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Abstract 

Regression analysis is an important statistical tool for analyzing the relationships between dependent, 

and independent variables. The main goal of regression analysis is determine, and estimate parameters 

of a function that describe the best fit for a given data sets. There are many linear types of regression 

analysis models such as simple and multiple regression models. Also, there are the non-linear regression 

analyses such as binary and multinomial logistic regression models. This research at first, introduced 

many types of such models. Second, estimates the parameters of the models by using the maximum 

likelihood estimation, and the least square estimation methods. Also, it introduces some criteria for 

evaluating methods. Two suitable applications on two different data sets are conducted, and useful 

results are concluded. 

Keywords: linear regression models; logistic regression models; ordinary least-square, Wald test, R-

squared test. 

 

1. Introduction 

Regression analysis is the widely used statistical tool for understanding relationships among 

variables. It is used when there is a continuous dependent variable which could predict by independent 

variables. If the dependent variable is dichotomous, logistic regression is the reasonable model in this 

case. Regression analysis can be used in many applications such as medical, education, and many other 

applications 

This research concentrated with many regression models such as the linear regression models, the 

simple and multiple regression models. Also logistic regression models will be included in the research in 

a comparison between linear and nonlinear models in two suitable applications. The definitions and 

details of regression models will be stated in section (2). Section (3) presents many evaluating criteria can 

be used with these models. Two suitable applications of these models and analysis will be stated and 

discussed in section (4). The conclusions and recommendations of the study will be in section (5), and 

finally at the end of the study there is the references section in section (6). 

http://www.scitecresearch.com/journals
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2. The Regression Models: 

This section has details of many regression models. It has the linear regression models, the 

simple and multiple regression models. Also it has the nonlinear regression models.  

2.1 The linear regression models: 

Seber (1977) defined linear regression analysis, LRA, as a common technique of 

estimating the relationship between any two random variables, the explanatory variable X, and 

the dependent variable Y such as height and weight, income and intelligence quotient, ages of 

husband and wife. Bates and Watts (1988) mentioned that LRA as a powerful methodology for 

analyzing data and used for describing the relation between the predictor variables. A researcher 

often has a mathematical expression which relates the response and the predictor variables, and 

these models are usually nonlinear in the parameters. In such cases, linear regression techniques 

tend to be more complexity and has not validity. Chatterjee and Hadi (2006) defined regression 

analysis, RA as a conceptually simple method for investigating functional relationship among 

variables. The simple relationship among dependent and explanatory variables can be defined as 

follows: 

                                     Y= f X1, X2, … , Xp + ε                                                            (2.1) 

 

where a random error representing the discrepancy in the approximation is assumed to be 

ε.  It accounts the failure of the model to fit the data exactly. The functionf X1, X2, … , Xp  

describes the relationship between the dependent variable Y, and the explanatory variables  

X1, X2, … , Xp . 

Hutcheson and Moutinho (2011) defined simple linear regression, SLR model as a 

relationship between a continuous response variable Y, and a continuous explanatory variable X  

may be represented by using a line of best fit where Y is predicted at least to some extent by X. 

When the relationship is linear, it may be represented mathematically using a straight line 

equation. The regression coefficient describes the change in Y that is associated with a unit 

change in X. This line is frequently computed using the least square procedure.  

Dayton (1992) defined multiple linear regression, MLR models a linear combination of a 

set of predictors, error and the dependent variable. The relation for an outcome variable Y, and a 

set of p prediction variables X1, X2, … , Xp  has the following form: 

Y = α + β
1

X1 + β
2

X2 + ⋯+ β
p

Xp + ε 

= α +  β
j
Xj

p

j=1

+ ε                                                               (2.2) 

whereα is the Y-intercept, the expected value of Y when all X's are set equal to 0, and a 

multiple regression coefficients areβ
j
. The expected change in Y per unit change in Xj  assuming 

all other X's are held constant. The error of prediction is ε. If error is omitted, the model 

represented the expected as predictedvalue of Y as follows: 

E Y X1, X2, … , Xp = Y  
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                = α +  β
j
Xj

p

j=1

                                                                            (2.3) 

The multiple regression analysis is applicable when the outcome variable Y is continuous. 
It is not appropriate for situation in which Y is dichotomous, categorical, or discrete. 

Hosmer and Lemeshow (2000) mentioned that in any regression problem, the key 

quantity is the mean value of the outcome variable given the value of the independent variables. 

This quantity is called the conditional mean. It also known as conditional expected value, or 

conditional expectation. It is the expected value of a real random variable with respect to a 

conditional probability distribution.  

