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ABSTRACT: The operator T from a domain D into the space of measurable functions is called a nonantic-
ipating operator if the past informations is independent from the future outputs. We will use the solution
to the operator differential equation y/(t) = A(t)y(t) + f(t,y(t),T(y)(t)) to analyze the solution of this
operator differential equation which is generated by a perturbation (({) = g(f,ys,12(y:)). When this
perturbation is from a measurable space then the existence and uniqueness of the solution to the operator
differential equation will be studied. Finally, we use the nonlinear variation of parameters for nonanticipating
operator differential equations to study the stability and asymptotic behavior of the equilibrium solution.
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Sec. (1) introduction and Basic Definitions: A mapping T from the space of functions Y into
itself is said to be a nonanticipating mapping if for every fixed s in the real line R,

(Tx)(t) = (Ty)(t) for all t < s, whenever ¢(t) = y(t) for all t < s.

In other words, if the inputs x and y agree up to some time N, then the outputs T(x) and T(v)
agree up to time N. In particular, T(x) and T(v) agree up to time N no matter what the inputs x
and y are in the future bevond N. The events in the past and present are independent from
the future.

Preliminary Conditions and Notations. The following are our elementary definitions and
conditions for operator differential systems.

C1: Let S be the interval of all real numbers ¢ < tp. For real number a, let I be the compact interval
[to.a] , and define .J = S U I. Assume (Y. |. |), (Z, |.|), and(U, |.|)are Banachspaces.

C2: Let M(IY) be the space of all essentially bounded Bochner measurable functions with
respect to classical Lebesgue measure tfrom the interval I into the Banach space Y.

C3: Denote by L(J,Y) the space of all Lipschitzian functions y € M([,Y") strongly differentiable
almost everywhere from J into Y.

C4: Let ¢ be a fixed initial function from the space L(S,Y"). Denote by D(¢,Y") the subset of
the lip-space L(J,Y) consisting of all functions y such that

y(t) = ¢(t) for all tin S.

According to these two definitions, D(¢,Y) C L(JY) .

C5: For any Banach space Y and Z, let Lip(I:; Y, Z) denote the space of all functions f(f,y) from
the product [ x Y into Z. Lipschitzian in y, and for every fixed v the function f(.,y) belongs to the
space M (I, Z). This space is called Lip-space.

C6: We apply the definition of nonanticipating operators in section 1.1 to the initial domain. An
operator T from the initial domain D(¢,Y) into M(I.Z) will be called a nonanticipating
operator if for every two functions y and z in D(¢,Y) and every point s € I, the fact that
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y(t) = z(t) for almost all £ < s implies that T'(y)(t) = T'(z)(t) for almost all
t < s.
CT7: An operator P from a subset D of Y into Z is said to be Lipschitzian if
there exists a constant b such that

[P(y1) — P(y2)| < blyr — v2 (1.1)
for every y1,42 €Y.
For f € Lip(I,Y; Z) the operator
F:M(I.Y)—= M(I,Z) & F(y)(t) = f(t,u(t)) (1.2)

is called the operator induced by f and the operator F is called Induced
Operator generated by the function f.
Lipschitzian Space (or simply the Lip-Space), denoted by Lip (K,Y:Z), is the
set of all functions f: K x Y — Z such that f (¢, y) is uniformly bounded by
w, Lipschitzian in y and is measurable in t. That is,

Lip(K\)Y:Z) ={f : K xY — Z | f is Lipschitzian in y and f(.,y) €
M (K.Z)}.
The infimum of all Lipschitzian constants L will be denoted by || f]|.
On the space M(1.Y), we shall introduce a family of norms, called k-norm by
the formula

|y |[x= ess.sup{e *t|y(t)|: t € I} (1.3)
for any fixed real number k. Observe that from this definition follows the in-
equality
()] <|l v [lx € (1.4)
for almost all t in I. Notice that for every k, the k norms || [[zand || |0 are
equivalent.

A Lipschitzian operator T from a subset D of the measurable space M(J,Y)
into the space M(I,U) is called an operator of exponential type if for some
constants b and kg,

I T() =TC) k<0l y—2) & (1.5)

for all y and z in the domain D and all & > k.

Nonanticipating Deterministic Dynamical System: Assume that the
operator T is nonanticipating and Lipscitzian. The behavior of a dynamical
system

yl(t) = f(t.y(t). T(y)(t)) (1.6)

is known as an after effect differential equation with the initial domain D(¢,Y).
Given that f € Lip(I,Y x Z:Y), there exists a unique solution y
to the system (1.6).

Equations of this type arises in many mathematical modeling problems. The
following is a single species growth model with time delay.

Example 1: Assume that T is a constant delay operator T'(y)(t) = y(t —r)
for a constant real number r in the following differential equation. One can
verify the existence and uniqueness of the solution of the system

{ yl(t) = (y)(t —7), t > to (1.7)

y(t) = (1), t<to '
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with the initial data function y(t) = o(t) for —r <t < .

Our goal is to investigate the conditions which guarantee the solution of the
system (1.6) when there is a random perturbation in the system.

Solution to the Nonanticipating Operator differential Equations:

The following operator differential equation when G is a nonanticipating op-
erator from the initial domain D(¢,Y") to the Banach space Z is called nonan-
ticipating differential equation,

{ yl(t) = G(y)(t), t > to (1.8)

y(t) = o(t), t<to ‘

for almost all t in the interval I. We define that a function y from the
space M(I,Y) is a solution to the nonanticipating operator differential
equation if it is strongly differentiable and satisfies the system (1.8) (
Ahangar 1989-2017. [1]....[6]). We accept the following theorem without proof.

Theorem 1.1: Given a nonanticipating and Lipschitzian operator G from
the initial domain D(¢.Y) into the space of Bochner measurable functions
M(I,Y) . Then there exists a unique solution y € D(¢,Y) such that y/(t) =
G(y)(1), for almost all t in I.

