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1. Introduction.
In this study, we concern the problem L:

A ,
(1.1) C(y) = —y" + (x_a + ¢ (93}) y=Np(x)y, O<z<m

(Lay) (0) = h y(0) =0
Ay (m)+ Hiy (7)) =y (7) + Hay (7)
where
o<z <a

1.2 ‘) =
( ) P (‘T} {.32’0: < S T

Ae R 1 <a<2,8>0,8+#1 are real numbers, g, (x) is real valued boundary
function in Lo (0,7), A is a spectral parameter.

We denote that in spectral theory, the inverse problem is the usual name for any
problem in which it is required to ascertain the spectral data that will determine a
differential operator uniquely and a method of construction of this operator from the
data. This kind of problem was first formulated and investigated by Ambartsumyan
in 1929 [1]. Since 1946, various forms of the inverse problem have been considered
by numerous authors G. Borg[2], N. Levinson [3], B.M. Levitan [4], etc.and now
there exists an extensive literature on the [6]-[10]. Later, the inverse problems
having specified singularities were considered by a number of authors [5], [19].
21]. The method of spectral mappings is an impressive device for investigating a
profound class of inverse problems not only for Sturm-Liouville operators, but also
for other more complicated classes of operators such as differential operators of
arbitrary orders, differential operators with singularities and others.We apply the
method of spectral mappings to the solution of the inverse problem for the Sturm-
Liouville operator on a finite interval. In the method of spectral mappings we begin
from Cauchy’s integral formula for analytic functions. We apply this theorem in the
complex plane of the spectral parameter for specially constructed analytic functions
having singularity connected with the given spectral characteristics. This permits
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us to reduce the inverse problem to the so-called main equation which iz a linear

equation in a corresponding Banach space of sequences.

In this paper, first it iz mentioned about integral representation for solution
which satisfies certain initial conditions of differential equation generated by singu-
lar Sturm- Liouville operator . properties of spectral characteristics and uniqueness
theorems for solution of inverse problem are discussed. After that we give a deriva-
tion of the main equation and prove 1ts unique solvability.

We define

11—

(Ty)(x) = v — u(x)y where u(z) = Al and let’s write the expression of left

hand side of equation (1.1) as follows:

(1.3)
{(y) = —[(Tay) (2)]' — u (@) (Tay) (x) — u® (2) y () + ¢, (2) ¥ (2) = Ao (2) y ().
2.Representation for the solution
We define
(2.1) vi(z) =y(x) .y2 (z) =y (z) —u(z)y ((z)) = (Tay) ()
l—a
ulz)= A_T_ > and let’s write the expression of left hand side of equation (1.1) as
follows
(2.2)
£(y) = —[(Tay) ()] — u(2) (Tay) (z) — v’ (2) y () + ¢, (2) y (z) = Np(2) y (2) -

Then equation (1.1) reduces to the system;
(2.3) { yiz—y?:u(i‘}yi
' yo + Ap(x)y1 = —u(z) y2 — v (@) y1 + g0 (2) 11

or In matrice from

- f_ u 1 "
(24) ( Y2 ) _( —Vp(z)—ul+q, —u )(y2 )

The entries of the matrice

B ulz) 1
o= (e tioram e )

are functions in L, [0, 7] .

Using the theorem in [22] Naimark (1967), there exists only one solution of
system (2.3) which satisfies the same initial conditions y1 (£) = v1,¥2(§) = va
for each £ € [0.7]. v = {’U1,’U2)T € C? especially the initial conditions 1 (0) =
1,y2 (0) = 2A.

Definition 1. First component of solution which satisfies the initial conditions
Y1 (E) = v (£) = (Tay) (£) = vy of the system (2.3) 15 called as the solution the
equation (1.1) which satisfies the same initial conditions.

[t was obtained in [23] by the successive approximations method that [24] the
following theorem iz true First component of solution which satisfies the initial
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conditions y; (£) = v1,¥2 (£) = (T.y) (£) = v, of the system (2.3) is called as the
solution the equation (1.1) which satisfies the same initial conditions.

It was obtained in [23] by the successive approximations method that [24] the
following theorem is true.

