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Abstract

In this paper, we establish the Opial type inequalities for conformable fractional derivative and integral of
two functions and give some results in special cases of « .
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1. Introduction

Mathematical inequalities which involve derivatives and integrals of functions are of great interest. Opial's
inequality and its generalizations, extensions and discretizations, play a fundamental role in establishing the
existence and uniqueness of initial and boundary value problems for ordinary and partial differential equations as
well as difference equations. Many mathematicians gave the improvements and generalizations in last few decades
to add the considerable contribution in the literature (see, for instance, [1]-[8]).

The paper is motivated by the work of Mehmet Zeki Sarikaya and Hiseyin Budak [9] and their study of Opial type
inequalities involving conformable fractional derivative and integral. We will prove some new Opial type
inequalities for conformable fractional derivative and integral of two functions. The paper is organized as follows.
In the next section, we present some concepts related to conformable fractional derivative and integral. In section 3,
we will give some new Opial type inequalities which involve conformable fractional derivative and integral.

2. Preliminaries

The following definitions and Lemmas with respect to conformable fractional derivative and integral were referred
in (see, [9], [11]-[13]).

Definition 2.1 (Conformable fractional derivative). Given a function f :[0,00) >R . Then the
“conformable fractional derivative” of f of order & is defined by

ft+et™)—f(t)
&

D, f(t)=lim
&0
forall t>0, @ €(01). If f is «-differetiable in some (0,a), a>0, lim f(*(t) exist, then define
t—0"
f (@ (0) =lim f("‘)(t).
t—>0"

We can write f(*(t) for D, f (t) to denote the conformable fractional derivative of f of order ¢ . In addition, if
the the conformable fractional derivative of f of order ¢ exists, then we simply say f is & -differentiable.

Lemma 2.2. Let o €(0,1) and f,g be & -differentiable at a point t > 0. Then
(1) D, (af +bg)=aD,(f)+bD,(g), forall a,beR,
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(2) D, (A)=0,for all constant functions f (t) =4,
3 D,(fg)=1D,(9)+9D,(F),

@) D, (f")=yf""D,(f),

(5) Da(;)= D, (9)- 9D, (f)

2

g
If f is differentiable, then

i
D, f ()=t - 0). (2.2)

Definition 2.3 (Conformable fractional integral). Let o €(0,1) and 0<a<bh. A function f :[a,b] >R is
o -fractional integrable on [a, b] if the integral
b b i
| f :j f (x)d, x ::j f (x)x**dx (2.2)
a a
exists and finite. All « -fractional integrable on [a,b] is indicated by L ([a,b]).
Remark.
t f(X
1210 =120 1) = [ B, (2.3)
a X
where the integral is the usual Riemann improper integral, and « < (0,1].
Lemma 2.4. Let f :[a,b] — R be differentiable and 0< ¢ <1. Then, for all t >a we have
12D2f (t) = f (t)— f (a). (2.4)

Lemma 2.5 (Integration by parts). Let f,g:[a,b]— R be two functions such that fg is differentiable.
Then

[0 £ (0D2g(0d,x = g} ~ [ g(¥)D2 f (x)d,x. (2.5)

Lemma 2.6 (Holder’s inequality). Let f,g<C[a,b], p,q>1 with l+E =1, then
P q

[[1f 0900, x < ( N pdaxJp( I:|g(x)|qdaqu. (2.6)

3. Main results

In this section, we give some new Opial-type inequalities for conformable fractional derivative and integral of two
functions. We start with the following Lemma.

Lemma 3.1[9]. Leta (0] and f be an « -fractional differentiable function on (0,h) with f(0) = f (h) =0.
Then, the following inequality holds

h h* ¢h 2
jo £ (@)D, f(t)d,t< v jo D, f(®)[d,t. (3.2

Lemma 3.2[9]. Leta (0] and @ be a nonnegative and continuous function on [0,h]. Let f be an « -
fractional differentiable function on (0, h) with f(0)= f (h)=0. Then, the following inequalities hold

[ o]f ®d,t< 2—0[( [ a)(t)dat)( ['Ip, 1 (t)|2dat) 3.2)

and
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joh o) f @)D, f(®)d,t < (2_“ joh ° (t)dath (Lh“)a f (t)|2dat). (3.3)

