (1.2).

Conversely, suppose that F is of isotropic S-curvature (1.2) with scalar flag curvature K . In [13], it is showed that
every Finsler metric of isotropic S-curvature (1.2) has almost isotropic flag curvature (1.1). Now, we are going to
prove that F is a isotropic Berwald metric. In [6], it is proved that F is an isotropic Berwald metric (1.3) if and only
if it is a Douglas metric with isotropic mean Berwald curvature (2.1). On the other hand, every Finsler metric of
isotropic S-curvature (1.2) has isotropic mean Berwald curvature (2.1). Thus for completing the proof, we must
show that F is a Douglas metric. By proposition 3.2, we have S = 0. Therefore by theorem 1.1 in [13], F must be
of isotropic flag curvature K = a(x). By proposition 3.2, § is a Killing 1-form with constant length with respect to
a, thatis, r; =s; = 0.Then (3.9), (3.10) and (3.11) reduce to

Gi_Gi= i __Ps0 ;_ 0
=alQsy,  Ji=—5+, J=0.
By (3.8), we get
; d(p-s9p) ,
it = —— o (b = 59).

Now we consider two cases:

Case I: dimM = 3. In this case, by Schur lemma F has constant flag curvature and (3.6)
holds, the equation (3.16) reduces to following

‘pSiO ik ¢'Slo
—a"s
2Aa ko T 2Aa

(sté + Q'sb(b? - 52)) - I(F;iA (p-sp)?*—s¥)=0. (3.33)
By assumption @ == 0. Thus by (3.32), we get
SioSs + slo(aQSé).ibi —KFa (¢ - sp')(b? —s?) =0. (3.34)
The following holds
(aQsb);b' = sQs} + Q's(b? — s?) = 0.

Then (3.34) can be rewritten as follows

Si0S6A — Ka? (¢ - s@")(b? — s2) = 0. (3.35)
By (3.6), (3.18) and (3.35), we obtain
2 2_2\/_ o2 ) 1tsts2)(s—
(142 - 20 JEt ] s — K [CRE2 6B g2 — 5] =, (3.36)
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Multiplying (3.36) with - s2(s — 2)%a® yields
A+aB =0,
where
A= —K20b*Ba® + (5KB3b% + 2b%Bsyosh + 20K B3 )a* + (B3siosh — 5KB° + KB°b?)a?
—KB7 — si958°
B = 8Kb%a® + (10Kb?% — 8KB? — 2s,954b? )a* + (—5Kb?* + 25,0s5b?B? — 10K f*)a?
+(5KB° — si9s8*).
Obviously, we have A = 0and B = 0.
If A = 0 and the fact that 87 is not divisible by a?, we get K = 0. Therefore (3.36) reduces to following
Si0Sh = shsi = 0.
Because of positive-definiteness of the Riemannian metric a, we have s;; = 0, i.e., 8 is closed. By ry, = 0 and

2
sg = 0, it follows that 8 is parallel with respect to a. Then F = ;TB + B is a Berwald metric. Hence F must be
locally Minkowskian.

Case Il: Let dim M = 2. Suppose that F has isotropic Berwald curvature (1.3). In [6], it is proved that every
isotropic Berwald metric [3] has isotropic S-curvature, S = (n + 1)cF .

By proposition 3.2,c = 0. Then by [3], F reduces to a Berwald metric. Since F is non-Riemannian, then by
Szabo’s rigidity theorem for Berwald surface (see [2] page 278), F must be locally Minkowskian.
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