Sec. (2): Strong Solution to the Perturbed Nonanticipating Operator
Differential Equations:

Definition 2.1: By Nant-Lip we mean nonanticipating and Lipschitzian
operators. The operator G in the system (1.8) has this property that is nonan-
ticipating and Lipschitzian. We need to clarify the meaning of the solution to
the nonlinear system of operator differential equations (1.8). The important
part is when we accept some other principles indirectly hidden in the proof of
the Theorem (1.1). In fact we use the equivalent relationship between (1.8) and
the integral

y(t) = 6(t) + [} G(y)(s)ds. (2.1)

Notice that this equivalent relation requires the absolute continuity of func-
tion y and summability of G which implies the differentiability of y. The nonlin-
ear operator system similar to (1.8) could be presented by the following operator
differential equation

xi(t) = f(t,x(t), T(x)(t)), for almost all t > tg (2.2)

for almost all t in I. which contain the initial function ¢ for the past time interval
S ={te R:t<ty}. The system (2.2) having a solution x(t, g, ¢) which is
called the strong solution to the system needs to be redefined.

Definition 2.2: A function x(t) is said to be a strong solution to the system
(2.2) if it satisfies the following conditions:

i) x(t) is strongly differentiable,

ii) x(t) satisfies the system (2.2) almost everywhere in the interval I,

iii) there exists  a function ¢ € D(.J.Y') such that

x(t) = o(t), for a. a. t <fg.

The following proposition will show the existence and uniqueness of the
solution to the perturbed operator differential equation (2.2).

Proposition 2.1: Assume that the operator T is Nant-Lip and functions f
and g belong to the Lip-space which is
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feLip(l,Y x Z:Y) and g € Lip(I.Y:Y).
i) If g is the perturbation to the equation (2.2) then there is a unique
strong solution y(t) in the initial domain D(¢,Y") satisfying the differential

equation
yi(t) = f(t.y(t), T(y)(t)) + g(t.y(1)) (2.3)
ii) Given a solution x(1, tg, @) of (2.2) then the solution to the perturbed
equation will satisty the integral equation
y(t) = x(t.to.6) + [} g(s.u(s))ds. (2.4)

Proof:(i) Let us assume that operators Py(y)(t) = f(t,y(t), T(y)(t)) and
Py(y)(t) = g(t,y(t)). Define the direct sum operator G = P & Pg. It can be
verified that the direct sum of two Nant-Lip operator is also a Nant-Lip. As
a result the operator G which is equivalent to the perturbed system will be
Nant-Lip and the differential equation (2.3) will be equivalent to the equation
(2.1) that is

y'(t) = G(y)(1) (2.5)

for almost all t in I. According to Bogdan's theorem (see Bogdan 1981 and
1982, [7].[8]). there exists a unique solution y(t) in D(¢,Y) to the equation

(2.5).

The equivalent integral equation of (2.5) will be y(t) = ¢(t) + ft (y)(s
Applying the direct sum operators Piand P2 we get tho concluslon Wh]ch is
(2.4).

Proof of ii) Substitute this unperturbed solution

x(t, to, 9) = o(t —i—L (s,y(s).T(y)(s))ds

in (2.4) as a solution of (2.2) we will get the following

yl(t) = —i—f S(s,y(s), T(y)(s) da—i—f g(s,y(s))ds. (2.6)
This completes the proof of part (ii).Q.E.D

Sec. (3)-Variation of Parameters for Generalized Perturbed Operator
Differential Equations:

Suppose X is a Banach space, A : D(A) € X — X is the generator of a C'V—
semigroup on X, U € R x X open and f : U — X is a continuous function such
that  — f(t,z) is differentiable and (t, ¢g) — D, f(t, ¢g) is continuous in U.

For (to,z0) € U, we denote by x(t, g, do) the mild solution to the Cauchy
problem

o =Axw+ f(t, (). T(x)(1)), for t > to,
and x(t) = ¢(t), for t < to.
These solutions are then related by the evolutionary property
x(tity, do) = x(t:s, x(s:tg, ¢p))
for all £ < s < {. The initial function ¢ depends on t, tg. and xg. It is denoted
by o(t, tg, xg). The solution to the system says that the future is determined
completely by the present, with the past being involved only in that
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it determines the present. This is a deterministic version of the Markov
property.

We make use of the following theorem in developing the variation formula for

nonlinear differential equations. The Alekseeve’s formula for C° — semigroups
was generalized by Hale 1977,[9] and Hale 1992, [10]. We will use the same
idea to develop the operator differential equations.
Let X be a Banach space, operator A : D(A) € X — X is generator of a
C° —semigroup on X, [ € Lip(I,Y x Z;Y) which is continuously differentiable
with respect x.

Assume that x(t,tp, @) is a mild solution of the system

(3.1)

{ xt = Ax+ f(t,2(t), T(x)(1)), t >ty
x(t) = o(t), t < to,

In a finite dimensional operator A the following variational formula holds
Cr)]_flf(t.tg,@g) = —é?z;l?(t,to.(jﬁg) '.lf!(f) (32)

When A is unbounded, one cannot expect to derive the same result for any
xp € X since x(t,tg, ¢g) in general is not differentiable with respect to t,. We
also need the differentiability of the solution x(t,tp, 19) with respect to t.

The relation (3.2) has been generalized in Hale 1992, [9] for infinite dimen-
sional variational operators when f € C'!

da(t, to, do) = —Oax(t. to. do)[Axe + f(to. wo. T(20))]. (3.3)

Assume that (9/9¢)y(t. to. o) = U((t,ty, ®) exists then
p_dUu 4Oy oy _ 5 _2foy _
L - dr dt(rﬁé) - 8(;5 dt 3¢(f(ty*T(y)) - By 8(;5 _ fy'LI‘
This argument can lead us to the fact that if the operator f, € Lip(1.Y x Z:Y)

then the solution to the system

Ur= fylt,y(t,to, @)U, t>1o (3.4)
Dr(to) =1, fO'J" t <ty

has a unique solution. The system (3.4) is called the variational equation.
Notice that for all ¢ < tg. y(t, to. @) = ¢(t) then
U((t,to, @) =(8/0¢)y(t. to, ) =(9/00)p(t) = 1.
Using chain rule for abstract functions, we get
%H[t to. G0 + (o — do)] = Ul(t. tg. do + 5(10 — ¢0)] (Vo — o).
Thus. integrating the above system produces

Jo U(t,to, b0 + s(tho — b0)] (0 — do)ds. (3.5)

The proof of the following proposition, theorems, and Lemmas are presented
in Ahangar 2017, [6].