(4

Lemma 3.3[9]. Letae(01] and p>0, =1, r=0, m=1be real numbers. If f is an « -fractional
differentiable function on (0,h) with f (0) = f(h)=0. Then, the following inequality holds

[If @D, 1O d t<[(p+a)" 1M [ |, t O d,t, (34)

where

I(m) = % [l -ty (3.5)

Theorem 3.4. Letae(01] and p>0, q>1, r>0, m>1be real numbers. If f is an o -fractional
differentiable function on (0,h) with f(0)= f(h)=0, and g is an « -fractional differentiable function on (0, h)
with g(0) = g(h) =0. Then the following inequality holds

[If@™ D, a0 +la®""|D, f 1) .t
<2[(p+a)" 1 m]"* [0, £ """ +[D, g1t (36)

where [(m) defined by (3.5).
Proof. Define

1
KO) = [ 1D, f @) +|D,g ()" "1™ d, . 3.7)
Then
1
Da K (X) — [| Da f (X)|m(p+q+r) + | Dag (X)|m( p+Q+r)]m(p+q+r)
>max{|D, f (x)},|D,g(x)[}, (3.8)
and
1
K(x) > jox{] D, f ()" "y Prang t > jox D, f (t)dat‘ =|f (%) (3.9)
Similarly,
K(x) =|g(x). (3.10)
By Lemma 3.3

[t D, am™ +la®"" |, f "t
<[ 1K@ D, g™ +[K """ |D, f ()" 1d,¢
= ['Ik®" 1D, g™ +|D, f 1) 1,

<2 [K®)"""D,K ()" d,t

h m(p+q+r
<2[(p+@)" 1M [ 1D, KO d,t

h m(p+q+r m(p+qg+r
<2(p+a)" 1 (m)]** [ D, O +[D,g )" 1d,t. (3.11)
The proof is complete.

Theorem 3.5. Leta (0], g=> p>1 and @ be a nonnegative and continuous function on [0,h]. If fisan « -
fractional differentiable function on (0, h) with f(0)= f(h)=0. Then
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p pT h* h 2 2 %h 2q
j o(®)|f ()|, f ©)['d t<a (E [RZRCY (t)datJ [ [D, f (1, t

¥ % qu( [[ o' ()p" (t)dat);( [[[D, (t)]quatf. (312)

p(a-1)

a

for any constant K >0, where ¢(t) =| —

Proof. Using (2.6) with indices ¢ and % , we have

q-1 1

[f®)<[|D, f()d, 7 < (gj | U;IDa f (T)|qdaqu.

Let g(t) = j;|Da f(0)d,z, then

p(g-1)
ta T B E
Do) =D, f®)", [f) < [;J ' (1) =p()g" (t). (3.13)
Now we need the simple inequality to complete our result:
a P G, d-p
al SEK ‘fa+—r ] Kq (3.14)

for any constant K >0, where a>0, q> p>0.
Therefore from (3.13), (3.14) and Lemma 3.2, we conclude that

[ o]t "D, f ®)['d,t
<[ wt)p(t)g* ©)D, g ()t

<[ a)(t)go(t){ KT git)+31=P . P }D g(t)d.t

—-q

=§ K @ [ w(®)e(t)D,g(td t+qqu [ ot)p(t)D, g (0t
<P pT h* e , 2 %h 2q
< K (E [[ 'O (t)datj [,[D, f @O d,t
R : g )2
K U 2 ()¢ (t)d tj (IO[Daf(t)] dat) . (3.15)

for any constant K >0. The proof is complete.

Theorem 3.6. Leta (0], g> p>1 and @ be a nonnegative and continuous function on [0,h]. If fisan « -
fractional differentiable function on (0,h) with f(0)= f(h)=0, and gis an « -fractional differentiable function
on (0,h) with g(0) =g(h)=0. Then
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[} o} f @ [D, 900" +la®f’ D, f O}, t