An analysis of variance table, partitions the total sum of squared deviations of 

observations about their means into two parts: the sum of squared deviations of observations 

about regression line SSE, or residual sum of squares, and the sum of squares of the predicted 

values based on the regression model about the mean of the dependent variable SSR, or due 

regression sum of squares. 

      2.2 The nonlinear regression models:  

Ratkowsky (1983) defined the nonlinear regression, NLR models as follows: 

 

         Yt = Xt
θ + ϵt                                                                                        (2.4) 

 

Where the response variables are Yt  for t=1,2,…,n ,the parameter to be estimated isθ. The 

predictors areXt , andunobservable random error term whose values are unknown and assume to 

have zero mean value are ϵt. 

The nonlinear regression models different from linear regression models not only in 

biased parameters of the least square estimators, or the non-normality distributed of the response 

variable. But also, the variances exceeding the minimum possible variance, over-dispersion 

phenomena. In additional, the nonlinearity of the relationship between the response variable and 

the predictors. The purpose of linear regression is to find values for the slope/s, and intercept to 

define the line that comes closest to the data. Nonlinear regression models are more general than 

linear regression, and can fit any data by defining Y as a function of X with one or more 

parameters. The values of those parameters generate the closed curve to the data. 

Cox and Snell (1989) mentioned that logistic distribution has primary reasons for 

choosing it for solving nonlinear regression models because of its extremely flexible and easily 

used function. Also, it lends a clinically meaningful interpretation. 

Dayton (1992) defined logistic regression, LOR model as an extend technique of multiple 

regression analysis to study situations in which the outcome variable Y is categorical or 

dichotomous. It does not model this outcome variable directly. It is based on probabilities 

associated with the values of Y. The logistic regression model is defined as follows: 

log(
πj (xi)

πk (xi)
) = β

0j
+ β

1j
x1i + β

2j
x2i + ⋯+ β

pj
xpi                                                             (2.5) 
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                                                                  j=1,2,…,(k-1), i=1,2,…,n 

Since all the π’s add to unity, this reduces to: 

log(πj(xi))=
exp ⁡(β0j +β1j x1i+β2j x2i +⋯+βpj xpi )

1+ exp ⁡(β0j +β1j x1i +β2j x2i+⋯+βpj xpi )k−1
j=1

                                                        (2.6) 

wherethe multiple regression coefficient areβ
0j

, β
1j

, … , β
pj

, andthe predictors that often 

called independent variables areX1, X2, … , Xp . 

Hosmer and Lemeshow (2000) defined logistic regression as a  method that describe  an 

integral component of any data analysis concerned  with describing the relationship between a 

response variable, and one or more explanatory variables. Logistic regression model is different 

from the linear regression model where the outcome variable in logistic regression is binary, 

dichotomous, or categorical. Also, the difference between logistic, and a linear regression is 

effected both in the choice of parametric model, and in the assumptions. 

Pohlmann and Leitner (2003) defined Logistic regression, LOR, as the most frequently 

used statistical procedures in social science research, and medical researchers. In this technique 

events are coded as binary variables with a value of 1 that represent the occurrence of target 

outcome, and a value zero represents its absence. If the research does indicate a certain order 

importance of the predictor variables, then a sequential logistic regression is the appropriate 

statistic to use.  

Chatterjee and Hadi (2006) commented that logistic regression model can be extended to 

situations where the response variable assumes more than two values. In a study of the choice of 

mode of transportation to work, the response variable may be private automobile, car pool, 

public transport, bicycle, or walking. The response falls into five categories .There is no natural 

ordering of the categories. The researcher might want to analyze how the choice is related to 

factors such as age, sex, income, distance traveled, etc. The resulting model can be analyzed by 

using slightly modified methods that were used in analyzing the dichotomous outcomes. This 

method is called the multinomial (polytomous) logistic regression. 

Raghavendra and Srivatsa (2011) introduced the performance of logistic regression, and 

neural network models on publicly available medical datasets. An attempt was made to evaluate 

logistic regression, and neural network model with sensitivity analysis. The classification 

accuracy was used to measure the performance of both models. From the experimental the neural 

network model was the sensitivity analysis, and gave more efficient results. 

3. Evaluating Criterions for Regression Models 

There are many criteria for evaluating regression models. This section introduced many of 

these criterions. 