Proposition 3.1 (Alexeeve’s Theorem for Operator Differential Equa-
tions): Suppose f: U CRx X — X andg: U C Rx X — X are of class C'.
It 2(t,tg. @p) is the solution of equation
(3.1) through the initial state (tg, ¢g) and y(t, tg,100) is the solution of
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wi(t) = Ay + F(Ey(t). TW(E) + 9t ().t > 1o, (3.6)
() =o(t),  Jor  t<lo,
through (ty, ¢g), then, for any ¢y € D(A) N D(¢,Y) we have
Y(t, to, do) =

2(t, to, Po) + ftto %I(?‘..S.y(.@h_ to. ®0))-9(s. y(s.to, ¢o))ds. (3.7)

The next theorem will provide the variation of parameters formula for
operator differential equations.

Theorem 3.1 (Variation of Parameters for NODE): The solution of the
system (3.1) and (3.2) satisty the following

y(t. to, O(t)) = x(t, to, o(t))+

[ Ut s, y(s.ta. o(t)).9(s. u(s, ta. 4(1))ds, (3.8)

where Ul(t, s, y(s, tg, 0(t)) = 61‘(%:;@@))
U=t tg,v(t)) exists.

The operator T in the differential equation (3.1) and (3.6) could be any delay,
integral, composition, or Cartesian product of nonanticipating and Lipschitzian
operators which will affect the nonperturbed solution x(t, to ¢(t)). The variation
formula (3.9) will be affected by the operator T through these changes.

Assuming that the variation of parameters is given, we will investigate some
of the properties of this formula through the following conclusions for particular
cases.

, and assume that the inverse matrix

Corollary 3.1: Suppose that the conditions of H1 through H7 satisfy to
guarantee the existence and uniqueness of the solution of the system (3.2).
Assume also ¢(tg) = @g is the initial state of the system 2’ = Ax. Then the
relation (3.7) will be

, t
U(t to, ’T—’D) = 'T(te to, @0) + fto f(5= "r(s)ﬁ T(l?)(SHCES—F

[y s=a(t.s,y(s.t0. 60)).g(s. u(s. to, do))ds (3.9)

Proof: Assuming that x(¢, g, ¢g) is a solution to the homogeneous equation
! — Az = 0, then by the direct integration of the system (3.1) and applying the
variation of parameters formula (2.1.3) to the nonlinear system (3.2), we will
get the formula (3.9).

Corollary 3.2: Suppose that the conditions of H1 through H7 guarantee
the existence and uniqueness of the solution of (3.1) and (3.6). Assume also in
a particular case when f =0 and g(t,2(f)) = g(t), the Alekseev’s formula (3.7)
(see Alekseev, 1961 [11]) deduces the variation of parameters formula

a(t) = B(t. o)z + [, (1. 5)g(s)ds (3.10)
for linear differential equation
xl(t) = A(t)xz(t) + g(t). (3.11)

Corollary 3.3: Suppose that in the differential equation (3.1) A = 0, then
the general solution of (3.5) about the equilibruim solution 3" = 0 will be
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y(t, to,xo) = 2o + f:o fls,z(s)]ds + j:) g(s,y(s, to, 29))ds. (3.12)

We will study the variation of parameters for operator differential equations
with disturbed force operator functions. These nonlinear operators can involve
the following types: delay, integrals, composition, or cartesian products of all
nonanticipating and Lipschitzian operators.

Variation of Parameters for Nonanticipating Operator Differential
Equations:

We will study the variation of parameters in operator ditferential equations.
These nonlinear operators can involve the following types: delay, integrals, com-
position, or cartesian products of all nonanticipating and Lipschitzian operators.

Let us define the following hypothesis;

(H1) The operator A, is a Semigroup.
(H2) Assume that functions f and g belong to the following Lip spaces.

felip(JY xZY), ge Lip(J:Y)Y) (3.13)
(H3) Assume that x(4, g, ¢g) is a solution to the following operator differential
equation

2/ (t) = Ax + f(t, (1), T(x)(t)), t > tg (3.14)

x(t, to, 20) = @(1), t < tg,

(H4) also let y(t,to, @) be a solution to the following perturbed nonlinear oper-
ator differential equation

’U(f to, (f)g) — :l’(f._ to. C)) t <tp.
(H5) The inverse matrix U —1(¢. o, v(t)) exists.

The next theorem will provide the variation of parameters formula for
operator differential equations.

Theorem 3.1 (Variation of Parameters for NODE): Given (H1) through
(H5). The solution of the system (3.14) and (3.15) satisfy the following

'l,l(f to, ff)(f)) = :l?(f._ to. (,‘)(f))+

t oo - . c : : c
Jo, Ut s, y(s,to, ¢(1)).g(s, y(s, to, (1), T2(y) (s, to, d)ds, (3.16)
where U(t, s, y(s.tg, ¢(1)) = %w.
Proof: In a variation of parameters, we will determine a function v(#) such
that

y(t, o, O(t)) = a(t, ty, v(t)), v(ty) =
oo (3.17)

is a solution process of (3.15).
From the system (3.15) and sample differentiation of (3.17) we get

Az (t,to,v(t Az (t.to,v(t)) Ov(t
u(t) = o ®) | 2(eton(®) 2un) _

FE 9. i) (1)) + 9t u(0), o)1) ¢ > 0. (3.18)
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Since 2(t,tg,v(t)) is a solution of (2.2.5), then

_ B.T(t,'ﬁg.,'v(t)) !

9(t,y(1). Ta(y)(t)) = —=z——v'(1). (3.19)
Since the inverse matrix U~ (¢, tg. v(t)) exists, then

V() = Ut to.v(t)g(t, 2t to. v(t)). To(x)(t. to. v(t)) (3.20)

which implies
v(t) = o(to)+

f:ﬂ U= (s, to,v(5))g(s, 2(s, to, v(s), To(2) (s, to. v(s))ds. (3.21)

Differentiation with respect to the second independent variable s when g < s <t

implies that
dx(t,to,w(s))  Oz(tto.v(s)) dv(s)

ds v  Os

D (t,to,v(t)
%.w(t) = U(t, tg.v(s)).0'(1).