<2p K“(KI "0 (1) (t)dath [4ID, f OF +[D, gt
q 4o 90 0

2(q — Pren o, S 2q 2q :
. (qq p)'KqUo“’ O0* Va1 ([0, O +[D, 907, )/

. pla-1)
for any constant K >0, where ¢(t) = t—
a
Proof. Define
1
Z(x) = j: [ID, f (t) +|D,g(®)[*1%d,t. (3.16)
Then
1
D,Z(x) =[ID, f (x| +|D,g (x| *1** = max{|D,  (x)],|D, g () (3.17)
and
i X
Z(x) > jox{] D, f (t)"3*d,t> ‘ jo D, f (t)d, t[=|f (x)| (3.18)
Similarly,
Z(x) =[g ()| (3.19)

By (3.17), (3.18), (3.19) and Theorem 3.5, we have
[} o}t O [D, 900" +lof’ D, f 0}, t
< [ w(tHjz(®)"|D, o O +]2®)'|D, f (0]}, ¢
= [ oz gD, 9" +[D, f ()"},
<2 joh o®)Z@)[|D,Z (1)'d,t

P/ pa
SQKq(h_
q

10 b @0 (Udatj [,[D.Z®Td,t

1
2

+ @ Kg( L“a)z(t)goz(t)datj ( Ioh[DaZ(t)]zqdat);

2 Kq(h_“ [l o0’ (t)dath 41D, O +[D, 9130,
q 4o 0 0

P L 1
(ot 00t 00t [0, 1O P00 W
for any constant K >0. The proof is complete.

Next, we will use the experience of Sajid Igbal, Josip Pecari¢ and Muhammad Samraiz [10] to establish the Opial-
type inequalities for conformable fractional integral of two functions. By L [a,b], 1< p <oo, we denote the space

of all Lebesgue measurable functions f for which | f |is Lebesgue integrable on [a,b].
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Theorem 3.7. Let (0], r>1, r>q>0and p>0. If p>0, @>0 are measurable functions on [a, x],
and f,f, L [a,x], thenthe following inequality holds

[} o1, £ £ 1, £ 11,0t

q —-q

(Y e otV Pl (Footir o
- (pmj [d:; i NLW dt} ([[eoneo |nom) " @20
where
P 4 t r 1
ht) =p®OPO] * [p®] 7, PO =[ ) g (1)dr,
and

alo

d = 274, 0<p<q
p
a |4 p=>q.
Proof. Since I_f;(t) = J.t f.(r)r“dz,(i=12) and >0, using the Holder’s inequality for " ry, we get
a r-1

that
r-1

1, 1,0 < { [ ipr (r)er ([e@lt@ldr) <POI BOF, @21

where G(t) = [ (2)| f,(2)[ dz-

Let F(t) = [ p(2)|f,() dz . then

9 q
|£,0]" =[p®] "[F'®]1". 3.22)
Now (3.21) and (3.22) implies that for » >0,
b q p(r-1) P _a a
o)1, L, |0 <e®IP®] © [COI" [p®)] "[F'OI
P q
=hM®[GMH]I"[F'®]" (3.23)
Now integrating over [a, x] and using Holder’s inequality for {L, L}, we obtaint
r-q q
r = p a
[RECIRAG HEAGIE [ '[:[h(t)]r‘thJ { NG F’(t)dt) . (3.24)
Similarly we can write
r ﬂ p H
j w1, f,®)°| .o < [I [h(t)]rthJ ( J.:[F(t)]q G'(t)dt) . (3.25)
Now we need the simple inequlities to complete our result:
c,(A+B)° < A° +B° <d_(A+B)*,(A B>0) (3.26)
where
1, 0<e<y 27, 0<e<l
C, =13, and d, =
277, =1 1 c>1.

Therefore from (3.24), (3.25) and (3.26), with r > g, we conclude that
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[ o, £ £ +1, £ |10t

=q q

< 2[ j:[h(t)]fth] | [ [ F© +[F(t)]qe'(t)}dt]r . (327)
Using F(a)=G(a) =0 and (3.26), we conclude that
(GO F'©+[F©)]° Gt
= [{IGM1° +[FOIHF'() + GOt - [ IGM]° G'() + [F(1)]° F' ()t
<, 160+ FOI'FO +60To 161" +[FOII* }
=4 6+ FOIY -1 +[F(OIT }
p+q | p+q
- _@,- 2_%)[G(x) +F (x)]5p+l. (3.28)
P+q 4

Using (3.28) in (3.27), we can obtain (3.20).
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