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Abstract

The commutative residuated lattices were first introduced by M. Ward and R.P. Dilworth as
generalization of ideal lattices of rings. Complete studies on residuated lattices were developed by H.
Ono, T. Kowalski, P. Jipsen and C. Tsinakis. Also, the concept of lattice implication algebra is due to Y.
Xu. And Luitzen Brouwer founded the mathematical philosophy of intuitionism, which believed that a
statement could only be demonstrated by direct proof. Arend Heyting, a student of Brouwer’s, formalized
this thinking into his namesake algebras. In this paper, we investigate the relationship between implicative
algebras, Heyting algebras and residuated lattices. In fact, we show that implicative algebras and Heyting
algebras can be described as residuated lattices.
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The concept of a commutative residuated lattice was firstly introduced by M. Ward and R. P. Dilworth
[5] as a generalization of ideal lattices of rings. In their original definition a residuated lattice was what
we would call an integral commutative one. Basic properties and facts in this restricted setting were
known, but in [1] one can find the first thorough study of residuated lattices in their generality.

For a survey of residuated lattices we refer to [2].

In [6] Xu introduced the concept of lattice implication algebra and quasi implication algebra as a
bounded lattice satisfying a system of axioms and studied certain properties. Later many authors like Jun
et al. [3] have studied the properties of filters and fuzzy filters of lattice implication algebras and quasi
lattice implication algebras. Also Zhu Yiquan and Tu have introduced an equivalent definition for lattice
implication algebra in [7]. In [4] Kolluru and Bekele gave an equivalent definition of implication lattice
of Xu by simplifying the axioms of his definition and called implicative algebra.

In this paper we shown that implicative algebras and Heyting algebras can be residuated lattices.
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Definition 1 . Let L be a non empty set, 1 € L and & be a partial binary
operation on L. Then (L, ©,1) is called a partial monoid if the following holds:
() royo2)=(roy ez Yryzel

(i) vol=r=10x VYrel.

Definition 2 . A commutative residuated lattice is an algebra £ =
(L,Vv, A, o, —,0,1) of the type (2, 2, 2, 2, 0, 0) satisfying the following conditions:

(Ly) (L,Vv,A,0,1) is a bounded lattice;
(Ly) (L, 1) is a commutative monoid;
(

L3) The adjointness condition » -y < z iffv <y— =z  forallx,y,ze L.

Further, we say that £ is a DN- residuated lattice if it satisfies the double
negation law ie. =—r =1 for all z € L.

Corollary 1. For each residuated lattice (L, A, V, @, —.,0,1) and for all a,b,c € L
we have:

(i)asbesa—0b=1;

(i) cva—=b<bandb<a—a®b
(iii) a@ (bve)=(a®b)V(a©c).
Proof.

(i) We have @ < b iff @ ® 1 < b, and hence iff 1 = a — b by the adjointness
condition.

(ii) Form the reflexivity of the lattice ordering < and by using the adjointness
condition we can get a @ (a — b) < band b <a — (a©b).
(iii) By the monotonicity of @ we have a b < a@ (bve) as well as ae < a(bVe)
and thus (¢ ©b) V(a@c) <a@ (bVe).
And from b < a — (a©b) and the monotonicity of — in the second argument
we get
b<a— ((a@b)V(iawc)).

Similarly, we get
c<a— ((amb)V(iawc)).

And hence
(bve)<a— ((a®b)V(a®c)).

Thus by the adjointness condition gives also

a@(bVve)<(amb)Viaeec).
|

Definition 3 . An algebrad = (I,—,—,0,1) of the type (2,1,0,0) called tmplica-
tive algebra if it satisfies the following equations:
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(L) ©—(y— ) =y — (¢ — 2);
(I) 1 — o =u;
(Iz) v —1=1;
(L) ¥ =y =y — ~r;
(I:) (2 —y) —y=(y—2) =2

where (=0 = 1)

Define a relation < on an implicative algebra J as follows:

r<ysr—y=1
Also, we define two binary operation vV and A on I by
eVy=(@@—=y)—y=y—ua)—a
e hy==(ly—r)—-y)=-(x —y) — )

Lemma 1 . [4] In any implicative algebra J, the following hold:
(1) (7,<,0,1) is a bounded poset;
(2) e Ay <z y<aVy
(3) xVy is the least upper bound of x,y;

(4) = Ay is the greatest upper bound of z, y.

Theorem 1. Let 3= ([,—,—,0,1) be an implicative algebra with < its induced
order. Define x @y = =(z — —y). Then R(I) = (I, <,®,0,1) is a commutative
residuated lattice.

Proof.
(L1) (I,v,A,0,1)1is a lattice by Lemma 1.
(L2)

r@((y®z)=-(r—(yo2))

=(@—=(y—2)

——(x— (= = )

=~z — (x = )

= (= ) = 2)

=((r0y) — 2)

=(r0Oy) @z
rol==r—=-l)=-(r—=0)=-ar=r.And 1oz =~(l — —2) =
—mr=a Also, r Oy =z — —y) =y — ) =y © .
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(H1)
()
(Hy) * —x =1,
(Ha)
(H3)

(H,v,N,0,1) is a distributive lattice;

rA0=02v1=1;

Hy
Hy

(r—=y)hy=y, A —y) =xAy;

v (AR =@y Al —2), (2Vy)— 2= (2 —2) Aly — 2).

Theorem 3 . Let $§ = (I,V,A,—,0,1) be a heyting algebra with @ &y = x N y.
Then R(H) = (H S, ©,0,1) is a commutative residuated lattice.
Proof.

(Ly) (H,v,A,0,1) is a bounded lattice by (Hy).

(Lo) (H, @, l) is a commutative monoid
rO(yoz)=xA(yAz)=(@ArAy)Az=(20y) Oz,
I()lzi/\l—x—l/\r—lmi
roy=rhy=yLr=yor

(Ly) fao<y—zthenz Oy <(y—z2)0y=y©(y— z) by (La).
This implies that @ Ay <y Ay — 2) <y A zby (Hy). So, we get x &y < 2
Conversely, if r ©y < z, then x Ay < 2. And
y — (z Ay) <y — 2z by the monotonicity of — in the second argument.
(y—a2)A(y—y) sy—=z by (Hs)
(y—z)Al<y—=2 by (H3)
Yy—ax <y —z
(y—ax)rhe<(y—z)hr<y—z

r <y — =z by (Hy).
]
Theorem 4 . Let £ = (L,<,,0,1) be a commutative residuated lattice with
rAhy=x@y, aVy = —y. Then H(L)= (L,V, N, —,0,1) is a heyting algebra.
Proof.
(Hy) According to Corollary 1 (iii) and o Ay = o & y.
(Hy) A0 =0,2V1=1Dby (L)
(H3) + —x=-2Va2=1by (L)
(Hy) (x—=y)Ay=(-zVy)Ay=yand
rA(r—y)=zA(-zVy)
— @A)V (2 AY) by(H1)
=ax Ay
(H5)
r—(yAz)=—-xV(yAhz
= (e Vy) A(aV2) by(Hy)
SEmpae—)
And (zvy) —z==(zvy)vVz=(-zVz)A(yVz) =(r—2)Ay—2).
]
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