Theorem 1. For every solutions of the problem L which satisfies the initial

canditiﬂm( ;' ) (0) = ( ;1‘ ) .the following expression is true;
2

Forxz >a
B i=)
Y (2,)) = BTew (@) 4 g=eirn™ (=) 4 f K11 (2. t) eMdt
—pt ()

o (. A) =12A8 (,8+eé"“+(x} — Iﬁ_eﬂﬂ_(ﬁc})
4 b {ﬂ?) |:I3+eik,u+{=s) + IIS_E'L\.[J._{IEII]

P‘+{I) pl+|:a.'}
+ f Ko (z,t) e Mdr 4+ A8 f Kos (z.1) et M gt
—utiz) -
We see that
F"+{ﬂ-';| ,bl+(m]|
f |I(1.:_,' (z.8)| dt = Z / |ﬁ'§;‘) (ﬂi‘,t)‘ dt < esol®) _q
—ut(=) —ut ()

8|87 87
= 287, —— —
c max{, T T

and

(=)
c@= [ (& @=-1) [uOF + @ o) +a 0] e
0
1 ——fu{t]d'i‘
(2,7 =1,2) Where, b(z 5[ u? (5) — gy 3}] ds and we get
0
5&+ 1 —ful:t]d!t 3'0- 8- a-
Koo (2.7 (@) = Sou(e) + g8 (@)e = +2b(0) - Tou(w)+ b (a).
st
Kar (.4 () = 50 (2) =¥ (@)
1 1
5 [ 1 4 = 00 ()] Ko (5.7 () s = 5 [ (5) K o7 (5)) s,
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gt 8 —fu{i]dﬁ gt a—
Koo (z,p7 (2)) = '2?(2!;{:5) —u(x)) + 'Eb(a)e a — é?b(a) + Eu(a} -
b(a). m
A Ju(e)at
Kao (ﬂ'f, —n [23) + 0} — K9 {:1}'._ —p I[,’L‘} — [l:] — 1= ea
E 1 T R
) B ] ~ 87A Efu(tjdt
Kas (z, 17 (x) +0)—Kag (z. p~ (z) —0) = m] [u(t)b(t) +u? (t) — g, (t)] e ¢ it

a‘n"éf"},aﬁ‘gf“} €L(0r), ij=12, 65 =1(12}) ut(2) =
Brx—fBa+ap (z)=—Fx+Ba+t+a

Note For 0 < z < a. there are in [16]

3. Properties of the spectrum

In this section, properties of the spectrum of problem L have been given.

Let us denote problem L as L, in the case of A=0and gy (z) =0

When A =0 and gp (z) =0, it 1s easily shown that solution g, (z, A) satisfying
Yo (z, A) —yo (z.A)

21

and

the initial conditions ¢, (0, A) = ( 2 ) iz shown as g (2, A) =

for @ < a

©o1 (z, A) =sin Az
Woa (X, A) = Acos Az

forxz > a

@o1 (2, A) = BT sin Au™ () + B~ sin Au~ ()
Poa (2, A) = AB(BT cos Ap™(x) — 87 cos Au™ (x))
Let Ag(A) be a characteristic function of problem Ly . Then characteristic
equation of problem Lg 15 the form.

A (X) =BT sin Au™ () + 8 sin Ap~ ()

Roots )*fa of this equation are eigenvalues of problem Lg.
Lemmal: Let y.z € D(Lj). Then

W

(Liy,2) = fp(x}f (v)7dz = (v, Lyz) + [1.7] (Ja° + |Fao)
1]

where
471 (157° + [2e0) = [(Te2) (2) ¥ (2) — (Ta) () 2(@) | (157° + [Z40)-
Lemma2:
inf [A) — A,
nEm
separated.
Proof: o
Let us assume that sequence {}.2} has two subsequences {Aip} and {Anp} such

that

= ¢ > 0, ie., roots of characteristic equation Ag(A) = 0 are

~0 ~0
/\g.p #)\'ﬂ.?f'xo —’CO,}\HF — (?3—’-3‘3)

e
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and
~0
An, = An, | =0

Iim
p—0o0

~0
It we use orthogonality of eigenfunctions g, (33, )\gp) and ¢q (55, )\np) of problem
Lo in space Lo (0,7),
m

o

p() (o (2,3, ) 2da

)] [
OQ'.
93)\?1) da "‘/9(93_](590 (x /\ﬂp)}zdw
0
)] [
0

mw
= f P)eo (T A0, ) [P0l As,) = @ (2527, ) | de + [ sin® A} zdz
1]
7 ' ] sin 2A)_a
o ~0 a s 2
:fp[:z:)apo (ﬁ?,)\gp) Po(Ts An,) — Po 93:)‘?1,,) d$+§_To%
L - Ny

