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Abstract  

In this paper, consideration is given to the assessment of the availability of long-term memory in a time 
series with variable coefficients that depend on the Markov chain or the continuous Markov process. In 
the work,the author has succeeded in establishing sufficient conditions for the presence of a long-term 
memory based on a multifractal detrended fluctuation analysis and the Geweke-Porter-Hudak method. 
This is demonstrated with a real example which involved an analysis of the Erste Group for the 
period07.01.2000 – 23.10.2017, as a result of which it was possible to prove that this company.  
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1. Introduction 

In recent years, the issue of long-term memory in a time series has received a lot of attention, as has been 

highlighted by some of the work carried out in this area [4, 12, 14, 20]. The impetus and rationale for these studies 

is due to several key factors: 

1. Time series is one of most popular mathematical models for the description of the real process with 

„memory‟ or dependence of the real process from itself in previous moments of time. „Memory‟ in this 

context can be understood as some dependence for time series 𝑋 in the times 𝑡 and 𝑠. „Memory‟ can be 

described by some distribution between the values of time series or by the autocorrelation function, 𝜌(𝑕).  

2. Time series is a simple and convenient toolbox for evaluating various properties of the real process - 

stationarity, heteroscedasticity, etc. It can also be quite easily used to build forecasting for the real process.  

The basic model for this work will be the ARFIMA (𝑝, 𝑑, 𝑞)
1
 [6, 13] models for the discrete random process 𝑋, 

which is given as follows  

 

Φ 𝐿  1 − 𝐿 𝑑𝑋𝑡 = Θ 𝐿 𝜀𝑡 ,     (1) 
where 𝐿 – lag operator

2
, 𝑑 ∈ (−0.5; 0.5); Φ ∙  and Θ ∙  polynomials with degree 𝑝 and 𝑞 respectively, which 

define autoregressive and moving average „parts‟ of the process 𝑋: 

Φ 𝐿 = 1 − 𝜙1𝐿 −⋯−𝜙𝑝𝐿
𝑝 , 

Θ 𝐿 = 1 + 𝜃1𝐿 + ⋯+ 𝜃𝑞𝐿
𝑞 ; 

 

𝜀𝑡  are independent identically distributed (iid) random variables with mean 0 and variance 𝜍2 [8]. In some studies 

[5, 6], authors have used a stronger assumption about random variables 𝜀𝑡in order to calculate the forecast for the 

time series: 

 

𝜀𝑡~𝑖𝑖𝑑 𝑁 0, 𝜍2 . 
 

                                                             
1Autoregressive fractionally integrated moving average model. 
2
 Lag operator for the random process 𝑋𝑡  is defined as follows: 

𝐿𝑋𝑡 = 𝑋𝑡−1 
for any  𝑡.  
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In order to select optimal models of the different ARFIMA(𝑝, 𝑑, 𝑞) models, the author has used AIC
3
 information 

criteria.   

Unfortunately, despite the relative simplicity of using the time series, there was a sharp change in its 

characteristics(trend, autocorrelation function etc.) at different intervals for the real process𝑋𝑡 . This has been 

referred to in the literature as structural breaks [2, 3] and can be used to provide further reasons such as crises, 

seasonality of the market, etc. Some authors have attempted to explain the presence of the structural breaks 

attributing it to in the time series as result of the change model of the process. Other works have explained these 

phenomena by using some additional exogenous variables. The Hybrid system [1, 18, 19] is one of the most 

popular methods for describing random processes with some exogenous variables. For analysis of the hybrid time 

series, artificial neural networks are commonly used (ANN) [10, 19]. This approach is very useful in the analysis 

and forecasting of the time series, but it does require a large number of observations in the time series for 

constructing the ANN and the speed of this algorithm is very small. In this article,the easiest method of describing 

the time series is considered, which is based on the switching (regime-switching) [7, 11] or hybrid processes.  