3.1 The multiple R- square measure: 

The multiple R-square, R2is the famous measure of the goodness of fit for the fitted 

regression line to a given set data. It describes the amount of variation that explained by the 

model. R-squared can also be interpreted as the proportionate reduction in error in estimating the 

dependent variable when knowing the independents variables. The R
2
 reflects the number of 

errors made when using the regression model to guess the value of the dependent variable, in 
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ratio to the total errors made when using only the dependent mean as the basis for estimating all 

cases. It can be estimated as follows: 

𝑅2  =  (1 − 
𝑆𝑆𝐸

𝑆𝑆𝑇
)                                                                                                  (3.1) 

where the error sum of squares is SSE that equals the squared sum of  (Yi − Y i). The 

actual value of Y for the i 
th

 case and the regression prediction for case iis Y i.  The total sum of 

squares, SST can be estimated by summing(Yi − Y )2. R-square ranges from 0 to 1,where 0 

reflects no variation in the dependent variable is explained by the independent variables, and 1 

reflects all the variation in the dependent variable explained by the independent variables.  

[Frank, etal (2007)]. 

 

3.2  The adjusted R-squared measure 

The adjusted coefficient of determination of a multiple linear regression model or the 

adjusted R-Squared measure is defined in terms of the coefficient of determination as follows: 

𝑅𝑎𝑑𝑗
2 = 1 −  1 − 𝑅2 

 𝑛 − 1 

 𝑛 − 𝑝 − 1 
                                                                          (3.2) 

where the number of observations in the data set is n, and the number of independent 

variables is p. Adjusted R-square statistic is used instead of the R-square because of added 

significantly variables which contribute to the model and raise the statistic value. It is often used 

to compare several models and reflects the best model. [Frank, et al. (2007)] 

This R2 test of logistic regression model is like other regression models. It tries to 

measure the strength of association of the model. The values of this test are between 0 and 1. It is 

the most common and considerable measure of indication the strength of association. Various R-

squared statistics have been proposed for logistic regression to quantify the extent binary 

response that predicted by a given logistic regression model, and covariates. [Frank, et al. 

(2007)] 

 

3.3 The Pearson chi-square statistic  

The standard test for assessing goodness-of-fit of logistic regression models, is the 

Pearson chi-square, 𝒳p
2, statistic. It can be calculated as follows: 

           𝒳p
2 =  

 yi − miπ i 
2

miπ i 1 − π i 

j

i=1

                                                                                                            3.3  

where the Pearson residual term is 
 y i−m iπ i 

 m iπ i 1−π i 
,  mi = n is the number of subjects,  

i=1,…,j . The number of distinct values of observed x is denoted by j, and π i is the maximum 

likelihood of πi(conditional mean). [Hosmer and Lemeshow (2000)]. 

3.4 The deviance residual statistic 

The deviance residual, D statistic can be defined as follows:  

http://www.r-tutor.com/node/100
http://www.r-tutor.com/node/102
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     d Yi , π i = ±  2  Yi ln  
Yi

miπ i
 +  mi − Yi ln  

mi − Yi

mi 1 − π i 
   

1
2 

                                        (3.4) 

where the sign is the same as the sign of (yi − miπ i), mi = n is the number of subjects,  

i=1,…,j . The number of distinct values of observed x is denoted by j, and π i is the maximum 

likelihood of πi(conditional mean). The distribution of the statistics is chi-square with (j-p-1) 
degrees-of-freedom, where j is the number of covariate patterns, and p is the number of predictor 

variables in the model. [Hosmer and Lemeshow (2000)]Pearson statistic and deviance rely on 

comparing observed Yiandpredicted (miπ i) values, and should be large if the model does not fit 

the data well. [Kuss (2002)]. 

3.5 The Wald test 

The Wald test is used to test the significance for logistic regression coefficients. The null 

hypothesis, 𝐻0:   𝛽𝑗 = 0,   against the alternative  𝐻1:   𝛽𝑗 ≠ 0 ,and the statistic has the following 

form: 

                                       𝑍 =
𝑏𝑗

𝑠𝑗
                                                                                                                (3.6) 

where𝑠𝑗  is the estimated standard error for the estimated coefficient 𝑏𝑗 . SPSS and SAS 

packages report 𝜒2 = 𝑍2 and label there values as Wald statistic.The test hypothesis is 

simultaneously for all partial logistic regression coefficient is 0, i.e. ,𝐻0:   𝛽𝑗 = 0 for all j. This 

test is labeled in SPSS as "Model Chi-Square". [Dayton (1992)] 

 

3.6 Cox and Snell R-square measure 

 The ratio of the likelihoods reflects the improvement of the full model over the intercept 

model (the smaller of the ratio, the greater of the improvement). Consider the conditional 

probability of the dependent variable given the independent variables is L (M). If there are N 

observations in the dataset, then L(M) is the product of N such probabilities.  Thus, taking the 

n
th

 root of the product L(M)provides an estimate of the likelihood of each Y value.  Cox and 

Snell's present the R-squared as a transformation of the −2𝑙𝑛  
𝐿(𝑀𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 )

𝐿(𝑀𝑓𝑢𝑙𝑙 )
 statistic that is used to 

determine the convergence of a logistic regression.  