0
From representing of function ¢, (,A) , we get that

. 30 0
lim |gq (93,)\%) — ¥ (x,)\np)‘ =0
p—oo

~0
le., as p — 00, ‘:pﬂ (:c, Anp) — ¥ (3:, )‘?;p)

respect to x in the interval [0, 7]. For this reason , if we pass through the limit as

= 0 uniformly converges to zero with

P — o0 then nequality 0 > h 15 obtained.

This contradiction gives to proof of LemmaZ2.

Denote A(A) = (W (z,A),¢(z,A)) , where (y(z),2(z)) = y(z)(Taz)(z) —
(Tay) (z)z (x) . According to Liouville formula , (¥ (z,A),¢ (2, A)) is not depend
on .

Let ¢ (x,A) and ¥ (2, A) be of the equations of (1.1) to have the solution with
mitial conditions ,

2(0.0) =1, (Tag) (0.0) = h (7. A) = A— 1, ¢ (m \) = Hy — Hy\ .

Clearly , for each z , functions (¥ (z, ), ¢ (z,A)) are entire in A and A (A) =
V(g) = -U(w)

Lemma3: Eigenvalues of the problem L are simple that 1s A (An) #0
Proof: Since ¢ (z,\,) and % (z, ) are solutions of equation (1.1) , it is obtained
that

—" (2, A) + [ (2) + qo (2)] ¥ (2,A) = MNp(z)¥(z,))
—¢" (&, An) + [V (@) + G0 (@)] @ (T, M) = Aop (@)@ (@, An)

If first equation 15 multiplied by ¢ (z, Ay, ), second equation 1s multiplied by ¥ (z, A)
and subtracting them side by side and finally integrating over the interval [0, 7],
then the following equality is obtained:

25 (@M e (@A) = (N =A2) p(2) ¥ (m,A) @ (2, An)
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™

(/\2 - /\i) /p(:r:‘]v(:c, )‘}‘P [ﬁ,",/\n)d&: = (U (55’\) P (xl\nD [3_0 + |2+(]}
0

™
Oy = /p (x) ¢? (z, \y) dz is considered , it is obtained that
0

m

fp(xw(x,w(w,An}dxz “A(An) a5 A= Ay

lg’or all z € [0, 7] , we get from existing of constants 7,, which satisfy the equality
U(z, An) = 7,9 (2, A\y) that
Y, = —A(An) -

it is obvious that A (A\,) # 0 . So lemma is proved .

Lemma4: The eigenvalues A, of problem L have the following asymptotic behav-
lour :

dn &
(3.1) A=A + 2 2
AL A

where J,, € {5 and d,, 1s a bounded sequence.
Proof: Denote

T = {A:[A[=[A2]+8,0>0n=0,1,2,..}
Gs = {X:|A=A)|=26,6>0,n=0,1,2,..}

where ¢ 1s sufficiently small positive number . 2 = & + iy including benefiting from
|sin z| = y/sin” z + sinh? y equality , for A € G there |Ag (A)| = |,5+ sin A\pt(7) + B~ sin Ap~ [?TJ|
at+
> %Céellm)\lﬁr(?f}
so that it is C; > 0.
On the other hand , including
pt(z)
(2, A) =B cos Aut (z) + B cosu™ (z) + f Kiq (z,t) cos Atdt
—pt(x)
and
©s (2, X) = —AB (BT sin A (z) — B sin A~ (z))+b () (B7 cos Au™ (z)+8" cospu™ (z))
ut(z) ut(z)
+ / Koq (z,t) cos Atdt — AS ] Koo (z,t) sin Atdt,
—ut(z) —ut(z)
characteristic function of the problem L 1s obtained as
AA)=A=1) gy (mA)+ (AH; — Hs) @, (T, A)
wt(m)
=Ng(A)+ ] Koy (m,T) sin Atdt
—pt(m)

1
— (BB sin At (7)—BB8" sin Au™ (m)+(b(7) + H1) (BT cos Aut(m) + 87 cos Au™ (7))

Y
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pt ()

