

Volume 12, Issue 4

Published online: November 01, 2017

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

Some results on extended b-metric spaces and Pompeiu-Hausdorff metric.

Ledia Subashi¹, Nertila Gjini² ¹Department of Mathematics, Faculty of Natural Sciences, University of Tirana. ²University of New York Tirana.

Abstract

In this paper we will show some new results about extended b- metric space. Given an extended b-metric space (X, d_{θ}) , we may define a new extended b- metric space with Pompeiu- Hausdorff metric H on the set H(X) of the collection of all nonempty compact subsets of X. We will show that if (X, d_{θ}) is a complete extended b- metric space then the Hausdorff extended b-metric space (H(X), H) is also complete.

Keywords: Extended b- metric space; Pompeiu-Hausdorff metric; Complete Spaces.

1. Introduction

The Pompeiu Hausdorff distance measures the distance between subsets of a metric space. It was initiated by D. Pompeiu in [6]. Further Felix Hausdorff [7] studies the notion of set distance, in the natural setting of metric spaces and made a small modification. Informally it gives the largest length out of the set of all distances between each point of a set to the closest point of the second set. It is well known that given any metric space, the Pompeiu Hausdorff distance defines respectively a metric on the space of all nonempty compact subsets of the metric space. The idea of generalizing metric spaces into b-metric spaces was initiated from the works of Bourbaki [4], Czerwik [5.] In [1] the idea of b-metric space was generalized further by introducing the concept of extended b-metric space. In this paper we will extend the Pompeiu Hausdorff metric in an extended b- metric space.

Definition 1.1. [1] Let X be a nonempty set and $\theta: X \times X \to [1, +\infty[$. A function $d_{\theta}: X \times X \to [0, +\infty[$ is called an **extended b-metric** if for all $x, y, z \in X$ it satisfies

1. $d_{\theta}(x, y) = 0 \Leftrightarrow x = y$

2. $d_{\theta}(x, y) = d_{\theta}(y, x)$

3. $d_{\theta}(x, z) \le \theta(x, z) \left[d_{\theta}(x, y) + d_{\theta}(y, z) \right]$

It is obvious that the class of extended b-metric spaces is larger than b-metric spaces, because if $\theta(x, y) = b$, for $b \ge 1$ then we obtain the definition of a b-metric space.

Definition 1.2. [1] Let (X, d_{θ}) be an extended b-metric space.

1.A sequence $\{x_n\}$ in X is said to converge to $x \in X$, if for every $\mathcal{E} > 0$ there exist $N = N(\mathcal{E}) \in \mathbb{N}$ such that $d_{\theta}(x_n, x) < \mathcal{E}$ for all $n \ge N$.

2. A sequence $\{x_n\}$ in X is said to be Cauchy, if for every $\varepsilon > 0$ there exist $N = N(\varepsilon) \in \mathbb{N}$ such that $d_{\theta}(x_n, x_m) < \varepsilon$ for all $n, m \ge N$.

3. An extended b-metric space (X, d_{θ}) is complete if every Cauchy sequence in X is convergent.

Denote $B(a,r) = \{x \in X; d_{\theta}(x,a) < r\}$ and $B[a,r] = \{x \in X; d_{\theta}(x,a) \le r\}$. We call them respectively the open ball and the closed ball.

Definition 1.3. Let (X, d_{θ}) be an extended b-metric space. A subset A of X is called open if for any $a \in A$, it exists $\varepsilon > 0$, such that $B(a, r) \subset A$. A subset of B of X is called closed if for any sequence $\{x_n\}$, such that $\lim_{n \to \infty} x_n = x$ and $x_n \in B$ for all $n \in \mathbb{N}$, then $x \in B$.

In a b-metric space (X, d) are well known the following results

1. d_{θ} is not necessarily continuous in each variable

2. An open ball is not necessarily an open set.

In an extended b- metric space (X, d_{θ}) we can say the same thing, since every b- metric space is an extended bmetric space.