Cox and Snell's pseudo R-squared has a maximum value that is not 1. If the full model 

predicts the outcome perfectly and has a likelihood of 1, Cox and Snell's is then  

1 − L(Mintercept )2/N , which is less than one. The statistics has the following form: 

                                 R2 = 1 −  
L Mintercept  

L Mfull  
 

2

N

                                                                               (3.15) 

For a normal generalized linear model, R-Square formula has a maximum of one, but for 

logistic regression its maximum is 0.75 or lowers [Baguley (2012)]. 
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4. The Applications 

This section has two applications of simple, multiple and logistic regression models as an 

important comparison between the suggested three models.   

4.1 The SAT Data Set 

The first dataset is the SAT data. It is extracted from the 1997 Digest of Education 

Statistics of 50 subjects. This teaching case analyzing the relationship between public school 

expenditures, and academic performance as measured by the SAT. The data in Table (A.2) in the 

appendix contains eight columns. The name of state will be in the first column,  the current 

expenditure per pupil in average daily attendance in public elementary and secondary schools 

will be in second column,  the average teacher ratio in public elementary and  secondary schools 

in the third  column,  estimated average annual salary of teachers in public elementary and 

secondary schools in the fourth column, percentage of all eligible students taking the SAT in 

fifth column,  average verbal SAT score in the sixth column, average math SAT score in the 

seventh column, and average total score on the SAT in eighth column. 

4.1.1 The descriptive of the SAT data 

A scatterplot will be drawn to exposure the relationship between the public school 

expenditures (the independent variable), and the academic performance (the dependent 

variable).Figure (4.1) shows the relationship between the two variables. It appears to be negative, 

that shows that score highest on the SAT on average spend less money per student. It is not a 

logical result, so the second variable will be added to the model. The new model contains the 

academic performance as measured by SAT (the dependent variable), and the public school 

expenditures, estimated average annual salary of teachers in public elementary and secondary 

schools, and percentage of all eligible students taking the SAT expenditures (the independent 

variables) 
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Figure(4.1): Scatterplot of the SAT set data of the simple linear regression 

4.1.2 The estimation of the simple and multiple model parameters of the SAT set data 

The SAT data set will be analyzed by using SPSS package, and the results are seated in 

Table (4.1). It shows the estimate values of the model parameters for the data set of the simple 

regression model, and multiple regression model respectively.  For the simple linear regression, 

B 0 is the intercept estimate that equal to 1089. The standard error of estimate, S.E, for B 0 is 

equal to 44.39. It indicate how badly the prediction in the unit of this variable. Also, the P-value 

of the B 0 is equal to 0.0001. It means that there is enough evidence to support the hypothesis that 

B 0 is effect on the model with confidence interval level equal to 95%. 
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 Table (4.1): Estimation of the simple and multiple linear model parameter 

Data 
Types of 

analysis 
Parameters 

Estimation of 

parameters 
S.E P-value 

T
h

e
 S

A
T

 s
e
t 

d
a
ta

 

 

Simple Linear 

regression 

 

B 0 1089  44.39 .0001 

B 1 -20.892     7.328 .006 

Multiple Linear 

regression 

B 0 1035 50.316 .0001 

B 1 -2.851 .215 .0001 

B 2 11.01 4.452 .017 

B 3 - 2.03 2.207 .363 

  

The result of the simple linear fitted regression model using the ML estimation method, 

where x1 is the public school expenditures will be as follows:  

Y = 1089 − 20.892 x1 

  The fitted model of the multiple linear regression will be as follows: 

Y = 1035 - 2.85 x1 + 11.01 x2 - 2.03 x3 

          where 𝑥1 percentage of all eligible students taking the SAT expenditures, x2 public school 
expenditures, and x3 estimated average annual salary of teachers in public elementary and 

secondary school. 