+ / :}’—{21 (‘J‘T,tj + H{ K4 [W,t}] cos )\tdt}
— ()

1 _ |
+ﬁ{“’ (m) + Ha) (B cos Aut(m) + B cos A~ (7))

wt(m)
+ / :}’—{m (?T,t_] + Ho Ky [T,t}] Ccos )\tdt} = 0.
—pt(m)
Also 1 Erﬂ? (m‘J € Ll (_P«_i_[x)‘ ,[_L+[$J\J 1
pt(m)
lim / Koo (m,t) sin Atdt = 0
[Al—=+4ee
—ut(m)

) C
can be written , we get |[A(A) — Ag ()] < %ellm)\luﬂﬂ
Thus,

A0 (V)] > Cyeltm AT %e"m'\'ﬂﬂ > A A) = Ag (M)

such that n 1s sufficiently large natural number.

[t follows from that for sufficiently large values of m , functions Ag(A) and
[A(A) —Ag(A)] + Ao (A) = A(A) have the same number of zeros counting mul-
tiplicities inside contour T';, according to Rouche’s theorem . That 1s , they have
the theorem (n + 1) number of zeros : Ag, A1,..., An. Analogously , it is shown by
Rouche’s theorem that for sufficiently large values of n , function A (A) has a unique
of zero inside each circle |)\ — )\g| < 4.

Sincle d 1s sufficiently small number , representing of A, = )\g_ + £, 18 acquired

where llm s, =0 .
n—oo

Since numbers A, are zeros of characteristic function A (A),

wt(m)
AAn) =AM +2) = Qg (A +2,) + / Koo (m,t) sin(AD + 2, )tdt
: —pF(m)
; 1.,0 N " aa— 0 Vyr— (o
_m{ﬁlﬁ_l_ b]n[)\n + &.n}[_l+ (?TJ — ISIJS -‘:lll()\n + En 1 (a’lj.l
+(b(m) + Hy) (8% cos(A) + &)t (7) + B cos(A]) + £, (7))
pt ()
+ / (Ko (m,t) + Hy Ky (m,t)] cos(A), + £, )tdt}
—p(m)

1
+—
(A% +2n)28
wh(m)
+ / :B’Q‘[ (?T,ﬁj + Ho K4 (ﬁ,t}] COS()\?t + En _]tdf?}
—pt(m)
=0.
On the other hand .,

Ao (XY +2n) = (A (A2) +0(1))8n.

{(b(7) + Ha) (BF cos(Ap + &n )t () + B~ cos(AD + 2 )it~ (7))
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In that case the equality

pt(m)
(Ao (A2) + om) en + / oo (7, 8) sin (A2 + £, )tdlt
—p+ ()

1 . 40 % —_ . (1] LA
—m{33+ sm[,\n + Eﬂ],‘.l—i— ('J‘T) — B8 Slll()\n + En )l I;’;T‘:l
+ (b (m) + Hy) (B cos(A2 + )t (7) + B cos(A2 + en)p™ (7))

pt(m)
+ / :Brgl (ﬂ',ﬂ + H1 K11 [ﬁ}t:}] COS(A?I + E‘njtdt}
—uF ()
+;{(b () + Ha) (BT cos(Ap, + n )t () + B cos(Ap + en)u™ (7))
(A2 +2,)28 | " ' "
pt(m)
+ ] (Ko (m,t) + HyKqy (7,t)] cos(A) + 2, )tdt} = 0
—pt(m)

15 obtained .
Since function Ag (A,) 1s type of [25] , the number 7, > 0 exists such that for
alln ‘AO (Ag)\ >
If the study [26] (see also [27]) 1s used , then we get that
1] £y
n=—T—-+Vi(n
wrm o
If we use the expression of £, , then
ut ()
Koy (m,t) sin A tdt
—pt(T)
pt ()
Ao (AD) + / tKyo (7,t) cos Aotdt
i ()

{;3’+ sin )\S“u+ (m) — B~ sin A?xﬁ*‘«_ ()

Eﬂw

1
N IR TS
Ao (A7)
b(m) + H,
- o)
. pt(m)
+E f (Ko (m,t) + H1 K11 (,1)] cos Agtdt}.
—ut(m)
Since
[ w(m )
{ / Koo (m,t) sin A0 tdt } € by
)

|-t (m)