The main model of this work is the hybrid (or switching) ARFIMA model, which is described in the form below: 

 

Φmt
 𝐿  1 − 𝐿 𝑑(𝑚 𝑡)𝑋𝑡 = Θmt

 𝐿 𝜀𝑡 ,     (2) 

 
where 𝑚𝑡  – is the homogeneous Markov chain with finite space of the states 𝑆 = {1,2, . . , 𝑁} and the transition 

matrix is 

𝑃 =  

𝑝11𝑝12    …    𝑝1𝑁

𝑝21𝑝22    …    𝑝2𝑁

…
𝑝𝑁1𝑝𝑁2    …    𝑝𝑁𝑁

 . 

Polynomials  Φmt
 𝐿  and Θmt

 𝐿  for the equation (2) have the next form  

Φmt
 𝐿 = 1 − 𝜙1(𝑚𝑡)𝐿 − ⋯−𝜙𝑝(𝑚𝑡)𝐿

𝑝 , 

Θmt
 𝐿 = 1 + 𝜃1 𝑚𝑡 𝐿 + ⋯+ 𝜃𝑞 𝑚𝑡 𝐿

𝑞 . 

 

The result produces a model with new explanatory (exogenous) variables – the Markov chain 𝑚𝑡 . This type of 

system is often called the „hybrid system‟ or the „system with Markov switching‟.  

The main task of the work will be to study the availability of long-term memory [5, 6] in the time series, which is 

described with the help of the hybrid ARFIMA model (2) andto consider concepts of the long term memory effect 

for the time series. Fundamental research [9, 15, 17] about the „long term memory effect‟ of the random process has 

concentratedon the self-similarity of the random processes. To analyze such systems, Harold Edwin Hurst [15] 

proposed the method of the normalized range (𝑅\𝑆 analysis), the key parameter of which is the Hurst exponent (or 

Hurst index),𝐻. The presence of such dependencies is very well tracked precisely in the time series, which is 

constructed with the help of stochastic difference equations. For the time series long-memory effect,one can 

describe this through the autocorrelation function, using the following definition [5]: 

Definition 1. Time series 𝑋𝑡has long-memory behavior, if 

1. 𝑋𝑡  - stationary
4
; 

2. Series  

 |𝜌(𝑕)|

∞

𝑕=1

 

 

are not convergence – sum of series  𝜌 1  ,  𝜌 2  ,… ,  𝜌 𝑕  ,… equals infinity. In other words,the author 

of [6] expounds this formula in the next context  

 

𝑕2𝑑−1𝜌 𝑕 → 𝛾 > 0 

for 𝑕 → ∞. 
 

Using the definition of the [5], one can use next separation of the time series (1) by the presence of the long term 

memory for 𝑋𝑡 : 
 

1. Time series with long memory, if 𝑑 > 0. 

                                                             
3Akaike information criteria.  
4 We assume strong stationarity:   

𝐸𝑋𝑡 = 𝑐𝑜𝑛𝑠𝑡, 𝑐𝑜𝑣 𝑋𝑡 , 𝑋𝑡+𝑠 = 𝑓 𝑠 ,  
where 𝑓(𝑠) – some function.  
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2. Time series with short memory, if 𝑑 < 0. 
3. Uncorrelated time series (time series without memory), if 𝑑 = 0.  

 

Notice, that the AR, MA and ARMA processes belong to the 3
rd

 type with 𝑑 = 0 or = 0.5. 

 

 

2. Hurst index and its estimation  
One of the main methods for estimation of the parameter 𝐻 or 𝑑 is the multifractal detrended fluctuation analysis 

(MFDFA) and the GPH method. These methods are based on different assumptions; therefore, as will be 

demonstrated below, the values of the estimates for the two methods are different using the MFDFA and GPH 

methods respectively. However, the average value (by stationary distribution of the switching process 𝑚𝑡) on the 

interval will be almost the same for both methods. Both methods are briefly described in the next section.  

 

2.1. Multifractal detrended fluctuation analysis (MFDFA) 

 
The DFA method is based on the concept of the stochastic self-similarity of a random process, which was first 

considered by [17] – process 𝑋𝑡called self-similar with index 𝑎, if  for any 𝑡𝑖 ∈ 𝑅1 and 𝑘 > 0: 

 

 𝑋𝑡1
, … , 𝑋𝑡𝑛  ∼ 𝑘−𝑎 𝑋𝑘𝑡1

, … , 𝑋𝑘𝑡𝑛  , 

 

where ∼ means equality by distribution. Notice, that the standard Brownoan motion value of the parameter is 0.5. 