Lemma 1.1.[2] Let (X, d_{θ}) be an extended b-metric space. If d_{θ} is continous in one variable then d_{θ} is continous in the other variable.

Lemma 1.2.[2] Let (X, d_{θ}) be an extended b-metric space. If d_{θ} is continuous in one variable then for each $a \in X$ and r > 0 we have

- 1. B(a,r) is open
- 2. B[a, r] is closed

Definition 1.4: Let (X, d_{θ}) be an extended b-metric space. A subset A of X is called

1. compact if and only if for every sequence of elements of A there exists a subsequence that converges to an element of A.

2. bounded if and only if $\delta(A) = \sup\{d_{\theta}(x, y) : x, y \in A\} < \infty$.

3. totally bounded if and only if for each $\varepsilon > 0$ there exists a finite collection of open balls $B(x_i, \varepsilon)$ such that $A \subseteq \bigcup_{i=1}^n B(x_i, \varepsilon)$.

Denote $d_{\theta}(x,A) = \inf\{d_{\theta}(x,a) : a \in A\}$ and H(X) the collection of all nonempty compact subsets of X.

Lemma 1.3. Let (X, d_{θ}) be an extended b-metric space where d_{θ} is a continuous function in one variable.

Let $x \in X$ and $A \in H(X)$ then there exist $a_x \in A$ such that $d_{\theta}(x, A) = d_{\theta}(x, a_x)$.

Proof: By definition of an infinum we can let $\{a_n\}$ be a sequence in A such that

$$d_{\theta}(x,A) \leq d_{\theta}(x,a_n) < d_{\theta}(x,A) + \frac{1}{n} .$$

Since A is a compact set then there exist a subsequence $\{a_{n_k}\}$ of $\{a_n\}$ that converges to an element $a_x \in A$. Then we get

$$d_{\theta}(x,A) \le d_{\theta}(x,a_{n_k}) < d_{\theta}(x,A) + \frac{1}{n_k} \quad (1)$$

By the continuity of d_{θ} it follows that $\lim_{n_k \to \infty} d_{\theta}(x, a_{n_k}) = d_{\theta}(x, a_x)$. On taking limit as $n_k \to \infty$ in (1) we obtain

$$d_{\theta}(x,A) \le d_{\theta}(x,a_x) \le d_{\theta}(x,A).$$

Lemma 1.4. Let (X, d_{θ}) be a complete extended b-metric space and A a closed subset of X then the set A is complete

Proof: Is straightforward.

Lemma 1.5 (X, d_{θ}) is a compact space if and only if it is a complete extended b-metric space and totally bounded.

Proof: The proof is analogus to the case where (X, d_{θ}) is a metric space. The reader may find further details in [4] or in [7]

Proposition 1.1. Let (X, d_{θ}) be an extended b-metric space where $\theta: X \times X \to [1, +\infty[$ is a bounded function (i.e., there exist s > 1 such that for all $(x, y) \in X \times X$, $\theta(x, y) \leq s$). If $\{x_k\}$ is a sequence in (X, d_{θ}) with the property that $d_{\theta}(x_k, x_{k+1}) < \frac{1}{(s+1)^k}$ for all k, then $\{x_k\}$ is a Cauchy sequence.

Proof: Let $\varepsilon > 0$ and choose positive integer N > 1 such that $\left(\frac{s}{s+1}\right)^{N-1} < \frac{\varepsilon}{2}$. Then for all $n > m \ge N$ we find that

$$\begin{split} &d_{\theta}(x_{m},x_{n}) \leq sd_{\theta}(x_{m},x_{m+1}) + s^{2}d_{\theta}(x_{m+1},x_{m+2}) + \dots + s^{n-m-1}d_{\theta}(x_{n-2},x_{n-1}) + s^{n-m-1}d_{\theta}(x_{n-1},x_{n}) \\ &< s\frac{1}{(s+1)^{m}} + s^{2}\frac{1}{(s+1)^{m+1}} + \dots + s^{n-m-1}\frac{1}{(s+1)^{n-2}} + s^{n-m-1}\frac{1}{(s+1)^{n-1}} = \frac{s}{(s+1)^{m-1}} + \left(\frac{s}{s+1}\right)^{n-1}\frac{1}{s^{m}} \\ &< \frac{s}{(s+1)^{m-1}} + \left(\frac{s}{s+1}\right)^{n-1} < \left(\frac{s}{s+1}\right)^{m-1} + \left(\frac{s}{s+1}\right)^{n-1} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

It follows that $\{x_k\}$ is a Cauchy sequence.