(,3+ cos Aot (m) + B cos Ao~ Lﬂ'))

n=1
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They are obtained that

wt ()
Kao (m,t) sin A2 tdt
S = — _Wﬂ}mm  (8n) € Lo,
Ao (A7) + ] t Koo (7,t) cos Al tdt
—pt(m)
n = — ! {,3+ sin )\?1.&+ (T)—B" sin )\2#_(?1',}—#7“?) + Hy (,5"' cos )\2,{14'(?1') + 87 cos )\gp_ [’;T‘J)
Ao (A7) 8
pt(m)
+% f [Koq (m,t) + H1 K41 (m,t)] cos Agtdt}
— ()

(dy) 1s a bounded sequence .

Thus, for the eigenvalues \,, of the problem L , asymptotic formula (3.1) is true .
Therefore Lemma4 1s proved .

4. Weyl Solution and Properties of The Weyl Function

Let ® (z, \) = (?] g' ii ) be solution of (1.1) under the conditions ®; (0, A) =
Po (2, A )

1 and ®, (m,A) = 0. The function kogullarim @ (z, A) 1s called the Weyl solution .
We shall assume that S (z,\),¢ (z,A) and U (z, \) are solutions of equation (1.1)
that satisty the initial conditions

U (7, \) = ( (l] ).mo,).)= ( [1)) and S (0,)) = ( ?)

It 1s clear that the functions V (z, A) and S (z, A) are entire in A . Then the function
Wz, A) can be represented as follows :

W (z,\) = Uy (0,0) (2. A) —A(A) S (2, \)

or
Wz, A) W (0. A) _ _
— — = — —— LA Sz, A
A NGy ez, A)+ S (z N
Denote
Uy (0, A)
MAN=———
) AN
It 1s clear that
_ Uz, A) _ . .
(4.1) O (xz,\)=— AN =M (Neg(z,A)+5(z,A)

The function @ (x, \) 1s called the Weyl solution and the function M () 1s called
the Weyl function for the boundary value problem L. The Weyl solution and Weyl

function are meromorphic functions with respect to {A,} having poles in the

nz=0

spectrum of the problem L .
Theoreml: The following representation holds ;

1 > 1 1
MAN=——+ + )
M= =) é{w—xn} ag;\g}
Proof:
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Let’s write a representation solution of W (z,\) as representation solution of

ez, A) -
for x > a
T4z
Uy (2, A) =cosA(m—x) + f 1;\?11 (z,t) cos Atdt
0
T4
Wy (2, A) = —Asin A (T —2) +b(z)cos A (m—2z) + / Noy (z,t) cos Atdt
0
T+x
—A / Nos (z,t) sin Atdt
. 0
for x < a
Uy (2,A) = BT cos A (ut(m) — pt(z)) + 7 cos A (u™ () — p~(x))
pr(m) 4+t (x)
+ f N1 (z.t) cos Atdt
0
Wy (2, )) = —AB(BT sin A (ut(m) — pt(z)) — B sin Mu™ (7) — pu~ ()

wt(m)+ut (x)

+b(x) (BT cos A (ut(m) —pt(z) + B cos A (™ (m) —pu(z)) + ] f’\?m (z,1) cos \tdt

0
T (m)+uT(2)
Y f Nao (2, ) sin Atdt
L 0

where i:gj (z,t) = Ny (x,t) — Ny (z,—t).4,7 = 1,2 . In the case of A = 0 ve
do () = 0 we write solution with Wgq (2, A) and Woa (2, A) , so we have

11’1 (:C‘)\J = IIJ'01 [\xa)\‘) +f1
II!Q (:C‘)\J ZII!OZ [\xa)\‘)_kf?

where
pF (m)+ut ()
fi= / ﬁ-;n (x,t) cos Atdt ve
0

fo=0b(z) (BT cos A (ut(m) — ut(z)) + B cos A (u=(7) — p—(x))

p(m)+pt () pt(m)+pt(z)
+ / Noi (1) cos Atdt — A3 f Nao (,t) sin Atdt.