Substituting (3.20) for v/(t) we will get the following for the right hand side
= Ul(t.tg.v(s)).U (s, to. v(s)).q(s. (s, to, v(s)Ta(2)(s. tg, v(s))

which implies

x(t, to,v(s)) = a(t, to,0(t))+

f;u Ult,to,v(s)). U (s.tg. v(5)).g(s, 2(s, tg. v(s)), To(2)(s. to, v(s))ds.

Using variation definition (3.17) in the above relation, then we get the variation
of parameters for nonlinear operator differential equation (3.15)
y(t.to. 20) = (. to,0(t)) + (3.22)

fttu Ult,to,v(s)).U (s, to.v(s)).9(s.y(s.to. O(t)), Ta(y) (s, to. &(t)))ds
The operator T in the differential equation (3.17) could be any delay, integral,
composition, or cartesian product of nonanticipating and Lipschitzian operators
which will effect the nonperturbed solution x(t,to,¢(t)). The variation formula
(3.22) will be effected by the operator T through these changes.
The next challenge is when the perturbation is effected by a delay or integral
operator. In this case the argument of random operator T in the transformation

C(t) =gt y(t), T(y)(t)) (3.23)

will appear in the variation formula.

Corollary 3.1: It the perturbation appeared in the system (3.14) of the
Theorem (3.1) then the variation of parameters (3.16) will be
y(t, to, 6(t)) = (1, to,6(1))+

fttu Ult.to.v(5).U (s to. v(8)).g(s. y(s. o, &(t). T(y(s. to. O(1)))ds. (3.24)

Sec. (4): Stability of the Zero Solutions of Operator Differential

Equations
Consider a general deterministic operator differential equation
y!(t) = Ay + f(t,y(t). T(y)t),  for  t>1o, (1)
y(t) = o(t). Jor 1 <lo. '

Volume 13, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm 2177|




Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218
() = g(t) —y(t) for almost all t > toand
S\ o(t) — o(t) for almost all < ty.
For particular value t = ¢
£(to) =T(to) — y(to) = &y — ¢o. Substituting in the system yield
&(t) =7'(1) —y'(t) = F(L7(0). T@)(1)) — F(t.u(t). T(y)(1))
— F(t.y(t) + £(6). Ty + () — F(t,u(t). T()(2))
Given the solution y(t), the right hand side of this system will be in the following
form, B B
() =Jt.£1). TE)(), t>to
§(t) = o(t) — o(1) t < to.
Notice that the trivial solution will satisty
F0,T(O0) (1)) = F( (1), T()(1) = F(t y(t), T () (1)) = 0.
This implies that the zero solution solves the new system. Thus study of the
stability. uniform stability, and asymptotic stability of the equilibruim solution
of the new system will be equivalent to the same stability of the system (4.1).
Let us denote the perturbed system by

{ 2(t) = Ay + f(t,2(1), 11(2)(2)) + g(t. 2(t). T2() (1)), > to, (4.2)
2(1) = (1), t<to

Assume that the function f and operators T;(i = 1,2) satisfy the conditions for
existence of the unique solution. We would like to use the logarithmic norm and
variation of parameters to study the stability of the system (4.2).

Notice that the interval I = [fy,00) where the instant moment s represents
the present moment. The position of s determines where we are, before or after
the initial point tg.

Lemma 4.1: Let f € Lip(I, D x Z:Y) and let f, exist and be continuous
for y € D. Then for every y; and 5 in the domain D

21— 22 = fot zylt, syy + (1= s)y2](y1 — y2)ds (4.3)

where =(t,y) = f(t,y(t), T'(y)(t)).
Proof:  Let us define the operator W
s+ (A=)l =Wi(s) & 2= f(tyl).T(y)(1))
for0<s <1,
For the convex initial domain D this is a well defined operator. Using chain rule
for Frechet derivatives, then
Wi(s) = 2t sy + (1 — )a)(11 — v2).
Since W(0) = z(y2) and W (1) = z(y;) and by integrating the above relation
W(1) = W(0) = [} 2 [t sun + (1 — s)y2](y1 — 2)ds
= 2(y1) — 2(y2)
or
Sty (6). T(y1)) — f(ty2(0). T (y2)) =

Jo fult-su1 + (1= s)ual(y1 — wo)ds. (4.4)

This completes the proof of (4.3)m.
The stability of the linear system

yl=Ay+g (4.5)
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This completes the proof of (4.3)m.
The stability of the linear system

yt = Ay +g (4.5)

depends only on the eigenvalues of A. If these eigenvalues are complex we would
expect the system to have oscillatory solutions; if they have negative real parts
we expect decaying solutions. This assertion will not be true in general for
nonlinear system (3.1.1). That means the negativity of the real part of
eigenvalues does not imply the stability of a nonlinear system.
Logarithmic Norm and Comparison theorem:

Definition 4.1: Let A be an operator from domain D € M(I.Y) — (V|
[). The logarithmic k-norm of the operator A is defined by

plAl = lim (|| L +hA ||x —1)/h (4.6)

li
h—0t
where [ is the identity matrix and A € I. For more properties of logarithmic
norm and the proof of the following lemma (see Ladas and Lakshmikantham
[12],[13]. 14]) . In the following. we will study some properties of the logarithmic
norm.