Therefore, this definition is natural for defining the Hurst index for the process.  

 By [16]‟s estimation of the parameter 𝐻 by MFDFA analysis for the time series 𝑋𝑡 , 𝑡 = 1,… , 𝑇one is able to 

achieve this in several steps: 

 

1. Calculate summing process 

𝑌𝑡 =  𝑋𝑖

𝑡

𝑖=1

− 𝑋 , 

where 𝑋 =
1

𝑇
 𝑋𝑖
𝑇
𝑖=1 . 

2. Separate into intervals (i.e.)1,… , 𝑇 by 𝑛 subinterval. In each of the subintervals,one can calculate the trend 

𝑌𝑡
𝑗
  of the degree 𝑝, where 𝑗 = 1,… , 𝑛.It has been observed that several studies assume a sufficient use of 

the first degree trend – 𝑝 = 1. 
3. Calculate value of the fluctuation function: 

𝐹 𝑛, 𝑞 =    
1

𝑛 𝑖
  𝑌𝑡 − 𝑌𝑡

𝑖 
2𝑛 𝑖

𝑗=1
 

𝑞

2𝑛
𝑖=1

𝑞

,    (3) 

 

where 𝑛𝑖  – number of observation of the 𝑌𝑡  in the 𝑖-th interval. For 𝑞 = 2 method of estimation is known 

as thedetrended fluctuation analysis. For 𝑞 = 0, the following formula can be used: 

 

𝐹 𝑛, 0 = exp  log 
1

𝑛𝑖
  𝑌𝑡 − 𝑌𝑡

𝑖 
2

𝑛 𝑖

𝑗=1

 

𝑛

𝑖=1

 . 

 

4. Calculate the value of the fluctuation function for different values 𝑛 and estimate coefficients of the linear 

regression. 

log 𝐹 𝑛, 𝑞  = 𝑎 + 𝑏 ∗ 𝑙𝑜𝑔 𝑛 . 
Using estimation of the parameters 𝑎 and 𝑏one can find an/the estimation of the Hurst exponent 

 

𝐻 = 𝑏 , 

where 𝑏  – is the estimation of the parameter 𝑏. 

 
To simplify the calculations, it is possible to use 𝑞 =  2. In this case, formula (3) can be used to simplify the next 

form: 
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𝐹 𝑛, 2 =   
1

𝑛𝑖
  𝑌𝑡 − 𝑌𝑡

𝑖 
2

𝑛 𝑖

𝑗=1

𝑛

𝑖=1

. 

 

Hence, by MFDFA analysis it is possible to estimate the value of the parameter 𝐻 and the value of the parameter 𝑑 

by the following formula: 

𝑑 = 𝐻 − 0.5. 
 

The GPH method is based on the estimation of the spectral density of the process, which is described in detail in 

[12]. 

 

 

3. Main results  

 
In this section, the author considers the main results of the study: namely, the theorem on the calculation of the 

Hurst index for hybrid time series based on the ergodic theorem for the Markov switching process 𝑚𝑡  and the 

algorithm for calculating the Hurst index for the hybrid time series (2). It is worth pointing out that this algorithm 

contains some assumptions that can affect the final result – the Hurst index,𝐻. Additionally, it should be noted that 

this result is marginal- that is, it can only be used for the time series with a large number of observations. The last 

set of results of this section areforthe theoretical results for the data of the Erste Group,for the period 07.01.2000 to 

23.10.2017 – which consists of 4412 observations. It is also worth mentioning that real data, and not adjusted data 

was used in the study.  

3.1. Main statement  
In this section, the main result concerning the estimation of the Hurst index,𝐻 for the time series (2) is considered. 