0 0

On the other hand , we can write

‘1"1 [OAJ 11!01 £01 )\J fl fQ \
- — ; =— 7+ Mg (A).
T (0,0) Ve (0 AR A oW

M (X)) — Mo (\) =
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Since lim e~[m " (@] |7: (A)] = 0 and |A ()| > Cyel™ AT for X € G5, we

[A]—o0

get that ,
(42)

lim sup
[A]—ee AEGS

M (N)

meromorphic with respect to poles A,

— Mo(N)] =0

. We calculate

Weyl function M (A) is

that

ResM(\) = hd! ©An) _ : - (4.3)

=An A(An) A (An) @1 (T, An) Qn
Wor (0, A, 1 1

Res Mo (\) = o (0A) _ - (4.3)

A=A2 A(AD) Ao (A)) @01 (7, A2) an
Consider the contour integral

()= = [MW =M, ciur,
2mi A— L
l—‘?l

By virtue of (4.2) , we have lim I,,(z) = 0 . On the other hand , the residue

theorem and (4.3) yield

Iy (x)=—M(A) + My (A) _ !
n () (A) + My ( J+An;mman()\—)\nj A%;Fnag()\g_;\)
and theorem 1s proved .
Form a L problem by takmg go (x) , ;lv X inL problem:
Theorem 2: If M (A) = M () then L = E Thus the specification of the Weyl

function uniquely determines the operator.

Proof:
Let us define the matrix P (z,\) =

@1 (T, A) <IJ1 (@A) ) _ (
N E Y <IJQ (z,A)
Using (4.1) and (4.4) we calculate

Pz, \)

[Pjk (2, A)]; =1 o by the formula.

AN ) PE—

@ (2,0) s (2, \) (44)

[ Pi(z.)) = (2,0) D2 (2,4) — B1 (2, 0) B (2, N)
(4.5) Prp (2, A) = O1(2,A) @1 (2, X)) — @y (2, A) D1 (7, A)
’ Py (z, M) = ¢, (2, A) Dy (z,A) — [x,)\}gg (z, A
[ Po2 (@A) = P2 (2,0) &y (2, A) — 5 (2, A) D1 (2, M)

It follows from (4.5) , (4.1), and A (A) = (W (z, ), @ (2, A)) .

1
Pn(:u‘" )\J A[)\
1
Plg(:r,)q—m[ | (z, )\Jllﬁ (z,\) —
1
P21($1)‘J_ﬂ[ 2 (T, A) §s (T, A) —

= [#1 (@0) @ (@ 0) = 0 (2.0) = 1 (2,) (V2 (2,0) = ¥ (2, ) )|

Uy (z, ) @y (z, )\J]

0y (z. A) llfg x, AJ]
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1 . ~ ~ . o~ N .
Poa (2,A) = 1+ [¢2 (@) (W1 (2,0) = W2 (2,0)) = Wa (2, 3) & (2,0) — Fa (2,1)

A(A)

For A € Gs |JA(N)| > C;el™ A" (™) from the Lebesgue lemma |

( lim max_ |P11 (z,A\) — 1| = Iim max |Pa(z,A) — 1]
A—ocD<x< ) A—ocl<p<m '
(4 6) AEGy AEG,
’ = lim max |Ppy(z,A)| = lim max_ |P21 z,A)| =0
A—oc0<z<w A—oc0<

AEG;

AEG;

According to (4.1) , (4.5) and (4.6) we have

Pii(z,)) = @ (X)) S (2, 0) — 51 (2,0) By (2. 0) + (M’ (A) — )\)) 01 (2, A) Py (2, A)
Pio(z,A) = & (z.A)St(z,A) — 51 (2, )) @y (zA) + (M (A) — A)) 0, (2, A) By (2, A)
Poy (2, A) = @ (2, A)Ss (2, 0) — S (2,A) By (2. A) + (M’ (A) — )\)) @9 (2, ) P (2, A)
Poo (2,0) = 3y (2,0) S5 (2, A) = Sy (2, M) @y (2, A) + (M () — w) 0o (2,0) By (2, A)

Thus if M (M) = ﬂ()\) then the functions Pj (z, A) are entire in A for each fixed z

. Together with (4.6) we get that
P11 (ZL', )\‘.I = 1,_P12 {ZL‘, AJ = 0, P21 (&5‘, AJ = D,ng (SE.AJ =1
We get

#1 [:ﬁ?, )\\" = &1 ($1 AJ ) (‘T! A"I = 52 (sc.)\) r(I)l (ﬁ,", )\J' = &;] (ﬁ,“, )\J' a(p? (:""1 )\\" = &;2 an)\\"

for all z and A . Consequently L = L dir .
5. Inverse Problem With Two Spectrum

L and E respectively , {A,} and {Xn} to get the problem of eigenvalues.