2. Main Resuls

Definition 2.1. Let (X, d_{θ}) be an extended b-metric space. For A, B \in H(X), let

 $H_{\theta}(A,B) = \max\left\{\sup_{a \in A} (d_{\theta}(a,B)), \sup_{b \in B} (d_{\theta}(b,A))\right\}.$ The mapping H is said to be the Pompeiu-Hausdorff metric

induced by d_{θ} .

Definiton 2.2. For any $A \in H(X)$, and any positive number ε , let $A_{\varepsilon} = \{x \in X : d_{\theta}(x, y) \le \varepsilon, \text{ for some } y \in A\} = \{x \in X : d_{\theta}(x, A) \le \varepsilon\}.$

Journal of Progressive Research in Mathematics(JPRM) ISSN: 2395-0218

Remark 1: Notice that $\sup_{a \in A} (d_{\theta}(a, B)) \leq \varepsilon$ if and only if $A \subset B_{\varepsilon}$. By this last one we can give an equivalent definition for the mapping H as following

$$H_{\theta}(A,B) = \inf \{ \varepsilon : A \subset B_{\varepsilon} \text{ and } B \subset A_{\varepsilon} \}.$$

Proposition 2.1.[2] Let (X, d_{θ}) be an extended b-metric space. For any A,B,C,D sets of H(X) we have

a. $\sup_{a \in A} (d_{\theta}(a, B)) = 0$ if and only if $A \subseteq B$ b. If $B \subseteq C$ then $\sup_{a \in A} (d_{\theta}(a, C)) \leq \sup_{a \in A} (d_{\theta}(a, B))$ c. $H(A \cup B, C \cup D) \leq \max\{H(A, C), H(B, D)\}$

Proposition 2.2.[2]. Let (X, d_{θ}) be an extended b-metric space and CB(X) denote the set of all closed and bounded subsets of X. Then $(CB(X), H_{\theta})$ is an extended b-metric space where the mapping $\theta: CB(X) \times CB(X) \rightarrow [1, +\infty)$ is such that

$$\theta(A, B) = \sup \{ \theta(a, b) : a \in A, b \in B \}$$

Definition 2.3. An extended b-metric space (X, d_{θ}) is complete if every Cauchy sequence must converge to a point in *X*.

In order to show that the space $(H(X), H_{\theta})$ is complete whenever (X, d_{θ}) is complete we will choose an arbitrary Cauchy sequence $\{A_n\}$ in H(X) and show that it converges to some $A \in H(X)$

Let A be the set of all points $x \in X$ such that there is a sequence $\{x_n\}$ that converges to x and $x_n \in A_n$ for all $n \in N$. We will show that A is the desired point of convergence of the sequence $\{A_n\}$.

But first we give some important propositions.

Proposition 2.3. If d_{θ} is continuous then the set A_{ε} is closed for all $A \in H(X)$.

