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Abstract  

In this paper, we establish the Opial type inequalities for conformable fractional derivative and integral of 
two functions and give some results in special cases of  . 
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1. Introduction 

Mathematical inequalities which involve derivatives and integrals of functions are of great interest. Opial's 

inequality and its generalizations, extensions and discretizations, play a fundamental role in establishing the 

existence and uniqueness of initial and boundary value problems for ordinary and partial differential equations as 

well as difference equations. Many mathematicians gave the improvements and generalizations in last few decades 

to add the considerable contribution in the literature (see, for instance, [1]-[8]). 

The paper is motivated by the work of Mehmet Zeki Sarikaya and Hüseyin Budak [9] and their study of Opial type 

inequalities involving conformable fractional derivative and integral. We will prove some new Opial type 

inequalities for conformable fractional derivative and integral of two functions. The paper is organized as follows. 

In the next section, we present some concepts related to conformable fractional derivative and integral. In section 3, 

we will give some new Opial type inequalities which involve conformable fractional derivative and integral. 

2. Preliminaries 

The following definitions and Lemmas with respect to conformable fractional derivative and integral were referred 

in (see, [9], [11]-[13]). 

Definition 2.1 (Conformable fractional derivative).  Given a function Rf ),0[: . Then the 

“conformable fractional derivative” of f  of  order   is defined by 
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We can write )()( tf 
 for )(tfD  to denote the conformable fractional derivative of f  of order  . In addition, if 

the the conformable fractional derivative of f  of order  exists, then we simply say f  is -differentiable. 

Lemma 2.2.  Let )1,0(  and gf ,  be  -differentiable at a point 0t . Then 

(1)  ),()()( gbDfaDbgafD    for all ,, Rba   
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(2)  ,0)( D for all constant functions ,)( tf  
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If f is differentiable, then 

  )1.2().()( 1 t
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Definition 2.3 (Conformable fractional integral).  Let )1,0(  and .0 ba   A function Rbaf ],[:  is 

 -fractional integrable on ],[ ba  if the integral 

)2.2()(:)( 1dxxxfxdxffI
b

a

b

a



  
  

exists and finite. All  -fractional integrable on ],[ ba  is indicated by ]).,([1 baL
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where the integral is the usual Riemann improper integral, and ].1,0(  

Lemma 2.4.  Let Rbaf ],[:  be differentiable and .10   Then, for all at   we have 

 )4.2().()()( aftftfDI aa   

Lemma 2.5 (Integration by parts).  Let Rbagf ],[:,  be two functions such that fg  is differentiable. 

Then 
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Lemma 2.6 (Hölder’s inequality).   Let ],,[, baCgf   1, qp  with ,1
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3. Main results 

In this section, we give some new Opial-type inequalities for conformable fractional derivative and integral of two 

functions. We start with the following Lemma. 

Lemma 3.1[9].  Let ]1,0(  and f be an  -fractional differentiable function on ),0( h  with 0)()0(  hff . 

Then, the following inequality holds 
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Lemma 3.2[9].  Let ]1,0(  and be a nonnegative and continuous function on ],0[ h . Let f be an  -

fractional differentiable function on ),0( h  with 0)()0(  hff . Then, the following inequalities hold 
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and  
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Lemma 3.3[9].  Let ]1,0(  and 0p , 1q , 0r , 1m be real numbers. If f is an  -fractional 

differentiable function on ),0( h  with 0)()0(  hff . Then, the following inequality holds 
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Theorem 3.4.  Let ]1,0(  and 0p , 1q , 0r , 1m be real numbers. If f is an  -fractional 

differentiable function on ),0( h  with 0)()0(  hff , and g  is an  -fractional differentiable function on ),0( h  

with 0)()0(  hgg . Then the following inequality holds 
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where )(mI  defined by (3.5). 

Proof.  Define 
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Similarly, 
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By Lemma 3.3 
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The proof is complete. 

Theorem 3.5.  Let ]1,0( , 1 pq  and   be a nonnegative and continuous function on ],0[ h . If f is an  -

fractional differentiable function on ),0( h  with 0)()0(  hff . Then 
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for any constant 0K , where .)(
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Proof.  Using (2.6) with indices q  and 1q

q
, we have  
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Now we need the simple inequality to complete our result: 
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for any constant 0K , where 0a , .0 pq  

Therefore from (3.13), (3.14) and Lemma 3.2, we conclude that 
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for any constant 0K . The proof  is complete. 