Assume that (9/0¢)y(t.tg, @) = U(t, g, @) exists then
U =4 = 4(5%) = 5% = w(ft.y.TW) = 5255 = [, U.
This argument can lead to the fact that if the operator f, € Lip({,Y x Z:Y)
then the following system

{ Ur= f,lt.y(t. to, ®)]U, for t >t

Ultg) = 1. for t < tg. (4.7)

has a unique solution. The system (4.7) is called the variational equation.
Notice that for all t < tg, y(t, to, @) = ¢(t) then
U((t,to, ) =(9/00)y(t. te. &) =(0/IP)o(t) = 1.
Using chain rule for abstract functions., we get
%y[t. to, Po + s(to — @o)| = Ult, to, @0 + s(to — ¢o)| (o — ¢o)-
Thus by integrating the system
y(t to, ¥) — y(t, to, ¢) =

Jo Ut ta. ¢ + s(t0 — ¢0)] (1o — do)ds. (4.8)

The following Lemma needed for further investigations.
Lemma 4.2: Let A(t) € B(Y) for each t € RT and suppose y(t) is the
solution of

yl = A(t)y. for t > to, and
y(t) = o(t), for. t < tp.
Then
I <l o [l el ANy > (1.9)
Proof: Let us denote the norm of the solution by  m(f) = |y(t)]. Then

for small h > 0
m(t+h) —m(t) = [y(t +h)| = |u(0)| < |y(t) + 4" (O] + O(h) = [y(t)] <
(I +hA)—1]|lyt)] + O(h)
where lim O(h)/h = 0.
h—0+

When we take the limit dm(t)/dt < p[A(t)].m(t). Then
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ly(t)] < ‘@o(f”.eﬂo plA(s)]ds

Since |oo(t)] <|| do ||k €* therefore

= ()] || do i et.elio HIAENS

—kt

Multiply each side by e and take the ess.sup for all t € T = [s,00),

then

H Y Hl.,<|| C)O |k, (afr.o p[A( S)]ds

Lemma 4.3:  Let | | be a norm in the space M(LY). Suppose further that
there exists a function v € M (I, R) such that

plgE (L y, T(y))] < v(t) (4.10)

for almost all t in I. Then for two initial functions ¢ and

i) [u(t,to, ¥) — y(t.to, §)| < |(tho — o)|.clio V(%

ii) and for any two solutions y and z of  (4.1) and (4.1)’

lw(ts) = 2(t2) k<] w(tr) = 2(t) [l efes 0% (4.11)

for almost all t; € (i = 1,2) satisfying 1 < 2.
Proof: (i) According to the relation (4.8) we have
|y(t: to, V) — y{t: to. O)l <

JHU (b, b0 + s(t0 — d0)ll-| (Yo — do)lds  (4.12)

According to the Lemma 4.2, since A = f, and U/ = AU then
1 U@) 1<) Uto) || T %,
Using the hypothesis (4.10)

Sup {|| U(t, to, o + s(tho — d0)] |} < el "% (4.13)
te[0,s]

Thus the relation (4.12) will be in the following form

ly(t,to, V) — y(t, to, @)| < [(Yo — 0o)l. fol sup{|U[t, to, @0 + s(10 — ¢o)]|}.ds

< (10 — do)|-efio I < () — )| el V(.
It we follow the steps: in derivation of (4.9) in Lemm& 4.2, then we will have the
k-norm of this conclusion
| y(t.to, ¥) — y(t.to, 0) k<] (Yo — do) [k -efo

ii) Let us prove the becond part of the Lemma 4.3 by subtracting y(?,ty, @)

from each side of the Valiation of parameters for nonlinear system (4.1)" ;

v(s)ds

| =(t.t0,¥) — y(t.to, @) [|[=[ w(t. to,4) — y(t, t0. @) || +
Jo WUt 5,2 (s, 0, )] |- || glss (s, to, )] | ds

<l w(t to. ) — y(t, Lo, @ ) I+
ftutnéa}t | Ult, s, 2(s, to, )] || - || gls, 2(s,t0, ¥)] || ds.
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S expl L v(€)de] | g(s. =(5,t0.0)) |1 ds. (4.14)

Sec. (5)-Stability of Operator Differential Equations:

The stability of delay functional differential equations has been presented in
Hale 1977 [9]. The uniform and asymptotic stability of the nonlinear systems
have heen presented by Lord and Mischell 1978 [15], [16] ) using the variation
of parameters. Many authors used variation of parameters to demonstrate the
stability of the nonlinear systems (see Brauer 1966 and 1967, [17] , [18]). We
will expand the idea for the operator differential equations in the following
theorems.

Theorem: 5.1:  Assume that the conditions for variation of parameters
exist then

i) the estimate

| U=1(t to. do)g(t, x(t, to, d0)) ||< AL, || o [NW (5.1)

holds for h € Lip(I x R™,R™), h(t,0) =0,( W is defined in Lemma /.1).
i) the trivial solution of

[
8]
—

ul = h(t,u), u(ty) = ug >0 (

is stable(uniformly stable).

iii) Further assume that the trivial solution of the unperturbed system (5.1)
is stable(uniformly stable). Then the trivial solution of perturbed system (5.2)
is stable (uniformly stable).

Proof: By the result of the variation of parameters

y(t. to, do) = x(t. to. v(t)) (5.3)

where v(t) is a solution of

ol(t) = U=t to, v(t))g(t, 2(t, to, v(t)), v(to) = do. (5.4)
The assumption (5.1) and the setting m(t) =|| »(¢) || imply that the following
inequality
Drm(t) < h(t,| v(t) ||) = h(t, m(t)). (5.5)

Thus m(t) is a solution to the system (5.2) and r(t, %o, || ¢ ||) is a maximal
solution of (5.2), by comparison’s theorem the relation (5.5) implies

| v(t) = m(t) < r(t.to. | &) ). t> to. (5.6)

By assumption (ii), given £ > 0,15 € R™ there exists a §; (=) > 0 such that

| 2(t.to. P0) ||< &, t > to, (5.7)

if and ony if || do ||< 01().
Also the stability of the trivial solution of (5.2) implies that there is a ¢ depend-
ing on & and to.

r(t,to, o) < 01 whenever | @0 ||< 0. (5.8)
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Thus || o(t) |[|[< r(t. to.| @0 ||) < 0 whenever | @0 ||< 6. The per-
turbed solution using (5.3) will satisfy

Iyt to. do) 1=l (k. to. v(8)) [|< <. (5.9)

for all t > to, whenever || ¢ ||< 0. This completes the proof of the stability(uni-
form stability).