          4.1.3 The comparative criteria of the SAT data set 

In linear regression model, the multiple R-Squared and adjusted R-squared criterion are 

used to explain how the independent variables interpret the model. Table (4.2) has the coefficient 

of determination in R-Square for the simple linear regression, R² equals 0.145 which means that 

14% of the total variation in Y can be explained by the explanatory variable x1 and  the other 

86% remains unexplained. On the other hand, the adjusted R-square in multiple linear regression 

equals0.811 which means that 81% of the total variation in y can be explained by the explanatory 

variables X1, X2, X3 , where the other 19% remains unexplained. 

Table (4.2): The coefficient of determination of The SAT set data 

The SAT set data 

  R-Squared of simple 

regression model 

Adjusted R-Squared of 

the multiple regression 

model 

0.145 0.811 
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 Figure (4.2) shows the scatterplot for the fitted model of the simple regression model of 

the first data set. It reveals a decreasing relationship between the prediction values (dependent 

variable) , and the public school expenditures (independent variable). 

 
Figure(4.2): Scatterplot of the fitted simple regression model 

 Figure (4.3) shows the scatterplot for the residual of the multiple regression model.  It has 

the U-shape, that means the polynomial term or the logarithmic transformation will produce a 

best fitting nonlinear regression equation. 

 

Figure(4.3): Scatterplot for the residual of the multiple regression model 
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4.2 The Coronary Heart Disease data set 

        The second data set, coronary heart disease data set, collected from the Hosmer and 

Lemeshow (2000) of 100 subjects to detected evidence of significant coronary heart disease 

(CHD). The data in Table (A. 2) in the appendix lists age in years (AGE) in the first column, and 

presence or absence of evidence of significant coronary heart disease (CHD) in the second 

column. Also, the table contains an age group variable (AGE in groups)in the third column that 

suggests groups. In the fourth column, the percent of CHD. The outcome (dependent) variable is 

(CHD), which is binary and coded with a value (0) to indicate CHD is absent, and (1) to indicate 

the present of the disease in the individual. The study is interested on exploring the relationship 

between age and the presence or absence of CHD.  

4.2.1 Descriptive of the coronary heart disease data set 

In the coronary heart disease data set, scatterplot of the outcome (CHD) versus the independent 

variable (AGE) where plotted and described in Figure (4.4) that shows the nature and strength of 

the  relationship between the outcome and the independent variable. The scatterplot shows all 

points fall on approximately two parallel lines representing the absence of CHD (y=0) and the 

presence of CHD (y=1). It does not provide clear picture of the relationship between CHD and 

age. Another problem is the variability in CHD at all ages is large. This makes it difficult to 

describe that relationship between age and CHD.  

 
Figure(4.4): Scatterplot of the coronary heart disease data set 

         In Figure (4.5) solve the problem by using categories of the age group variable (AGE) 

using eight categories. For each age group, the frequency of occurrence of each outcome as the 

mean (or proportion with CHD) is present.  
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Figure(4.5): Scatterplot of the categories of the coronary heart disease data set 

4.2.2 The estimation of the logistic model parameters of the coronary heart disease 

data set 

The coronary heart disease data set will be analyzed by using SPSS package, and the results are seated in 

Table (4.3). It shows the estimate values of the logistic regression model parameters for the data set. The 

B 0 is the intercept estimate which equals to -5.309. The standard error of estimate S.E, for B 0 equals to 

1.134. It indicates badly prediction in this variable. Also, the P-value of the B 0 is equal to 0.0001. It 

means, there is enough evidence to support the hypothesis that B 0 is effect on the model with confidence 

interval level equal to 95%, and Exp(B)  is equal 1.116.  It is used to model a relationship in which a 

constant change in the independent variable gives the same proportional change (i.e. percentage increase 

or decrease) in the dependent variable and named the odds.  

Table (4.3): Estimation of the binary logistic regression model parameters 

th
e
 c

o
r
o
n

a
r
y
 h

e
a
r
t 

d
is

e
a
se

 d
a
ta

 s
e
t  

 

Logistic 

regression 

 

 

Parameters 
Estimation of 

parameters 
S.E P-value Exp(B) 

B 0 -5.309 1.134 .0001 1.117 

B 1 0.111 0.024 0.0001 0.005 

The logistic regression model of the data set will be as follows : 

π  x =
e−5.309+0.111×AGE

1 + e−5.309+0.111×AGE  

 

       Table (4.3) shows the estimation of the parameters B 0 and B 1 as -5.309 and 0.111 respectively. The 

estimation values distracted from SPSS Package and using the ML estimation method. Since B 1 =
 0.111> 0, the estimated probability of CHD increases as AGE level increases.If AGE changes by one 

unit, then the odds change multiplicatively by 1.117, where  

𝑜𝑑𝑑𝑠 =
π  x 

1 − π  x 
= exp −5.309 + 0.111 × AGE ; 
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= exp −5.903 ∗ exp 0.111 × AGE ; 

And, 

logit π  x  = −5.309 + 0.111 × AGE. 