The primary task is to obtain the given index from the corresponding indexes 𝐻𝑖  calculated for the fixed states 𝑖 and 

some characteristics of the Markov chain 𝑚𝑡 , 𝑡 ≥ 0. This means by assumption, that it is possible to calculate the 

Hurst indexes 𝐻𝑖  for each state 𝑖 ∈ {1, . . , 𝑁} for the system  

 

𝛷𝑖 𝐿  1 − 𝐿 𝑑(𝑖)𝑋𝑡 = 𝛩𝑖 𝐿 𝜀𝑡 .     (4) 

 

With regards to the Markov chain, the existing stationary distribution 𝜋is assumed – this is the standard assumption 

in the limit theorem with a switching process.  

 

Theorem 1. Let next conditions hold 

1. 𝑚𝑡 , 𝑡 ≥ 0 ergodic Markov chain with finite numbers of possible states  1,… , 𝑁  and stationary distribution  

𝜋 =  𝜋1, … , 𝜋𝑁 . 
2. For each fixed state of the switching Markov process 𝑚𝑡 ≡ 𝑖 ∈ {1,… ,𝑁} for the ARFIMA process (5) 

value of the Hurst index, defined as 𝐻𝑖 . 
3. For any 𝑖 ∈ {1, … ,𝑁} solution of the equation  

𝛷𝑖 𝐿  1 − 𝐿 𝑑(𝑖)

𝛩𝑖 𝑧 
= 0 

satisfy next condition:  𝑧𝑖𝑗  > 1 + 𝜀, where 𝜀 > 0 – some positive constant. 

4. 𝜀𝑡 ∼ 𝑖𝑖𝑑  with mean o and variance 𝜍2. 
Then Hurst index for hybrid time series (2) is calculated using the follow formula: 

𝐻 =  𝐻𝑖𝜋𝑖
𝑁
𝑖=1 .     (5) 

Proof. Firstly,it is noticed that by using assumption 1 of the Theorem, we can derive the next link using the 

following matrix: 

lim
𝑛→∞

𝑃 𝑛 = lim
𝑛→∞

𝑃𝑛 = 

𝜋1  … 𝜋𝑁
𝜋1  … 𝜋𝑁

…
𝜋1  … 𝜋𝑁

 . 

 

Secondly, the MFDFA method value of the Hurst index 𝐻 can be defined for 𝑛which is not particularly large – this 

means that the relationship between the logarithm of the fluctuation function log 𝐹 𝑛, 𝑞   and the logarithm of the 

width of the window 𝑙𝑜𝑔 𝑛 remain almost unchanged after some fixed 𝑛 [16]. Using this fact, it is only possible to 
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consider fixed-length segments of the trajectory of the time series 𝑋𝑡 . By assumption 3 of the theorem, the 

ARFIMA(p,d,q) (2) process can be represented using AR(∞) in the next form: 

𝛷 𝑖 𝐿 𝑋𝑡 = 𝜀𝑡
𝑖 ,       (6) 

where  

𝛷 𝑖 𝐿 = 1 − 𝜙 1
𝑖  𝑚𝑡 𝐿 − ⋯− 𝜙 𝑛

𝑖  𝑚𝑡 𝐿
𝑛 −⋯.  

 

Using opinions about fixed-length segments, AR(∞) can be replaced by AR(n) process, where 𝑛 < ∞. Therefore, 

the infinite AR model (6) is replaced by the next finite model: 

 

Φ 𝑖 𝐿 𝑋𝑡 = 𝜀𝑡
𝑖 , 

where  

Φ 𝑖 𝐿 = 1 − 𝜙 1
𝑖  𝑚𝑡 𝐿 − ⋯−𝜙 𝑛

𝑖  𝑚𝑡 𝐿
𝑛 , 

 

𝑛 is some fixed number for all 𝑖 ∈ {1, … ,𝑁}.  

 

Using this fact, it is relatively easy to check that the random 𝑅𝑛+1 dimensional random process  

𝑌𝑡 =  𝑋𝑡+1, … , 𝑋𝑡+𝑛 ,𝑚𝑡+𝑛 =  𝑌𝑡
1, … , 𝑌𝑡

𝑛+1  
 

is the Markov process, where transition probabilities are dependent from distribution of the 𝜀𝑡 .  
 