Proof. Let $A \in H(X)$, $\varepsilon > 0$ and x be an arbitrary limit point of A_{ε} . Then there exists a sequence $\{x_n\} \in A_{\varepsilon}$ that converges to x. Since $\{x_n\} \in A_{\varepsilon}$ for all n, by the definition of A_{ε} it follows that $d_{\theta}(x_n, A) \leq \varepsilon$ for all n. By Lemma 1.3 there exist $a_n \in A$ such that $d_{\theta}(x_n, A) = d_{\theta}(x_n, a_n)$. Therefore $d_{\theta}(x_n, a_n) \leq \varepsilon$ for all n. By the compactness of A it follows that each sequence $\{a_n\}$ has a subsequence $\{a_{n_k}\}$ that converges to a point $a \in A$. Also since $\{x_n\}$ converges to x then also its subsequence $\{x_{n_k}\}$ converges to $d_{\theta}(x, a)$. Thus by the continuity of d_{θ} we have that $d_{\theta}(x_{n_k}, a_{n_k})$ converges to $d_{\theta}(x, a)$. Since $\{a_{n_k}\}$ and $\{x_{n_k}\}$ are subsequences of $\{a_n\}$ and $\{x_n\}$ respectively, it follows that $d_{\theta}(x_{n_k}, a_{n_k}) \leq \varepsilon$ for all k. Therefore $d_{\theta}(x, a) \leq \varepsilon$, so $x \in A_{\varepsilon}$. Note that since x was an arbitrary limit point, then A_{ε} is a closed set since it contains all of its limit points.

Proposition 2.4. Let (X, d_{θ}) be an extended b-metric space where $\theta: X \times X \to [1, +\infty[$ is a bounded function by a number s > 1. Let $\{A_n\}$ be a Cauchy sequence in H(X) and let $\{n_k\}$ be an increasing sequence of positive integers. If $\{x_{n_k}\}$ is a Cauchy sequence in X for which $x_{n_k} \in A_{n_k}$, for all k, then there exists a Cauchy sequence $\{a_n\}$ in X such that $a_n \in A_n$, for all n and $a_{n_k} = x_{n_k}$ for all k.

Proof. Let $\{x_{n_k}\}$ be a Cauchy sequence in X for which $x_{n_k} \in A_{n_k}$, for all k. Define $n_0 = 0$. For each n that satisfies $n_{k-1} < n \le n_k$, use Lemma 1.3 to choose $a_n \in A_n$ such that $d_{\theta}(x_{n_k}, A_n) = d_{\theta}(x_{n_k}, a_n)$. Then we find that

$$d_{\theta}(x_{n_{k}}, a_{n}) = d_{\theta}(x_{n_{k}}, A_{n}) \leq \sup_{a \in A_{n_{k}}} \{d_{\theta}(a, A_{n})\} \leq H(A_{n_{k}}, A_{n}).$$

Note that since $x_{n_k} \in A_{n_k}$, then $d_{\theta}(x_{n_k}, a_{n_k}) = d_{\theta}(x_{n_k}, A_{n_k}) = 0$. It follows that $x_{n_k} = a_{n_k}$ for all k. Let $\varepsilon > 0$. Since $\{x_{n_k}\}$ is a Cauchy sequence in X, there exists a positive integer P such that

for all $k, j \ge P$. Since $\{A_n\}$ is a Cauchy sequence in H(X), by definition there exists a positive integer $N \ge n_P$ such that $H_{\theta}(A_n, A_m) < \frac{\mathcal{E}}{(s+2s^2)}$ for all $n, m \ge N$. Suppose that $j, k \ge P$. Then there exists integers $j, k \ge P$ such that $n_{k-1} < n \le n_k$ and $n_{j-1} < m \le n_j$. Note that

$$\begin{aligned} &d_{\theta}(a_{n}, a_{m}) \leq sd_{\theta}(a_{n}, x_{n_{k}}) + s^{2}d_{\theta}(x_{n_{k}}, x_{n_{j}}) + s^{2}d_{\theta}(x_{n_{j}}, a_{m}) \\ &= sd_{\theta}(x_{n_{k}}, A_{n}) + s^{2}d_{\theta}(x_{n_{k}}, x_{n_{j}}) + s^{2}d_{\theta}(x_{n_{j}}, A_{m}) \\ &\leq s\sup\left\{d_{\theta}(a, A_{n}) \middle| a \in A_{n_{k}}\right\} + s^{2}d_{\theta}(x_{n_{k}}, x_{n_{j}}) + s^{2}\sup\left\{d_{\theta}(a, A_{m}) \middle| a \in A_{n_{j}}\right\} \\ &\leq sH(A_{n_{k}}, A_{n}) + s^{2}d_{\theta}(x_{n_{k}}, x_{n_{j}}) + s^{2}H(A_{n_{j}}, A_{m}) \\ &< s\frac{\varepsilon}{(s+2s^{2})} + s^{2}\frac{\varepsilon}{(s+2s^{2})} + s^{2}\frac{\varepsilon}{(s+2s^{2})} = \varepsilon. \end{aligned}$$