4.2.3  The comparative criteria of the coronary heart disease data set 

In logistic regression model, the criteria Cox and Snell R-Squared can be interpreted like multiple 

R-Squared, in Table (4.5) the coefficient of determination using Cox and Snell, R-Squared equals 0.254 

and 25.4%, the outcome variable y can be explained by the relationship between Y and  predictor .  

Table (4.4): The coefficient of determination of the coronary heart disease data set 

The coronary heart disease data set 

Cox and Snell R-Square 

.2540 

 

Figure (4.6) shows the scatterplot for the fitted model of the logistic regression model of the 

coronary heart disease data set. The shape of Figure (4.6) is S-shape, When β > 0, π(x) increases as x 

increases. 

 

Figure (4.6): Scatterplot of the fitted binary logistic regression model  

 

5. Conclusions and Recommendations 

There are many types of regression analysis models. This research interested in comparing two 

frequently use linear regression analysis models and one of common use model  in non-linear regression 

analysis models. The linear regression analysis models are simple linear regression and multiple linear 

regression models. The non-linear regression analysis is the logistic regression model. The linear 

regression models are applied on a suggested data set extracted from the 1997 Digest of Education 

Statistics of 50 subjects. This case analyze the linear relationship between public school expenditures, and 

academic performance as measured by the SAT. The second data set collected from the Hosmer and 

Lemeshow (2000) of 100 subjects to detected evidence of significant coronary heart disease (CHD).  
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The regression models of the two data sets are distracted using two estimating techniques for 

estimating the parameters of the suggested models, the maximum likelihood estimation, and least square 

estimation method. Also, some criteria for evaluation models are reviewed and applied, the Pearson Chi-

Square statistic, the Deviance Residual statistic, the Wald test, Cox and Snell R-Square. The results show 

that it is very important to graph data set to decide which type of models suitable to use. Also, if the 

dependent variable is binary or categorical the logistic model is the suitable use model to describe and 

analyze the data. It is very important to use suitable evaluating criterion to determine which strong 

explanatory variable that explain and associate the relationship and also determining the suitable model 

can be used. It is suitable to try using the Bayesian approach for estimating regression parameters and 

applying regression models in solving experimental design problems. There are alternative models can be 

used with categorical data than the logistic regression model 

 

References: 

[1]  Bates, D., and Watts, D. (1988). Nonlinear Regression Analysis and Its Application. The United 

States of America, John Wiley & Sons, Inc. 

[2]  Chatterjee, S., and Hadi, A. (2006). Regression Analysis by Example. The United States of America, 

John Wiley & Sons, Inc. 

[3]  Cox, D., and Snell, E. (1989). Analysis of Binary Data. London, Chapman & Hall, Inc. 

[4]  Frank, P., Weil, R., Wager, M., and Hughes, C. (2007). Litigation Services Handbook: The Role of 

The Financial Expert. Canada, John Wiley & Sons, Inc. 

[5]  Hosmer, D., and Lemeshow, S. (2000). Applied Logistic Regression. Canada, John Wiley & Sons, 

Inc.  

[6]  Hutcheson, G., and Moutinho, L. (2011). Ordinary least square regression. The SAGE Dictionary of 

Quantitative Management Research, PP. 224-228 

[7]  Kuss, O. (2002). Global Goodness-of-Fit Tests in Logistic Regression with Sparse Data. Germany, 

John Wiley & Sons, Ltd. 

[8]  Pohlmann, J., and Leitner, D. (2003). A Comparison of ordinary least squares and  logistic regression. 

Ohio Journal of Science, vol.103, no.5, pp.118-125. 

[9]  Raghavendra, B.K., and Srivatsa, S.K.  (2011). Evaluation of logistic regression and neural network 

model with sensitivity analysis on medical datasets. International Journal of Computer Science and 

Security, vol.5, no.5, pp.504-511. 

[10] Ratkowsky, D. (1983).  Nonlinear regression Model: A unified Practical approach. New York,  

Marcel Dekker, Inc. 

[11] Seber, G. (1977). Linear Regression Analysis. Canada, John Wiley & Sons, Inc. 