Asymptotic Behavior:We use the notion of asymptotic equivalence to
study the asymptotic behavior ot the nonlinear operator differential equations.
Two systems (5.1) and (5.2) are said to be asymptotically equivalent if given a
solution y(t, g, 19) of (5.2) there exists a solution x(f, fy. ¢g) of (5.1) satisfying

t1_112’1O y(t,to, Vo) = x(t, 1o, do) (5.10)

and conversely, given that 2 (%, %, ¢p) is a solution of (5.1) there exists y(t, tg. )
a solution of (5.2) satisfying (5.10).

The tfollowing theorem shows the characteristic behavior of the equoivalence
in two systems.

Theorem 5.1 Assume that the hypothesis of the variation of parameters
hold and U(t, tg, ¢g) is bounded for t > ty and all initial functions ¢ are in the
initial domain D. Let

i) the function h in

| U= (¢.t0. 0)g(t. 2(t. to. d0)) |I< ht. | b0 ||
hold for h € Lip(R™ x RT, R™), h(t,0) = 0,is monotone and nondecreasing in u
for each fixed t in R
ii) all solutions of

ul = h(t,u), u(tg) =ug >0 (5.11)

arc bounded on ¢ > {5.Then given that y(t,tg,1g) is a solution of (5.2) there
exists a solution x(t.tg, ¢g) of (5.1) which is asymptotically equivalent.
Proof: By the relation of variation of parameters
y(t,to, o) = 2(t, 1o, v(1))
where v(t) is a solution of the variational equation with v(fy) = 1p,we use the
mean value theorem for the variation of parameters and the boundedness of
U(t, to. ¢o) in the following

I y(t. to. vo) — a(t, to, do) [|=| (t. to, v(t)) — a(t, to. o) |

1 - o
< 1 Ut to,00) |- | ot) — o | ds
< Sup{ll U(t.tou o) 1} | v(6) — o |
t>to,poED
| y(t.t0. o) — 2(t. 0. ¢o) < K[| v(t) — o || - (5.12)

When ¢ — oo the right hand side approaches zero and  y(t,tp,v0) —
x(t,tg. @o). This proves the asymptotic equivalence between the two solutions.

Sec. (6)- K-norm Stability and Variation of Initial Function

Consider the following abstract operator differential equation

v'(t) = f(ty@), Ty)E).  for t>1g (6.1)
y(t) =¢(t),  for <t (6.2)
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for any initial function ¢ in the initial domain D, where y(t) is the unpertubed
solution. Assume that a perturbation is imposed on the system (6.1)-(6.2) with
initial function ¥(),

A1)y = flr 2(7), T(2) (1) + g(T, 2(1)), T > To (6.3)
2(7) = (7)., for T < Ty (6.4)

for f € Lip(1,Y x Z.Y). g € Lip(1.,Y:Y),4 € D, and the operator T is nonan-
ticipating and Lipschitzian. When we assume f(t,0) = 0, then the system
(6.1)-(6.2) has a trivial solution.

The operator T in this type of differential equations can be assumed as fixed
and does not vary, thus the solution y(t. tg. ¢. T(¢)) will be independent from T
and is equivalent to y(t, g, ¢). That means the parameters in this variation are
(o, ).

Definition 6.1 (k-norm Stability): The equilibruim solution of (6.1)-(6.2)
is said to be

- k-norm stable if for every ¢ > 0. there exists a 0 > 0 such that

|| & ||k< & implying that || y(t,to, @) ||x< = for all t > tg;

- It is asymptotically stable if it is stable and there exists a dg > 0 such
that

|| @ |xr< dp implies that  lim, .~ y(t, to, @) = 0.

Definition 6.2: Stability of the Initial Solutions; The initial solution
¢ is stable, that is for every ¢ > 0 and every ty > 0 there exists a 6 > 0 (depends
on £, and possibly tg) such that whenever |o(tg) —yo| < 4, the solution y(t, 1o, o)
exists for t > to and satisfies |o(t) — y(t,to, yo)| < = for t > to.

The following lemma will be useful for the proof of the stability of the solu-
tions to the system.

Lemma 6.1: Assume that two initial functions ¢ and 1’ belong to the same
initial domain D. Let  y = y(t,tp,¢) and 7 = y(t,tp.7") be their associated
solutions to the system (5.1) respectively.  Then there exists a real number L
such that

[ y(sto @) —y(to, ) k< L || & = [l (6.5)
where L = k/(k— || f || (1 + ¢)), for some constant numbers k and c.
Proof: The system (6.1) is equivalent to its integral, that is
y(t.t0.6) = () + Ji. F(s.3(s), T(y)(s))ds. (6.6)

Since f belongs to the space Lip(I,Y x Z;Z), then
| y(t,to, @) — y(t.to, ) |< |&(t) — 0(t)|+
t _ -
Joo 17 11w(s) =) + [T () () = T(@)(s)]}ds.
‘ . t » _ _
<lo(t) =@+ [, 1 £ 1™ {lly =7k + | T(y) — T (@) [}ds.

Since the operator T is an exponential type operator, there exists a constant
number c such that || T || < ¢, for k > ky. Thus

| y(t.to, ) —y(t. to. ¥) [< |@(t) — v(1)] + (6.8)
Il ey =Tl + 1T k-l y =7 llx}/k
< |o(t) — () A EN-(A+e)et k.
Multipling both sides by e~** and taking ess.sup over the interval J the equality

(6.8) will be
Iy =7le<ll¢ =9Ik +
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|yt to, 6) — y(t,to, ) |< |6(E) — v(1)] + (6.8)

£ HFNy=Tle + 1T e ly=7lx}/*
<|p(t) =)+ vy =7l - || £ -(1+c)e [k
Multipling both sides by e~k and taking ess.sup over the interval .J the equality
(6.8) will be
ly=7 k<l &= Ik +

e L F (T4 e) /R (6.9)

From the inequality (6.9) the k-norm of the difference between two solutions y
and z will be calculated and measured by the following inequality

lv—vu

ly =Tk Lol ¢ =0k (6.10)

where L = k/[k— || f || .(1 + ¢)] for constants k and c. Q.E.D.

Notice that the relation (6.5) could be verified by the properties of Nant-Lip
operators. To show this, let us define the operator G which transforms the
initial function into a solution y(f, ty, @) in the following form

y=G(o) &  yt)=o(t)+ [, f(s.u(s).T(y)(s))ds.