Lemma.l: If \, = A, , then p+(7) = ¥ (7).

Ispat: By using the behaviour of A,’ s and A\, = Xn We have

d ~ ~ d,
X+ 8p + (—2) = A\p + 0y, + (T“)
An A2

T
From here 1s

+ (n) +0n + - + Uy (n) + 3 + —Nn
—n+U(n — | == -1+ Uy (N —
H ( ) () A P‘»+ () s " )\:
By dividing both sides of the last equation by n

T v, (n) Oy, d, T U () [On dy
——+ TR B L —— () 4 (2
Fm e )t Ee T e T W) TGS

d — o~ d.
A2 + 6, + (—:) = A2 + 0, + (T”)
An A2

T

:31]1) ¥ (n)| < 400, sup ‘Ll 'n,)‘ < 40c when n — oo , then we have
pt(m) =it ()

Lemma.2: a and 8 are determined uniquely by the sequence {\,}
then f=Fanda=a(n=1,2,3,...)

Proof:

AN =Ay(A)=0 (eumxmﬂw})

Cif A = A
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AN = Ro(A) = O (eltmNEr(m)
can be written in the expressions of A (A), A, (M), A (A), go (X) functions.

An = Ap and A (A) A (A) functions , A according to the first order entire func-
tions in accordance with Hadamard factorization theorem , for A € C

AN =CA(N) (5.1)
The equality from (5.1), for YA € C
B0 (N)=CRo (A) = € [A(N) = Ao (W] 1A (1) = 20 (V] (5.2)

can be written. _
If we write instead of A, (A) and A, (M) from (5.2) |, we have

c [ES (\) = A, (A}} —[A(N) = A (V)] = [B7 sin At (1) + 87 sin Au~ (7)]
—C [’-é+ sin ALY (7) £ 3 sin Ai™ (w)]
Later ,
If both sides of the equation (5.2) is multiplied by (sin Apt(m) + sin AT (ﬂ')) and

finally integrating over the interval (0,7") , then the following equality is obtained .
T

/{C [5 () — A, (}._3] CIAN) = A, (A}]} (sin A+ () + sin ALt (7)) dA

0
T

= f{ [Iﬁ+ sin Au™(7) + 87 sin Ap~ (ﬂ";}
0

—C [’é+ sin AV (7) £ 3 sin AR (w)] } (sin A () + sin A (7)) dA

(B sinApt(7) + 87 sin Ap™ ()] (sin Apt () +sin AL™ (7)) dA

I
k‘ﬁ"'ﬂ

o
~

—C [fé* sinAiF (1) £ B sin A (7) } (sin At (7) + sin AiL (1)) dA

Il
g_‘*w"-]c:

T
BT sin® Apt(m)dh + /,3+ sin At (m) sin AT () dA
0

T
B sin A\~ () sin Ap™ () dX + ],5_ sin Ap~ (7) sin AT () dX

0

_|_
D%\}Ho

T T
—C f BT sin Nt (m) sin At () dA — C f B sin2 At () dh—
0 0

T T
—cfﬁ_ sin Al () sin Aut () dA — C/E‘ sin AL~ () sin AT () dA
0 0

~+

a+ C 3+ 34_5. T +‘; e X 34_3. T +.f‘ ~
_ 'S—T— ot L in 9Tyt () + n (',u [‘Ti—i_ ,u | (ﬂ')}_, n ('Ju, HL::__F | (7))
2 2 A+ () 2(pt(m) — @ (7)) 2(pt(m) + 1" (7))
B sinT(pr(7) —p~ (m) B7sinT(u*(m) —p~ (7)) B sin Tt (m) — pu= (7)) B
2(pt(m) — p~ (m)) Aut(m)—p~ (7)) 25t (m)—p (7))
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B sinT(E™ (7) + p= (7)) _0'-"3+ sin T(t (1) — wt (7)) B sinT(E* (m) + u* (7))