 

List of Sites 

Baguley, T. (2012). Pseudo-R2 and Related Measures. Online Supplement 4 to serious stats:  

A guide to advanced statistics for the behavioral sciences.http://www.palgrave.com/psychology/ Baguley 

/students/supplements/9780230_577183_04_sup04.pdf [Accessed: December 9,2012] 

Dayton, C.M. (1992).Logistic Regression Analysis.http:// bus.utk.edu /stat /datamining / 

Logistic%20Regression%20Analysis%20(Dayton). pdf [Accessed: November 12,2012]. 

http://www/


    

Journal of Progressive Research in Mathematics(JPRM)                                                                               

                                                                                    ISSN: 2395-0218   

 
Volume 12, Issue 4  available at www.scitecresearch.com/journals/index.php/jprm                                                              2053|       

 

 

Appendix 

Table (A.1): The SAT Data Set 

Total 

sat 
Sat2 Sat1 Taking Salary teacher 

expenditure 

 
State 

1029.0 538.0 491.0 8.0 31.144 17.2 4.405 "Alabama" 

934.0 489.0 445.0 47.0 47.951 17.6 8.963 "Alaska" 

944.0 496.0 448.0 27.0 32.175 19.3 4.778 "Arizona" 

1005.0 523.0 482.0 6.0 28.934 17.1 4.459 "Arkansas 

902.0 485.0 417.0 45.0 41.078 24.0 4.992 "Californ 

980.0 518.0 462.0 29.0 34.571 18.4 5.443 "Colorado 

908.0 477.0 431.0 81.0 50.045 14.4 8.817 "Connecti 

897.0 468.0 429.0 68.0 39.076 16.6 7.03 "Delaware 

889.0 469.0 420.0 48.0 32.588 19.1 5.718 "Florida" 

854.0 448.0 406.0 65.0 32.291 16.3 5.193 "Georgia" 

889.0 482.0 407.0 57.0 38.518 17.9 6.078 "Hawaii" 

979.0 511.0 468.0 15.0 29.783 19.1 4.21 "Idaho" 

1048.0 560.0 488.0 13.0 39.431 17.3 6.136 "Illinois 

882.0 467.0 415.0 58.0 36.785 17.5 5.826 "Indiana" 

1099.0 583.0 516.0 5.0 31.511 15.8 5.483 "Iowa" 

1060.0 557.0 503.0 9.0 34.652 15.1 5.817 "Kansas" 

999.0 522.0 477.0 11.0 32.257 17.0 5.217 "Kentucky 

1021.0 535.0 486.0 9.0 26.461 16.8 4.761 "Louisian 

896.0 469.0 427.0 68.0 31.972 13.8 6.428 "Maine" 

909.0 479.0 430.0 64.0 40.661 17.0 7.245 "Maryland 

907.0 477.0 430.0 80.0 40.795 14.8 7.287 "Massachu 

1033.0 549.0 484.0 11.0 41.895 20.1 6.994 "Michigan 

1085.0 579.0 506.0 9.0 35.948 17.5 6.0 "Minnesot 

1036.0 540.0 496.0 4.0 26.818 17.5 4.08 "Mississi 

1045.0 550.0 495.0 9.0 31.189 15.5 5.383 "Missouri 

1009.0 536.0 473.0 21.0 28.785 16.3 5.692 "Montana" 

1050.0 556.0 494.0 9.0 30.922 14.5 5.935 "Nebraska 

917.0 483.0 434.0 30.0 34.836 18.7 5.16 "Nevada" 

935.0 491.0 444.0 70.0 34.72 15.6 5.859 "New Ham 

898.0 478.0 420.0 70.0 46.087 13.8 9.774 "New Jers 

1015.0 530.0 485.0 11.0 28.493 17.2 4.586 "New Mexi 

892.0 473.0 419.0 74.0 47.612 15.2 9.623 "New York 

865.0 454.0 411.0 60.0 30.793 16.2 5.077 "North Ca 

1107.0 592.0 515.0 5.0 26.327 15.3 4.775 "North Da 

975.0 515.0 460.0 23.0 36.802 16.6 6.162 "Ohio" 

1027.0 536.0 491.0 9.0 28.172 15.5 4.845 "Oklahoma 

947.0 499.0 448.0 51.0 38.555 19.9 6.436 "Oregon" 