Theorem 3.6.  Let ]1,0( , 1 pq  and   be a nonnegative and continuous function on ],0[ h . If f is an  -

fractional differentiable function on ),0( h  with 0)()0(  hff , and g is an  -fractional differentiable function 

on ),0( h  with 0)()0(  hgg . Then 
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for any constant 0K . The proof  is complete. 

 

Next, we will use the experience of Sajid Iqbal, Josip Pečarić and Muhammad Samraiz [10] to establish the Opial-

type inequalities for conformable fractional integral of two functions. By ],[ baLp
,  p1 ,  we denote the space 

of all Lebesgue measurable functions f  for which || pf is Lebesgue integrable on ],[ ba . 
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Theorem 3.7.  Let ]1,0( , 1r , 0 qr  and 0p . If 0 , 0  are measurable functions on ],[ xa , 

and ],[, 21 xaLff r ,  then the following inequality holds 
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Now (3.21) and (3.22) implies that for 0 , 
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Similarly we can write 
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Now we need the simple inequlities to complete our result: 
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Therefore from (3.24), (3.25) and (3.26), with qr  , we conclude that 
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Using 0)()(  aGaF  and (3.26), we conclude that 
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Using (3.28) in (3.27), we can obtain (3.20). 

 

Acknowledgements 

This work was partially supported by NNSF of China (11571090), GCCHB (GCC2014052). 

 

References 

[1] Agarwal, RP, Pang, PYH (1995). Opial Inequalities with Apphications in Differential and Difference 

Equations. Kluwer Academic Publlshers. 

[2] Cheung, WS, Dandan, Z, Pečarić, J (2007). Opial-type inequalities for differential operators. Nonlinear 

Analysis Theory Methods & Applications, 66(9), 2028-2039. 

[3] Andrić, M, Barbir, A, Farid, G, Pečarić, J (2014). Opial-type inequality due to Agarwal-Pang and fractional 

differential inequalities. Integral Transforms & Special Function, 25(4), 324-335. 

[4] Iqbal, S, Pečarić, J, Samraiz, M (2015). Multiple Opial-Type Inequalities for General Kernels with 

Applications. Journal of Mathematical Inequalities, 9(2), 381-396. 

[5] Hsu, KC, Tseng, KL (2015). Some New Discrete Inequalities of Opial and Lasota's Type. Journal of 

Progressive Research in Mathematics, 4(2), 294-302. 

[6] Li, LZ, Han, MA (2014). Some new dynamic Opial type inequalities and applications for second order integro-

differential dynamic equations on time scales. Applied Mathematics & Computation, 232(6), 542-547. 

[7] Rabie, SS, Saker, SH, Agarwal, RP (2016). Opial type inequalities with two unknowns and two functions on 

time scales. Vietnam Journal of Mathematics, 44(3), 541-555. 

[8] Andrić, M, Pečarić, J, Perić, I (2013). An Opial-Type inequality for fractional derivatives of two functions. 

Fractional Differential Calculus, 3(1), 55-68. 

[9] Sarikaya, MZ, Budak, H (2016). Opial Type inequalities for conformable fractional integrals. 

https://www.researchgate.net/publication/303487107. 

[10] Iqbal, S, Pečarić, J, Samraiz, M (2014). Opial-Type inequalities for two functions with general kernels and 

applications. Journal of Mathematical Inequalities, 8(4), 757-775. 

[11] Abdeljawad, T (2015). On conformable fractional calculus. Journal of Computational and Applied 

Mathematics, 279, 57-66. 

https://www.researchgate.net/publication/303487107


    

Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                                   

ISSN: 2395-0218   

 
Volume 12, Issue 3  available at www.scitecresearch.com/journals/index.php/jprm                                                             1931|       

 

[12] Hammad, MA, Khalil, R (2014). Conformable fractional heat differential equations. International Journal of 

Differential Equations and Applications, 13(3), 177-183. 

[13] Iyiola, OS, Nwaeze, ER (2016). Some new results on the new conformable fractional calculus with application 

using D'Alambert approach. Progress in Fractional Differentiation and Applications, 2(2), 115-121. 

 

 

 

 

 

 

 

 

 

 

 

 

 