We can define 7 = G(1) to represent a solution initiated by the function
1. Since the operators are Nant-Lip then it is an operator of exponential type.
Thus, there exist constant numbers L and kg such that

1 G(¢) = G) k< L || ¢ = ||k
for some k > ky. Substitute the operator G, then
| 0 to.®) =yt ) k< L || &= Il -

This is actually the conclusion of the Lemma 6.1.

Theorem 6.1: Suppose that

i) the conditions H1-H5 presented in sec. (1) for existence and uniqueness
of the solution of the systems (6.1) and (6.2) hold (according to the Theorem
(1.1) and Proposition 2.1); and

iit)  f(t,0,7(0)) =0,

iii) the equilibruim solution of the systems (6.1)-(6.2) is stable with respect
to the variation of initial functions in the initial domain of attractions.

Then the trivial solution of the system (6.3)-(6.4) is k-norm stable.

Proof: Let us take ¢» = 0 in the relation (6.10). Thus by the relation (6.6)
the solution z(t) will be identically zero. This implies that || y [|x< L. || ¢ ||% .
For every ¢ > 0 there exists a number § = /L such that

| 6 llx< & implies || y [l =
for almost all t € 1. This proves that the solution y is k-norm stable.

Lemma (6.2): Assume that hypotheses HI-H5 hold to gaurantee the solu-
tion y of the systems (6.1) and (6.2), and the solution z of the systems (6.3) and

(6.4). If the operator U = g—z is Nant-Lip then we have the following estimate

| y(t,to, &) = 2(t, b0, ¥) k=L || ¢ =¥ || +be™".
Proof: Using Alekseev’s variation of parameters
Z{ﬁ lo, f"\“l.r) — y(ﬁ to, O) - y{t, Lo, lrb) - 'y{f, lo, O(t))+
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fttn Ult, s,2(s, to, ¥)].g[s. 2(s. to, ¥)]ds. (6.11)

Using the estimated relation in (6.10) and the calculus of Banach space (Y, |.])
| y(t.to. &) — z(t, t0. V) |<
[y(t. to. &) — (t. to. ) | + [, [UTE 5. 2(5.to, ¥)]|-lgls. =(s. to, ¥)]lds

<|ly—7 e+ f:o Ut s, 2(s, to, ¥)]|.€*. || g5, 2(s,t0, ¥)] ||k ds (6.12)

for almost all t in the interval I. The solution z of the perturbed system (6.3)
and (6.4) is in the initial domain and it is Nant-Lip. The perturbed function g
is in the Lip space. Thus the composition operator

u=G(2) = u(s) = g[s, 2(s,tg, )]
is Nant-Lip and it will be an operator of exponential type. This property implies
that there exists a constant number ¢ and kg such that || G |[p< cfor all k > k.
The right hand side of the relation (6.12) will be

<y —7 |k e+ Cf:o \U[t, s, 2(s, to, ¥)]|.e**ds

We multiply both sides by e~k
the relation (6.10) to obtain,

ly—2e<L|v—0|x+ce ft; |U(t,s,2(s,to, V)]

and take the ess.sup over the interval T and use

eks ds

e ksds  (6.13)

<L|v—=20 |k —|—cff0 ess.sup{|U[t, s, 2(s, to, V)] e~}

Since U is an operator of exponential type, there exists a constant number c
such that || U ||p< d, for all k > ky. Thus,

” y( tOs CD) - Z(., 1:0'. LJ) ||k§
Ll ¢— ke[l | U e .e™ ds (6.14)

for all k& > ng = max{kq, ko}
In the relation (6.14) if the operator U is an operator of exponential type then
there exists a constant number d such that | U ||x< d, for some k > ng,
thus
| y(.ito. @) — 2(.,t0, ¥) Ik
<L o= |k +ed| ftf: ek |ds
SL| 6=tk +F (e — o)

SL| 6=+ (™) (6.15)

From the inequality (6.15) the k-norm of the variation on two solutions, that is
v(t) and z(t) will be calculated as follows

9. to. ) —2(sto. ) [k LI 6 — o [|g +beH (6.16)

where b = % for constants k > ny. Q.E.D.

Remark: Let f(¢,0,7(0)) = g(t,0) = 0, then the solution of the systems
(6.3) and (6.4) is

2(t)=0fort >ty and z(t)=w(t)=0fort <ty
will be the trivial solution  2(t.#5.0) = 0.

Theorem 6.2: Assume that

i) the hypothesis of the Proposition 2.1 hold
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i) f(£,0,7(0)) =g(t,0) =0, for almost all t in RT,

iii) f, is a Nant-Lip,

iv) the equilibruim solution of (6.1) - (6.2) is asymptotically stable for vari-
ation of initial function in the initial domain of attractions.

Then the trivial solution of the system (6.3) and (6.4) is asymptotically stable
for all choices of (to, @).

Proof: Assume two solution functions y and z in the initial domain D C
M(I.,Y) satisfying the operator dynamical systems (6.3) and (6.4) associated
to initial functions ¢ and v respectively. If we take 1 = 0 in the relation (6.10)
we obtain the following

I 5(t. to. ) — =(t.10,0) k< L || @ [l +be .
The relation || ¢ || < o implies the following limit
limg_ oo || y(t,to, @) — 2(t,t9,0) [[x=0

This proves that the trivial solution is asymptotically stable (we call 2(t,1y,0)
a zero solution).

Sec. (7)-Lyapanov Stability of the Operator Differential Equations:

We will try to extend the deterministic Lyapanov Stability for the operator
differential equations.
Suppose that y and z are solutions to the systems (6.1) through (6.4). Define
the Lyapanov functional v(t) = V (¢, y;) as follows:

i)V :(,00)xD(0.Y) — [0, 00) is continuous and its first partial derivatives
exist.

ii) V' has partial derivatives and the total derivative of V (¢, y(t)) will be

=% t i1 vy,
i

where »; and 3; are components of V and y.

iii) V is nonnegative in the region and vanishes at the origin.
For some tg > o let y = y(.,tg. @). We wish to show the stability of the trivial
solution at tg, so that if v(fg) = V(t.y(tg)) is sufficiently small then v(t) =
V(t,y¢) remains small for t > .
Recall the notations for the interval I = [0, a] for constant real number a, to.
and .J = (—o0,0) U I. We start with the following theorem.

