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Abstract 

This paper adopts the relationship between conformable fractional derivative and the classical derivative. By 
using this relation, the comfortable fractional differential equation can transform to a classical differential 
equation such that the solution of these differential equations is the same. Two examples have been 
considered to illustrate the validity of our main results. 
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1. Introduction 

The famous letter written by L’Hopital to Leibniz in 30/9/1695 asking him about the possibility that n  in 

Leibniz's rule be a fraction. “What if 
1

n
2

 .” was a birthday of fractional calculus. Leibniz's response: "An 

apparent paradox, from which one day useful consequences will be drawn." In these words fractional calculus 

was born [1-7]. Fractional differential equations are a generalization of the ordinary differential equation to 

arbitrary non-integer order . Fractional differential equations arise in many complex systems in nature and 

society with many dynamics, such as rheology, porous media, viscoelasticity, electrochemistry, 

electromagnetism, signal processing, dynamics of earthquakes, optics, geology, viscoelastic materials, 

biosciences, bioengineering, medicine, economics, probability and statistics, astrophysics, chemical 

engineering, physics, splines, tomography, fluid mechanics, electromagnetic waves, nonlinear control, control 

of power electronic, converters, chaotic dynamics, polymer science, proteins, polymer physics, 

electrochemistry, statistical physics, thermodynamics, neural networks and many more, see e.g. Schneider and 

Wyss [8], Mainardi [9], Magin et. al. [10], Magin [11], Metzler and Klafter [12], Beyer and Kempfle [13], 

Lederman et. al. [14], Bagley and Torvik [15], Riewe [16], Kulish and Lage [17], Wyss [18], Song and Wang 

[19], and the works by Diethelm and Freed cf. Keil et. al. [20]. 

The Leibniz rule and chain rule are not valid for Riemann–Liouville derivative and Caputo derivative, which 

sometimes prevent us from using these derivative in the physical models. Recently, Khalil et al introduced the 

new fractional derivative called conformable fractional derivative and integral [21]. This derivative is 

well-behaved and satisfied the Leibniz rule and chain rule. In this article, we explain the relationship between 

conformable fractional derivative and the classical derivative. This relation enable us to transform the 

comfortable fractional differential equation in to classical differential equation such that the solution of both 

these differential equations is the same.  
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2. Comfortable Derivative 

The fractional derivative has different definitions [ ], and exploiting any of them depends on the boundary 

conditions and the specifics of the considered physical systems and processes. The first definition of fractional 

derivative which has been proposed in the literature is the so-called Riemann-Liouville definition which reads 

as follows. 

Definition 2.1. (Conformable fractional derivative) [  ] Let f :(0, ) R  be a function. Then for all t 0 , 

the conformable fractional derivative of f (t)  of order is  

 
1

0

f (t t ) f (t)
T f (t) lim , (0,1)






  
 


. 

If f (t)  is  differentiable in some (0,a), a 0 and
(a)

t 0
lim f (t)


 exists, then it can be defined  

( )

t 0
f (0) lim f (t)



 


 . 

Definition 2.2. (sequential conformable fractional derivative) [22] Let f :(0, ) R  be a a function. Then 

for all t 0 , the sequential conformable fractional derivative of f (t)  of order ( ,n) is  

n

n times
T f (t) T T T f (t)      

Definition 2.3. (higher order conformable fractional derivative) [22] Given a function f :(0, ) R  . Let 

n n 1   and n    Then the conformabl fractional derivative of f (t)  of order  , where 

(n)f (t) exists, is  

(n)T (f (t)) T (f (t))   

Definition 2.4. (Conformable fractional integral) [21] Let f :(0, ) R  be a a function. Then for all t 0 , 

(0,1)  the conformable fractional integral of f (t)  of order is  

t t
a 1

a a
(I f )(t) f (x)d (x) x f (x)dx, a t

      

where the integral is the usual Riemann improper integral. 

Theorem 2.1. [21]  Let (0,1]  and f ,g be  differentiable at a point t 0 . Then  

(1) T (af (t) bg(t)) aT (f (t)) bT (g(t))     for all a,b R . 

(2) 
p pT (t ) pt 

   for all p R . 

(3) T (c) 0  for all constant c . 

(4) T (f (t)g(t)) T (f (t))g(t) f (t)T (g(t))    . 