Thus $\{a_n\}$ is a Cauchy sequence in X such that $a_n \in A_n$ for all n and $a_{n_k} = x_{n_k}$ for all k.

From now on, the space (X, d_{θ}) is an extended b-metric space where $\theta: X \times X \to [1, +\infty)$ is a bounded function by a number s > 1 and d_{θ} is a continuous function.

In the next Proposition we will show that A is closed and nonempty in order to show that A is in H(X).

Proposition 2.5. Let (X, d_{θ}) be a complete extended b-metric space and let $\{A_n\}$ be a sequence in H(X) and let A be the set of all points $x \in X$ such that there is a sequence $\{x_n\}$ that converges to x and satisfies $x_n \in A_n$ for all n. If $\{A_n\}$ is a Cauchy sequence, then the set A is closed and nonempty.

Proof. At first we will show that A is nonempty. Let $\{A_n\}$ be a Cauchy sequence, thus it exists an integer n_1

such that $H_{\theta}(A_m, A_n) < \frac{1}{s+1}$ for all $m, n \ge n_1$. Similarly there exists an integer $n_2 > n_1$ such that $H_{\theta}(A_m, A_n) < \frac{1}{(s+1)^2}$ for all $m, n \ge n_2$. Continuing this process we have an increasing sequence $\{n_k\}$ such that $H_{\theta}(A_m, A_n) < \frac{1}{(s+1)^k}$ for all $m, n \ge n_k$. Let x_{n_1} be a fixed point in A_{n_1} . By Lemma 1.3 we can choose $x_{n_2} \in A_{n_2}$ such that $d_{\theta}(x_{n_1}, x_{n_2}) = d_{\theta}(x_{n_1}, A_{n_2})$. Note that $d_{\theta}(x_{n_1}, x_{n_2}) = d_{\theta}(x_{n_1}, A_{n_2}) | a \in A_{n_1} \} \le H_{\theta}(A_{n_1}, A_{n_2}) < \frac{1}{s+1}$.

Simiarly we can choose $x_{n_3} \in A_{n_3}$ such that

$$d_{\theta}(x_{n_2}, x_{n_3}) = d_{\theta}(x_{n_2}, A_{n_3}) \le \sup \left\{ d_{\theta}(a, A_{n_3}) \middle| a \in A_{n_2} \right\} \le H_{\theta}(A_{n_2}, A_{n_3}) < \frac{1}{(s+1)^2}.$$

By continuing this process we are able to obtain a sequence $\{x_{n_k}\}$ where each $x_{n_k} \in A_{n_k}$ for all k and

$$d_{\theta}(x_{n_{k}}, x_{n_{k+1}}) = d_{\theta}(x_{n_{k}}, A_{n_{k+1}}) \leq \sup \left\{ d_{\theta}(a, A_{n_{k+1}}) \middle| a \in A_{n_{k}} \right\} \leq H_{\theta}(A_{n_{k}}, A_{n_{k+1}}) < \frac{1}{(s+1)^{k}}$$

By Proposition 1.1 $\{x_{n_k}\}$ is a Cauchy sequence. Thus, since $\{x_{n_k}\}$ is a Cauchy sequence and $x_{n_k} \in A_{n_k}$ for all k, by Proposition 2.4 there exist a sequence $\{a_n\}$ in X such that $a_n \in A_n$, for all n and $a_{n_k} = x_{n_k}$ for all k. Since X is complete, the Cauchy sequence $\{a_n\}$ converges to a point $a \in X$. Since $a_n \in A_n$, for all n, then by the definition of the set A it follows that $a \in A$. It means that A is nonempty.