Theorem 7.1: Let w and W be continuous nondecreasing functions from
I — R™ such that w(0) = W(0) = 0. If there exists a nonnegative functional
Vi(a,00) x D(¢,Y) — [0,00), such that

) V(t.y) = w(]| () ),

i) V(t,v) < W(|| ¢ ||x), and

iii) for every (to,¢) € J x D(¢,Y) the Lyapanov function is nonincreasing
in t € [tp,a), then the trivial solution of (6.1) - (6.2) is uniformly stable.

Proof:
Let € > 0 since w and W are nondecreasing thus

0=w(0) <w(e) and 0=W(0) < W(e).

Choose 6 = (=) € (0,¢) such that

W(S) < w(e). (7.1)
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Let (tp,¢) € J x D(¢,Y) with || ¢ ||x< 0. By the existence and uniqueness
theorem when T is a nonantipating and Lipschitzian operator and f belons to
the space Lip(J,Y x Z,Y) and there exists a unique solution y = y(.,tp, @)
through (tg,¢) to the system (6.1) in the initial domain D(¢,Y"). Thus using
hypothesis (i)-(iv) and condition (7.1) for ty <t < a,
w(l| y(t) ) < V(t ) < Vito,8) < W 6 &) < W) < w(e).
Since w is nondecreasing, for ty <1 < a
e < & = (]l e 1) < w().
This shows that if v(tg) = V(tp, @) is sufficiently small then v(t) = V (¢, y(t, o, @))
remains small for ¢ > t,.

This result can be generalized for continuing the solution for a — oo. It will
show that the trivial solution of (6.1) is uniformly stable.

Definition 7.1: (uniformly asymptotically stable) The trivial solution of
(6.1) is said to be uniformly asymptotically stable if it is uniformly stable and
furthermore, there exists d;(independent of tg) such that whenever top > « and

| & ||x< 6y = | y(t,to. @) |[x— 0, as {— .

The third condition of the Lyapanov functional can be substituted by a stronger
condition

LV (ty) < =h(]| ve [Ix)-

(See Driver 1977, [19])

Theorem 7.2: If there exists a Lyapanov function V (t,y(t)) defined over
the solution space and it satisfies the following conditions

i)V eLip(l,Y;R)

ii) V(t,0)=0

i) V(t,y(t)) = h(y(t)) for some function h.

iv) Vi(t,y) <0,
also assume that the equilibruim solution of the unperturbed svstem is stable,
then the equilibruim solution of the perturbed equation

2'(t) = f(t.2(1), T(2)(t)) + g(t, =(1), t >ty (7.2)
2(t) = ¢(t), t < to.

is stable in the norm.
Proof: Let us define V(t,,¢(t)) = ¥(tp). We can write

V(t.2(t) = W(ta) + [;. V'(s. 2(s))ds. (7.3)
Using the hypothesis inequality, there exists a constant m such that
V(t.z(t) Zm| 2 |k
t oo
Thus U(t) + ftu Vs, 2(s))ds =m || 2 ||x .

Since the integral is a negative number then U(t) > m || 2
imply the following estimate

[ . This will

W (t) ,
[ 2 k< == (7.4)

The Lyapanov function V'€ Lip (R™, R), thus about the equilibruim solution
1y = 0 the Lipschitzian inequality implies that there exists a constant real number

L such that
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|Vt 2(8) = V(Eu(®) W< L= = Il (7.5)
for some k > ko.  Since V(£,0) = 0 then
|Vt 2(t) k< Ll 2 |k - (7.6)
Thus
|2 k<L 2

k- (7.7)

Since z € M (I, Z) assume that 0 <|[| z ||p< 7. Now for every £ > 0  choose
|| z [[x< d(2) in such a way that

d(e) = inf{me/L,~}.
It follows that for every initial function ¢ when || U |[z< &  then using both
inequalities (7.4) and (7.7) we have

” P ||k§ ||‘f?1|k S L[Li”k < L-fﬂFE) < Lmﬂi/L < =
Hence this proves the stability of the equilibruim solution in k-norm.

Sec. (8)- Conclusion and Discussion:

The variation of parameters discovered by Alekseeve 1061 is a great tool
to study this kind of nonlinear system and use this conclusion for stability
and asymptotic behavior of a nonlinear system. The solutions to a nonlinear
operator differential equations of type (6.1 and 6.2) which includes all operators
T satisfying nonanticipating and Lipschitzian conditions, also reviewed here,
have a huge range of application.

We used a general method of variation of parameters of Alekseeve’s type for
a nonlinear operator differential equations (NODE) to study the stability and
asymptotic behavior of the nonlinear system.

In this generalization, we assumed that A(f) is Lebesgue summable trom [
into M(I,Z) and f € Lip(1,Y: Z) is a perturbation in the system (7.1) then
the solution process y(t) = y(t.to, yo) of the following nonlinear system
yr(t) = A(t)y(t) + f(t.y(1).  ylto) = o

for all t > tg. These nonlinear operators can involve varieties of many types
of operators like: delay, integrals, composition, or Cartesian products of all
nonanticipating and Lipschitzian operators.

For operator in this paper we proved and demonstrated a general form of
Alckseeve Theorem when a non linear perturbed system (7.1) includes a Cy —
semigroup of opeartor A.

All important conditions in (H1) through (H5) are connecting the nonan-
ticipating property of T, semigroup property of A;, and Lipschitzian property
of the functional f. The general form of Alekseev’s theorem for variation of
parameters helped us to find the solution to the purturbed system. This per-
turbed solution for nonanticipating dynamic systems can be used to study the
stability and asymptotic behavior of the nonlinear operator system. Two major
issues related to Stability and behavior using the Alekseev’s type Variatiion of
Parameters can be focused in the future.

First, is the numerical algorithm and computational program to produce the
solution to such a general form of nonlinear variational of parameters method.
Second. develop applications and numerical computation for the stability of the
nonlinear system to operator differential equations.
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