(5) 
2

T (f (t))g(t) f (t)T (g(t))
T (f (t) / g(t))

g (t)

 



 . 

(6) In additional, if f (t) is differentiable, then 
1 df (t)

T (f (t)) t
dt



  . 

Theorem 2.2. [21]  Let f (t) be any continuous function in the domain of
aI and (0,1] . Then 

aT I f (t) f (t)    for all t a  
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Definition 2.2. (sequential conformable fractional derivative) [22] Let f :(0, ) R  be a a function. Then 

for all t 0 , the sequential conformable fractional derivative of f (t)  of order ( ,n) is  

n

n times
T f (t) T T T f (t)      

Definition 2.3. (higher order conformable fractional derivative) [22 ] Given a function f :(0, ) R  . Let 

n n 1   and n    Then the conformabl fractional derivative of f (t)  of order  , where 

(n)f (t) exists, is  

(n)T (f (t)) T (f (t))   

 

Definition 2.4. (Conformable fractional integral) [21] Let f :(0, ) R  be a a function. Then for all t 0 , 

(0,1)  the conformable fractional integral of f (t)  of order is  

t t
a 1

a a
(I f )(t) f (x)d (x) x f (x)dx, a t

      

where the integral is the usual Riemann improper integral. 

Theorem 2.1.[21]  Let (0,1]  and f ,g be  differentiable at a point t 0 . Then  

(7) T (af (t) bg(t)) aT (f (t)) bT (g(t))     for all a,b R . 

(8) 
p pT (t ) pt 

   for all p R . 

(9) T (c) 0  for all constant c . 

(10) T (f (t)g(t)) T (f (t))g(t) f (t)T (g(t))    . 

(11) 
2

T (f (t))g(t) f (t)T (g(t))
T (f (t) / g(t))

g (t)

 



 . 

(12) In additional, if f (t) is differentiable, then 
1 df (t)

T (f (t)) t
dt



  . 

Theorem 2.2.[21]  Let f (t) be any continuous function in the domain of
aI and (0,1] . Then 

aT I f (t) f (t)    for all t a . 

3. Main Results  

In this section we will give some result about the relationship between the conformable fractional derivative 

and the classical derivative. 

Lemma 3.1. For any smooth function y(t) : (0, ) R  , the conformable fractional derivative satisfied 

n
n

n

d Y(x)
T [y(t)]

dx
  ,for all (0,1] and for any positive integer number n , where y(t) Y(x), and 

t
x






. 
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Proof: The mathematical induction will be used to prove 

n
n

n

d Y(x)
T [y(t)]

dx
  , for any positive integer 

number n  as follows. 

 

Since 
0T [y(t)] y(t)  and 

0

0

d Y(x)
Y(x)

dx
 , it is clear that the statement holds for n 0 . 

By using the chain rule, one can have 
1dY(x) dy(t) dt dy(t)

t
dx dt dx dt

     

On the other hand, from theorem ( 2.1 ), we have 
1 dy(t)

T [y(t)] t
dt



   . So that the statement holds for 

n 1 . 

Now, let 

k
k

k

d Y(x)
T [y(t)] h(t)

dx
   holds for k N . We need prove 

k 1
k 1

k 1

d Y(x)
T [y(t)]

dx




 
 , so one 

compute 
k 1T [y(t)]

 and

k 1

k 1

d Y(x)

dx




as follows   

 

k k 1 dh(t)
T [y(t)] T [ T [y(t)]] T [h(t)] t

dt



       

k 1 k
1

k 1 k

d Y(x) d d Y(x) d dh(t) dt dh(t)
[ ] [h(t)] t

dx dx dx dx dt dx dt





     

So, 

k 1
k 1

k 1

d Y(x)
T [y(t)]

dx




 
 . Therefore, the statement holds for all positive integer number n . 

Remark 3.1. For any smooth function y(t) : (0, ) R  , and by simple computation, one can have the 

following sequential conformable fractional derivative of y(t) ,where (0,1]  

1- 
1T [y(t)] t y (t)


  

2- 
2 1 22 2 y (t) (1T [y(t) ) y (] t)t t 



    

3- 
33 2 33 1 3y (tT [y(t)] t 3(1) y (t))t y (t) (1 )(1 2 )t   



          

4- 
4 3 44 4 (4) ((3) 2 4 2)T [y(t)] t 6(1 )t y (t) (1 )(1 7y (t )t) y (t) 



           

1 4(1 )(1 2 )(1 3 ) y (t)t         

Lemma 3.2. For any smooth function y(t) : (0, ) R  , and n n 1   , the conformable fractional 

derivative of  y(t) order  satisfied 
n 1 (n 1)T [y(t)] t f (t)  

  ,where n n 1   . 