Now to prove that A is closed, let a be a limit point of A. Then by the definition of the limit point there exists sequence $y_k \in A \setminus \{a\}$ that converges to a. Since each $y_k \in A$ there exists a sequence $\{a_n^k\}$ such that a_n^k converges to y_k and $a_n^k \in A_n$ for each n. It follows that there exists an integer n_1 such that $x_{n_1} \in A_{n_1}$ and $d_{\theta}(x_{n_1}, y_1) < 1$. Similarly there exist an integer $n_2 > n_1$ and a point $x_{n_2} \in A_{n_2}$ such that $d_{\theta}(x_{n_2}, y_2) < \frac{1}{2}$. By continuing this process we can construct an increasing sequence n_k of integers such that $d_{\theta}(x_{n_k}, y_k) < \frac{1}{k}$ for all k. Therefore ,we have that

$$d_{\theta}(x_{n_{\iota}},a) \leq s(d_{\theta}(x_{n_{\iota}},y_{k})+d_{\theta}(y_{k},a)).$$

Note that by taking limit as $k \to \infty$ to the above inequality it follows that the distance between $\{x_{n_k}\}$ and a converges to zero. Thus $\{x_{n_k}\}$ converges to a. This means that $\{x_{n_k}\}$ is a Cauchy sequence for which $x_{n_k} \in A_{n_k}$ for all k. By Proposition 2.4 there exists a Cauchy sequence $\{a_n\}$ in X such that $a_n \in A_n$, for all n and $a_{n_k} = x_{n_k}$. So it follows that $a \in A$, thus A is closed.

Proposition 2.6. Let $\{A_n\}$ be a sequence of totally bounded sets in X and let A be any subset of X. If for each $\varepsilon > 0$ there exists a positive integer N such that $A \subseteq A_N + \varepsilon$, then A is totally bounded.

Proof. Let $\varepsilon > 0$. Choose a positive integer N such that $A \subseteq A_N + \frac{\varepsilon}{4s^2}$. Since A_N is totally bounded, we can choose a finite set $\{x_i : 1 \le i \le k\}$ where $x_i \in A_N$ such that $A_N \subseteq \bigcup_{i=1}^k B_{d_\theta}(x_i, \frac{\varepsilon}{4s^2})$. Note that for each $a \in A$ from Lemma 1.3 there exists $x \in A_N$ such that $d_\theta(x, a) \le \frac{\varepsilon}{4s^2}$. Furthermore there exists $x_i \in A_N$ such that $d_\theta(x, x_i) \le \frac{\varepsilon}{4s^2}$. So we have that

$$d_{\theta}(a, x_i) \le s(d_{\theta}(a, x) + d_{\theta}(x, x_i)) \le s(\frac{\varepsilon}{4s^2} + \frac{\varepsilon}{4s^2}) = \frac{\varepsilon}{2s}.$$
 (2)

This means that for some i, $B_{d_{\theta}}(x_i, \frac{\varepsilon}{2s}) \cap A \neq \emptyset$. By reordering the x_i 's, we may assume that $B_{d_{\theta}}(x_i, \frac{\varepsilon}{2s}) \cap A \neq \emptyset$ for $1 \le i \le p$ and $B_{d_{\theta}}(x_i, \frac{\varepsilon}{2s}) \cap A = \emptyset$ for i > p. Then for each $1 \le i \le p$, let $y_i \in B_{d_{\theta}}(x_i, \frac{\varepsilon}{2s}) \cap A$. We will show that $A \subseteq \bigcup_{i=1}^p B_{d_{\theta}}(y_i, \varepsilon)$. Let $a \in A$. As we mentioned before there exist x and x_i such that satisfy inequality (2) and $x \in B_{d_{\theta}}(x_i, \frac{\varepsilon}{2s})$. Let $y_i \in B_{d_{\theta}}(x_i, \frac{\varepsilon}{2s}) \cap A$. It follows that

$$d_{\theta}(a, y_i) \le s(d_{\theta}(a, x_i) + d_{\theta}(x_i, y_i)) \le s(\frac{\varepsilon}{2s} + \frac{\varepsilon}{2s}) = \varepsilon$$
.

