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Abstract.

The objective of this paper is to analyze the consequences of including environment of players in
the Cournot-Nash competition. A two-persons non-cooperative game is considered. The
environment is expressed in terms of “others". The function of the environment is to maintain its
equilibrium. The equilibrium point of the environment is upgraded if the strategies of one or both
players have a favorable impact on the environment. The equilibrium stays at its previous level
otherwise. The equilibrium point of the environment is called an environmental attractor. The
environmental attractor affects the strategies of the players which in turn define the reaction
functions and the pay-off functions. It is shown that in the presence of an environmental attractor,
players cannot reach a Nash point. In fact the reaction functions of the players act as orbits around
the environmental attractor. Thus each player has a finite but compact number of strategies
compatible with the environment available to them. As long as the equilibrium of the environment
is maintained, any of the orbits will be acceptable choices for the players. An environmental
model of a two-persons competition game is given, and the consequences are studied.

JEL: C72.
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1 Introduction

The objective of this paper is to explore the idea that in any strategic game, players act within an
environment and this environment can play a role in the outcome of the competition. The
environment is expressed in terms of “others”. The interaction of the environment with the players
is analyzed and its' consequences in terms of finding an equilibrium point is studied. In all
strategic competition models it is assumed that the players compete in a void. They take up
strategies with respect to the strategies of other player(s). Neither of the players considers the
impact of the environment on their strategies and the fact that the environment modifies the nature
of each strategy. It is also assumed that the environment does not alter the outcome of the Nash
type competition. In general the environment has one objective and that is to maintain
equilibrium. The environment either rejects the strategies of both players, in which case it
maintains its previous equilibrium and forces players to modify their strategies around the
environmental equilibrium point, or it adopts the strategy of one of the players and in this case it
updates its equilibrium point. The player whose strategy is accepted by the environment is better
off. The other player has to either modify his strategy around the new equilibrium point or
otherwise take the consequences of going on independently of the environment. Once one takes
into account the environment of the players the concept of a Nash equilibrium point becomes
obsolete. There is no winner-winner situation. In this case there will always be a player who will
be better off than the other. How much a player is better off depends on how close the player's
strategy is with respect to the choice of the environment. This is demonstrated in the following
example. In order to clamber up the career ladder, some people slave nights and week-ends at the
office. They gain a rank at the expense of their free time. But in doing so they hurt anyone else
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who aspires to the same goal. They too will have to give up their week-ends to keep up. In this
case the strategy of one player has a direct impact on the environment. By his aspirations he has
changed the equilibrium of his environment. The person with high aspirations in this example
wins the game ignoring the effect of his actions on his immediate environment, his office. Though
the high achiever in this example wins the competition and obtains a rank, his actions have altered
his environment. His environment has accepted the new equilibrium. This new equilibrium is
working longer and harder which is translated into a higher pay-off. If others follow suite and
work as hard or somewhat hard they stand to gain just as our high achiever has. But if others
choose to go on with their routine they forego the rewards which are higher pay-offs.

An environment can be either an economic environment, or a social environment summed up
as “others”, or a natural (physical) environment. In this paper only social environment is
considered. To model the environment into a strategic game, the following attributes of the
environment are recognized and used. Environment is impartial to both players. Environment
does not choose strategies with respect to any of the players. Environment has one criterion, it's
aim is to stay at equilibrium. If its equilibrium is disturbed it will do one of two things. If the
change is unfavorable for environment, then environment will attempt to go back to the previous
equilibrium level. If change is favorable for environment, then environment accepts this change
and upgrades the previous equilibrium to a new one. Since environment automatically reverts to
its previous state of equilibrium or upgrades the existing equilibrium, it affects the outcome of any
strategic game by eliminating the player's equilibrium point, and choosing one player over the
other as the winner of the competition.