Proof: 

By using definition (2.3), one can have 
(n)

nT [y(t)] T [y (t)]     

Since 0 n 1  , we have 

(n)
1 ( n) 1 n (n 1)dy (t)

T [y(t)] t t y (t)
dt

    

   . 
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Remark 3.2. For any smooth function y(t) : (0, ) R  , and by simple computation, one can have the 

following  conformable fractional derivative of y(t)  

1- 1T [y(t)] t y (t),


 0 1   . 

2- 
2T y (t),[y(t)] t 


 1 2   . 

3- 
3T [y(t)] ,t y (t)


  2 3   . 

4- 
4 (4)T [y(t)] t y (t),

  3 4   . 

Remark 3.3. From remark 3.1 and remark 3.2 one can see the following 

1- 
n

n

1 n

d y(t)
T [y(t)]

dt
  for n 1,2,  

2- 
n

n n

d y(t)
T [y(t)]

dt
  for n 1,2,  

3- 
n

nT [y(t)] T [y(t)],   for n n 1    and n 1,2, . 

Theorem 3.1. The relationship between the solution y(t)  of the conformable fractional ordinary differential 

equation of the type 

n n 1F( T [y(t)], T [y(t)], ,T [y(t)], y(t), t) 0

    , 0 1     

and the solution Y(x) of the ordinary differential equation of the type 

n n 1

n n 1

d Y(x) d Y(x) dY(x)
F( , , , ,Y(x), x) 0

dx dx dx




  

is y(t) Y(x), where 
t

x





. 

Theorem 3.2. The conformable fractional ordinary differential equation of the type 

1 2 n
F(T [y(t)],T [y(t)], ,T [y(t)], y(t), t) 0    , n n 1 2 10            

and the ordinary differential equation of the type 

11 1 2 2 n2 nn[ ] ([ ]) [ ] ([ ]) [ ] ([ ])
y (t), y (t)F(t t , , t ,Y(t),y t t)( ) 0

       
  

have same solution.  

Corollary 3.1. The relationship between the solution y(t)  of the conformable fractional ordinary 

differential equation of the type 

n n 1

1 n 1 nT [y(t)] a T [y(t)] a T [y(t)] a y(t) f (t)

        , 0 1     

and the solution Y(x) of the ordinary differential equation of the type 

1n n 1

1 n 1 nn n 1

d Y(x) d Y(x) dY(x)
a a a Y(x) f (( x) )

dx dx dx






       

is y(t) Y(x), where 
t

x





, and 1 2 na ,a , ,a are constant. 
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Corollary 3.2.  The conformable fractional ordinary differential equation of the type 

1 2 n1 n 1 nT [y(t)] a T [y(t)] a T [y(t)] a y(t) f (t)        ,
n n 1 2 10            

and the ordinary differential equation of the type 

1 1 2 2 n n1 2 n[ ] ([ ]) [ ] ([ ]) [ ] (

1 n

[

n

])

1y (t) y (t)t a t a t a y(t) f (t)y (t)
          

      

have same solution.  

5. Illustrated Examples:                                             

Example 1 : Consider the following linear conformable fractional differential equation 

 T y(x) f (x)y(x) g(x), 0 1.                                                   

Assume that, one is looking for a differentiable y(x) , by applying the theorem (3.2), one have 

1 dy(x)
x f (x)y(x) g(x)

dx

    

In fact, this is linear differential equation  

 

1 1dy(x)
x f (x)y(x) x g(x)

dx

    

So, the general solution is 

1 1x f (x)dx x f (x)dx1y(x) e [ x g(x)e dx c]
      

Example 2 : we consider the homogeneous fractional differential equation 

 T y(x) y(x) 0, 0 1                                              

1 dy(x)
x y(x) 0

dx

    

1dy(x)
x dx

y(x)

   

x
ln(y(x) C



 


 

x

y(x) Ce



  
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