Finally since for each $a \in A$ we found y_i for some $1 \le i \le p$ such that $a \in B_{d_0}(y_i, \varepsilon)$, it means that A is totally bounded.

Theorem 2.1. Let (X, d_{θ}) be a complete extended b-metric space, then also (H(X), H) is complete.

Proof. Let $\{A_n\}$ be a Cauchy sequence in H(X). By Lemma 1.5 we know that $\{A_n\}$ are totally bounded and complete sets. Define A to be the set of all points $x \in X$ such there is a sequence $\{x_n\}$ that converges to x and satisfies $x_n \in A_n$ for all n. We need to show that $A \in H(X)$ and $\{A_n\}$ converges to A. By Proposition 2.5, the set A is closed and nonempty. Let $\varepsilon > 0$. Since $\{A_n\}$ is Cauchy then there exists a positive integer N such that $H_{\theta}(A_n, A_m) < \varepsilon$ for all $m, n \ge N$. By Remark 1 then $A_m \subseteq (A_n)_{\varepsilon}$ for all $m, n \ge N$. Now we will show that $A \subseteq (A_n)_{\varepsilon}$ for all $n \ge N$. Fix $n \ge N$ and let $a \in A$. By the definition of the set A there exists a sequence $\{x_i\}$ such that $x_i \in A_i$ for all i and $\{x_i\}$ converges to a. By Proposition 2.3 the set $(A_n)_{\varepsilon}$ is closed. Since

 $x_i \in (A_n)_{\varepsilon}$ for all $i \ge N$, then it follows that $a \in (A_n)_{\varepsilon}$. This means that $A \subseteq (A_n)_{\varepsilon}$. By Proposition 2.6, the set A is totally bounded. Furthermore by Lemma 1.4 the set A is complete. Finally since it is totally bounded and complete it is compact. Thus we proved that $A \in H(X)$. Now to prove that $\{A_n\}$ converges to A let $\varepsilon > 0$. We must prove that there exists a positive integer N such that $H_{\theta}(A_n, A) < \varepsilon$ for all $n \ge N$. By Remark 1 we need to show that $A \subseteq (A_n)_{\varepsilon}$ and $A_n \subseteq A_{\varepsilon}$. But from the first part of our proof we know that there exists N such that $A \subseteq (A_n)_{\varepsilon}$ for all $n \ge N$. Now to prove that $A_n \subseteq A_{\varepsilon}$, let $y \in A_n$ and let $\varepsilon > 0$. Let $\varepsilon_1 = \frac{\varepsilon}{s+1}$. We must prove that there exist $a \in A$ such that $d_{\theta}(y, a) < \varepsilon$. Since $\{A_n\}$ is a Cauchy sequence we can choose a positive integer N such that $H_{\theta}(A_m, A_n) < \varepsilon_1$ for all $m, n > n_i$ and $n_1 > N$. Note that by using Lemma 1.3 and the fact that $H_{\theta}(A_m, A_n) < \frac{\varepsilon_1}{(s+1)^{i+1}}$ for all $m, n > n_i$ and $n_1 > N$. Note that by using $A_n \subseteq (A_{n_2})_{\frac{\varepsilon_1}{(s+1)^2}}$, then there exist $x_{n_1} \in A_{n_1}$ such that $d_{\theta}(y, x_{n_1}) \leq \frac{\varepsilon_1}{s+1}$. Also since $A_n \subseteq (A_{n_2})_{\frac{\varepsilon_1}{(s+1)^2}}$, then there exist $x_{n_2} \in A_{n_2}$ such that $d_{\theta}(x_{n_1}, x_{n_2}) \leq \frac{\varepsilon_1}{(s+1)^2}$. Continuing this process we can choose a sequence $\{x_{n_1}\}$ such