880.0 461.0 419.0 70.0 44.51 17.1 7.109 "Pennsylv 

888.0 463.0 425.0 70.0 40.729 14.7 7.469 "Rhode Is 

844.0 443.0 401.0 58.0 30.279 16.4 4.797 "South Ca 

1068.0 563.0 505.0 5.0 25.994 14.4 4.775 "South Da 

1040.0 543.0 497.0 12.0 32.477 18.6 4.388 "Tennesse 

893.0 474.0 419.0 47.0 31.223 15.7 5.222 "Texas" 

1076.0 563.0 513.0 4.0 29.082 24.3 3.656 "Utah" 
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901.0 472.0 429.0 68.0 35.406 13.8 6.75 "Vermont" 

896.0 468.0 428.0 65.0 33.987 14.6 5.327 "Virginia 

937.0 494.0 443.0 48.0 36.151 20.2 5.906 "Washingt 

932.0 484.0 448.0 17.0 31.944 14.8 6.107 "West Vir 

1073.0 572.0 501.0 9.0 37.746 15.9 6.93 "Wisconsi 

1001.0 525.0 476.0 10.0 31.285 14.9 6.16 "Wyoming" 

1029.0 538.0 491.0 8.0 31.144 17.2 4.405 "Alabama" 

 

 

Table (A.2): The Coronary Heart Disease data set 

 

AGE CHD AGE in groups Percent with CHD 

20.0 0.0 1.0 

0.1 

23.0 0.0 1.0 

24.0 0.0 1.0 

25.0 0.0 1.0 

25.0 1.0 1.0 

26.0 0.0 1.0 

26.0 0.0 1.0 

28.0 0.0 1.0 

28.0 0.0 1.0 

29.0 0.0 1.0 

30.0 0.0 2.0 

0.13 

30.0 0.0 2.0 

30.0 0.0 2.0 

30.0 0.0 2.0 

30.0 0.0 2.0 

30.0 1.0 2.0 

32.0 0.0 2.0 

32.0 0.0 2.0 

33.0 0.0 2.0 

33.0 0.0 2.0 

34.0 0.0 2.0 

34.0 0.0 2.0 

34.0 1.0 2.0 

34.0 0.0 2.0 

34.0 0.0 2.0 

35.0 0.0 3.0 

0.25 

35.0 0.0 3.0 

36.0 0.0 3.0 

36.0 1.0 3.0 

36.0 0.0 3.0 

37.0 0.0 3.0 

37.0 1.0 3.0 

37.0 0.0 3.0 

38.0 0.0 3.0 

38.0 0.0 3.0 

39.0 0.0 3.0 

39.0 1.0 3.0 
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40.0 0.0 4.0 

0.33 

40.0 1.0 4.0 

41.0 0.0 4.0 

41.0 0.0 4.0 

42.0 0.0 4.0 

42.0 0.0 4.0 

42.0 0.0 4.0 

42.0 1.0 4.0 

43.0 0.0 4.0 

43.0 0.0 4.0 

43.0 1.0 4.0 

44.0 0.0 4.0 

44.0 0.0 4.0 

44.0 1.0 4.0 

44.0 1.0 4.0 

45.0 0.0 5.0 

0.46 

45.0 1.0 5.0 

46.0 0.0 5.0 

46.0 1.0 5.0 

47.0 0.0 5.0 

47.0 0.0 5.0 

47.0 1.0 5.0 

48.0 0.0 5.0 

48.0 1.0 5.0 

48.0 1.0 5.0 

49.0 0.0 5.0 

49.0 0.0 5.0 

49.0 1.0 5.0 

50.0 0.0 6.0 

0.62 

50.0 1.0 6.0 

51.0 0.0 6.0 

52.0 0.0 6.0 

52.0 1.0 6.0 

53.0 1.0 6.0 

53.0 1.0 6.0 

54.0 1.0 6.0 

55.0 0.0 7.0 

0.76 

55.0 1.0 7.0 

55.0 1.0 7.0 

56.0 1.0 7.0 

56.0 1.0 7.0 

56.0 1.0 7.0 

57.0 0.0 7.0 

57.0 0.0 7.0 

57.0 1.0 7.0 

57.0 1.0 7.0 

57.0 1.0 7.0 

57.0 1.0 7.0 

58.0 0.0 7.0 
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58.0 1.0 7.0  

58.0 1.0 7.0 

59.0 1.0 7.0 

59.0 1.0 7.0 

60.0 0.0 8.0 

0.8 

60.0 1.0 8.0 

61.0 1.0 8.0 

62.0 1.0 8.0 

62.0 1.0 8.0 

63.0 1.0 8.0 

64.0 0.0 8.0 

64.0 1.0 8.0 

65.0 1.0 8.0 

69.0 1.0 8.0 

 

 