Moving on,one can consider the function  

𝑓 𝑌𝑡   =
 log  𝑖 log  𝐹 𝑖,𝑞  𝑛
𝑖=1

 log  𝑖 2𝑛
𝑖=1

= 𝐻𝑚 𝑡+𝑛
,    (7) 

 

where 𝐹 𝑖, 2  is values of the fluctuation function which defined in the (3). Consequently, if one applies Birkhoff`s 

ergodic theorem, the next relationship/link is achieved 

 

lim
𝑘→∞

𝑓 𝑌𝑡 + 𝑓 𝑌𝑡+1 + ⋯+ 𝑓 𝑌𝑡+𝑘 

𝑘
=  𝑓 𝑌𝑡 |𝑌𝑡

𝑛+1 = 𝑖 𝜋𝑖

𝑁

𝑖=1

. 

By rewriting this relationship using values of the Hurst indexes 𝐻𝑖 , this gives 

 

lim
𝑘→∞

𝐻𝑚 𝑡+𝑛
+ 𝐻𝑚 𝑡+𝑛+1 + ⋯+ 𝐻𝑚 𝑡+𝑛+𝑘

𝑘
=  𝐻𝑖𝜋𝑖

𝑁

𝑖=1

. 

 

On the other hand, it is possible to calculate the value of the Hurst index,𝐻 by using MFDFA and as a result of 

using large numbers, this would give 

lim
𝑘→∞

𝐻𝑚 𝑡+𝑛
+ 𝐻𝑚 𝑡+𝑛+1 + ⋯+ 𝐻𝑚 𝑡+𝑛+𝑘

𝑘
= 𝐻. 

 

Hence, the last two last formulas used provide the final proof of theorem 1. 

 

Remark 1.The proof of theorem 1 relies only on the MFDFA method in defining the Hurst exponent,𝐻. There is no 

doubt that this proof of Theorem1 will work for the GPH method as estimation of the parameter 𝐻 in this method is 

also a function of Markov process 𝑌𝑡 . 
 

 

3.2. Algorithm of the estimation 𝑯 
Consider the algorithm for calculating the Hurst index 𝐻 for the time series, which is based on Theorem 1. 

Note that for using this theorem, it is assumed that the time series has a large number of observations. In 

the model example case discussed below, the number of observations is 4412, so this condition is fulfilled. 

On the other hand, this algorithm will propose an approach to the determination of partial ARFIMA 

models (4) for all 𝑖 ∈ {1,… , 𝑁}. 

 

 

Algorithm: 

1. Define a number of the states 𝑁 for the switching Markov process 𝑚𝑡 . In general, the following 

formula is used in order to define this value: 

𝑁 = 𝑙𝑜𝑔 𝑇 , 
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where 𝑇 – is the length of the time series (number of observations in the time series). In the example 

above, in order to promote a better understanding of the dynamic of the time series, we consider 

only𝑁 = 3.  

2. Estimate number 𝐾 for creating 𝑁 ∗ 𝐾 subintervals the time series. In each interval, the Hurst index 

𝐻𝑖 is estimated.  

3. Using values of the 𝐻𝑖 , these intervals are separated by 𝑁 clusters. Notice that for clustering, two 

dimension data is used (𝐻𝑖
𝑀𝐹𝐷𝐹𝐴 , 𝐻𝑖

𝐺𝑃𝐻 ), 𝑖 = 1, … ,𝑁𝐾, where 𝐻𝑖
𝑀𝐹𝐷𝐹𝐴  – is the estimation by MFDFA 

analysis, and 𝐻𝑖
𝐺𝑃𝐻  – is the estimation by the GPH method. 

4. By clustering, elements of the matrix 𝑃 can be estimated. In order to achieve this aim, the number of 

transitions from one cluster to another is calculated.  

5. For the estimation matrix 𝑃 , stationary distribution 𝜋is calculated based on the equation  

 

𝜋𝑃 = 𝜋,

 𝜋𝑖 = 1.