that $x_{n_i} \in A_{n_i}$ for all positive integers i and $d_{\theta}(x_{n_i}, x_{n_{i+1}}) \leq \frac{\varepsilon_1}{(s+1)^{i+1}}$. By Proposition 1.1 we know that $\{x_{n_i}\}$ is a Cauchy sequence. Since (X, d_{θ}) is a complete extended b-metric space then the sequence $\{x_{n_i}\}$ is also a convergent sequence. So there exist $a \in X$ such that x_{n_i} converges to a. By Proposition 2.4 we find that there exist a sequence $\{y_n\}$ such that converges to a, $y_n \in A_n$ for all n and $y_{n_i} = x_{n_i}$. This means that $a \in A$. Furthermore we notice that

$$\begin{split} d_{\theta}(y, x_{n_{i}}) &\leq d_{\theta}(y, x_{n_{1}}) + d_{\theta}(x_{n_{1}}, x_{n_{2}}) + d_{\theta}(x_{n_{2}}, x_{n_{3}}) + \dots + d_{\theta}(x_{n_{i-1}}, x_{n_{i}}) \\ &\leq \frac{s\varepsilon_{1}}{s+1} + \frac{s^{2}\varepsilon_{1}}{(s+1)^{2}} + \frac{s^{3}\varepsilon_{1}}{(s+1)^{3}} + \dots + \frac{s^{i-1}\varepsilon_{1}}{(s+1)^{i-1}} + \frac{s^{i-1}\varepsilon_{1}}{(s+1)^{i}} \\ &= \varepsilon_{1} \left[\frac{\frac{s}{s+1} \left(1 - \left(\frac{s}{s+1}\right)^{i-1} \right)}{1 - \frac{s}{s+1}} \right] + \frac{s^{i-1}\varepsilon_{1}}{(s+1)^{i}} < \frac{\varepsilon_{1} \frac{s}{s+1}}{1 - \frac{s}{s+1}} + \frac{s^{i}\varepsilon_{1}}{(s+1)^{i}} \\ &< \varepsilon_{1}s + \varepsilon_{1} = \varepsilon_{1}(s+1) = \frac{\varepsilon}{s+1}(s+1) = \varepsilon. \end{split}$$

By using the fact that $d_{\theta}(y, x_{n_i}) < \varepsilon$ for all i and d_{θ} is a continous function, it follows that $d_{\theta}(y, a) < \varepsilon$, thus $y \in A_{\varepsilon}$. Therefore we know that there exists N such that $A_n \subseteq A_{\varepsilon}$ for all $n \ge N$. So we have that $H_{\theta}(A_n, A) < \varepsilon$ for all $n \ge N$, meaning that $\{A_n\}$ converges to $A \in H(X)$. This completes the proof.

2028

References

- [1] T. Kamran, M. Samreen, Q. UL Ain (2017). A generalization of b-metric space and some fixed point theorems. MDPI *Mathematics Journal*, 5, 19, 2017 doi:<u>10.3390/math5020019</u>
- [2] Subashi, L. (2017). Some topological properties of extended b-metric space, Proceedings of The 5th International Virtual Conference on Advanced Scientific Results (SCIECONF-2017), Vol. 5, pg 164-167. Zilina, Slovakia. doi: 10.18638/scieconf.2017.5.1.451
- [3] Bourbaki, N. (1974) Topologie Generale; Herman: Paris, France, 1974.
- [4] Czerwik, S. (1993). Contraction mappings in b-metric spaces. (pp 5–11). Acta Math. Inform. Univ. Ostra. 1.
- [5] D. Pompeiu (1905). Sur la continuite' des fonctions de variables complexes (These). Gauthier- Villars, Paris, ;Ann.Fac.Sci.deToulouse 7:264-315.
- [6] F. Hausdorff (1914). Grunclzuege der Mengenlehre. Viet, Leipzig.
- [7] <u>https://www.math.wisc.edu/~seeger/522/c13.pd.</u>