25t () +pmm) T 2T (m) =t (7)) 2ART (m) + pt (7))
B sin 2T (1) B sinT(ut (1) — i (m) _ B sinT(i (m) +pt (m))
A () 2(pt (m) — = (7)) 2(p” (m) + pt (7))
B sinT(E" (x)—f (x)) B sinT(E" (x)+ 4 (7))
24" (m) — 7 () 2 (m) + i (7))
Let’s divide both sides by T ; we get
~t
1 3T cp 1 1
o) =2 -2 _0(=)-Cco(=
()= 5 (7) (7)
Taking the limits as T — oo ;
g+ =cph

In other case ;

C[g()\]—ﬂo(/\} —[AN) =As(N)]=

[8% sin \u+(7) + B sin A~ (m)] — C [-5+ Sin I (7)) + B sin AT [T]] .

If both sides of the equation (5.2) is multiplied by (sin Ap~(m) +sin A [ﬂ'_]) and
finally integrating over the interval (0,T") , then the following equality is obtained ,
T

/{C [5 (A) = A, ()\_]] CIAN) = A, ()\}]} (sin A~ (7) + sin Ali~ (7)) dA

0
T

= f{ (BT sinApF(7) + B sin Ap~ ()]
0

—C [3+ sinAGT (7)) + B sin A (7) } } (sin A () + sin Al (7)) dA

T
Bt . .
=f'7 [cos \(uF () — = () — cos AT () + p= ()] dA
0
T
Bt C e . ~— )
+f'7 [cos M(pF(m) — ™ (m)) — cos A(u™ (m) — ™ (m))] dA
1]
[ T1—cos2Au—(m) (6
+f,s—[ oA “”}(m/-? [eos A(u=(m) — Ji™ (7)) — cos A~ () + = (m))] d
0 0

T
(8t - , Sy _
—C_f'? [cos A(IT (m) — p (7)) — cos (T (m) +p~ (m))] dX
0

[cos A((iF (7) — i7 (m)) — cos A(( (7) + i~ (m))] dA

OTB'_ f AL ()
+[T [cos A(L™ (m) — p~ (7)) —cos A () + p~ (m))] d)\—l—fE_ (1 — cos ’ n (‘?TJ) d\]
0

0
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Let’s divide both sides by T ;

5~ CB 1
o8 _C8 Loy cod)

O( =
[ 2 2 T’ T

I -

Taking the Ilmits as T — o0 ; 37 = CE_.
BT = CE_F and 87 = CE_ hand side collect ; C = 11is ,s0, 87 = ,'5+ and
8T = 3 since 8= 3

pt(m)=n"(

m) and 3 = E main equation 1s obtained that a =a .
" A _ 7 44. . . -
Lo(A) =—-y +—yand Lo(4) =—y"+—y; A2 (4) , including the eigenvalues
x x

of the problem Ly(A) = —y + iy ,
Lemma.3: If ) =)  H, = Hy then A= A.
Proof: Using

d(] -0
)\gz _T_Tn -+ "+ = and
ut(m) n n
1 : _ _ . bo(m) + H _ _
d° = _7{,6‘4' sinTnu® (7)—B" sin ';Tirz,cr[jrl)—kM (,6+ cosTnut(T) + 7 cosmnu” [?r'})
Ao (A7) s
p ()
f (m.t) + H1 K}, (m, tﬂ cos Tntdt}
—#+(T)

from equality )\?1 = )\2_ is the interest by (7) = l;:] (m) by using the expression .
bo (z) 's would

: T —%f’u{s}ds

50(?"}:—5/'“2 (t)e t dt
o
mw m
1 1
- fu(s}ds T 2/u(s)ds

/-u? (t)e t dt = /? (t)e ¢ dt (5.3).
0 0 1
From (5.3) is equal to v () = Aug () ( (z)= T ) can be written as

™

A
P —E/ug{s}ds ——/'ug(s}ds
Agfug[t,}e t dtzﬁfuo t)e ¢

0 0
or
T
1 -
A—A) | uol(s)ds
_—fuo(s)ds 2( J/ (e)a
t
A2 _ A2 /u (the t i dt = 0.
) A—
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That is A% — A2 (4 A 0) or A—A.
Using Lemma3 , we can prove the following two theorems .
Theorem.l: If A\, =\, . a, = a,, , then gy (z) = gy (x) are almost everywhere.

Theorem.2: If A\, =X\, , 1, = [, . then go (z) = go () are almost everywhere.
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