𝑁

𝑖=1

  

6. Calculate values of the 𝐻 by formula (5), where 𝐻𝑖  – is the average value of the Hurst exponent in 

each cluster, obtained in the 2.  

7. For estimation of the models (5), the results of the clustering are utilized. Then, interval with maximal 

for each state 𝑖 ∈ {1,… , 𝑁} are selected for which 𝑚𝑡 = 𝑖. Using this interval, the optimal ARFIMA 

model can be evaluated using AIC criteria. 

 

 

3.3. Real example  
In order to see this example in real life, the study will consider the share price for the Erste Group Bank AG for the 

period 07.01.2000 – 23.10.2017. The data used in the example is unadjusted and has been taken from the seasonal 

component and trend; in other words, it is real data. For this model, the algorithm proposed in the previous 

paragraph will be gradually executed. Therefore, the initial values for the algorithm are: 

 

𝑇 =  4412,𝑁 = 3, 𝐾 = 20.  
 

The dynamic of the share can be seen in Figure 1. From the values of the parameters 𝑁 and 𝐾, 𝑁𝐾 = 60 subinterval 

is produced with width 
𝑇

𝐾𝑁
≈ 73. 

 

In the third step, the estimation of the Hurst index,𝐻𝑖 is considered using the MFDFA and GPH methods 

respectively. The results produce two samples (for each method) of the estimations 𝐻 in each subinterval.  

For step 4 of the process, the next estimation of the transition matrix 𝑃 is produced: 

 

𝑃 =  
0.967      0.033        0   
        0     0.926   0.074
      0           1            0

 . 

 

In step 5, using matrix 𝑃 , it is possible to calculate stationary distribution of the Markov chain 𝑚𝑡 : 

 

𝜋 =  0; 0.931; 0.069 . 
 

As canbe seen from this distribution, the discrete Markov chain will most likely turn into state 2 – the probability of 

this event occurring is 0.931. 

Before step 6, the values of the 𝐻𝑖for the two methods are calculated: 
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Figure 1.Dynamics of the share price for the Erste Group Bank AG for the period 07.01.2000 – 23.10.2017 (daily 

data – 4412 observations) for three states of the Markov chain (black – state 2, red – state 2 and green – state 3).  
 

1. MFDFA method –  0.3975165;  1.3978825;  1.9014966 . 
2. GPH method –  0.4386114;  1.5397136;  0.7953074 . 

As can be observed, these methods produce results for different states of the Markov chain 𝑚𝑡 . Now it is possible to 

complete step 6 of the example, by calculating the Hurst indexes for two methods using formula (5): 

𝐻𝑀𝐹𝐷𝐹𝐴 = 0.3975165 ∗ 0 + 1.3978825 ∗ 0.931 + 1.9014966 ∗ 0.069 = 1.432615, 
𝐻𝐺𝑃𝐻 = 0.4386114 ∗ 0 + 1.5397136 ∗ 0.931 + 0.7953074 ∗ 0.069 = 1.488375. 

 

From the values above, one is able to determine that the results produced are very similar for the two methods. 

Furthermore, it is noted that before the crisis,the value of the Hurst exponent is less than 0.5, which means that the 

share price of the Erste Group Bank AG has a short memory in this period. On the other hand, after the crisis, the 

value of the Hurst index 𝐻 increases. This fact is confirmed by model (2) with an additional exogenous variable in 

the model - the Markov chain 𝑚𝑡 . From an economic point of view, such a change could lead to a sharp change in 

the company's policy and/or a sharp change in the market (in this case the financial market). 

 

4. Conclusion  
In this paper, a new approach was proposed to estimate the Hurst index in the hybrid time series (2) with Markov 

switching. The proof of the main statement is based on the ergodic theorem for the Markov processes. There is no 

doubt that this approach can be extended to more complex processes (semi-Markov processes, semimartingales, 

etc.). As a model example, the dynamics of the stock for the Erste Group Bank AG was considered, resulting in a 

sharp difference between the values of the Hurst index for this company,prior to and following the crisis. For 

estimations of the Hurst index, two methods were used – MFDFA and GPH. The data produced from these methods 

provided very similar results. 
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