2 Modeling of strategic games within an environment

For the purpose of modeling some assumptions are made. A two-persons non cooperative
strategic game is considered. The game has several features. First, the game has rules that govern
the order in which actions are taken, describe the array of allowed actions, and define how the
outcome of the game is related to the actions taken. Second there are two players, each of whom
is struggling consciously to do the best he can for himself. The outcome of a player depends on
the actions of the other player. The player knows this, and knows that choosing the best action
requires making an intelligent assessment of the actions likely to be taken by the other player.
Each player possesses a complete information. Each player knows who the other player is, and all
actions available to players, and all potential outcomes to both players. The joint actions of the
two players determine each player's pay-off, [1],[2]. Players know that their actions alter the
equilibrium of their environment. They know that this alteration is either positive or negative; and
that the environment will react to change. They also know that their standing in the game either
strengthens or weakens their chances of winning according to whether the environment is affected
favorably or unfavorably.

Third, these players are in an environment which is affected by their game. The environment
does not compete, it reacts. It is assumed that the environment is at equilibrium at the beginning
of a game. This equilibrium is upgraded as a function of each player's strategy. The environment
upgrades to a new equilibrium if the strategy of one of the players is favorable. The position of the
player whose strategy created this new equilibrium is re-enforced in the game and the other player
is now aware of this fact. The other player has to choose a strategy that is the best strategy with
respect to the other player and the new environmental equilibrium point. If however the change is
unfavorable, then the environment rejects the change and stays at the previous equilibrium level.
The position of the player whose strategy created this negative change is weakened; the other
player is aware of this. At this point the strong player has no incentive to change his strategy. To
react to the other player he modifies his strategy very slightly pivoting around the new
environmental equilibrium. The weaker player has two options. He accepts the new
environmental equilibrium point and he picks a strategy with minimum standard deviation. Or he
continues with the strategy independent of the environment hoping that this way he will incite the
other player to respond in the same manner. Naturally as long as the strong player is ahead of the
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game his motivation to change strategy is very low. But it is possible that he gets manipulated by
the weaker player and responds with a different strategy in return. In this case, if both players
continue the game ignoring the environment it is possible to reach a Nash point. Then the Nash
point is unstable and will change as soon as the environment reacts to the game, even if the
players are not competing anymore. The environment will reverse the outcome of the Nash
equilibrium since the environment aims at reaching a favorable equilibrium. Both players stand to
loose in this situation. Eventually they have to readjust their strategies to the environmental
equilibrium point somewhere along the path of the game.

Mathematically speaking, the equilibrium seeking action of the environment acts as an
environmental attractor of a dynamic system of two-player competition. This environmental
attractor will modify the behavior of the players. Thus these attractors create a new dynamic that
affects the player even after the outcome of the game, when in fact the player is not competing
anymore. How can environmental attractors be modeled is the topic of the next paragraph.
Quantification of the environment in a two persons game is achieved first by defining every single
change in the environment as a vector with components being the strategies of the two players;
and second quantifying the environmental change as the change that is accepted by the majority of
the environment, in other words “others". In reality for each player two situations can occur: 1)
each consecutive strategy affects a large number of “others", 2) each consecutive strategy affects
a small number of “others". Strategies that are small variations around the environmental attractor
affect a smaller number of “others". This gives players a freedom of competing on a level that is
almost independent of the environment. They can positively modify their pay-offs. Each can try to
improve his pay-off slightly. This will stabilize the situation of each player. If each consecutive
strategy of a player is widely different from the environmental attractor, then it impacts a higher
number of “others”. Players are challenged. The environment will react by forcing players to
modify their respective strategies. Either the environment keeps the present attractor or moves to a
new one. In both cases players face a new situation where their set of available strategies has to be
revisited in order to match the force of the environmental attractor.

Equilibrium points in a non-cooperative competition are found based on the fixed point
theory. This means that pay-off functions follow the conditions of the fixed point theory that for
every strategy space (S), there is a mapping (P) of (S) such that (S) is projected into itself,
(P : S > S). There exists a fixed point (s € S ) such that (P(s) = s). An strategy set (S) is a
compact set in, (R™) [3]. The introduction of the environmental equilibrium point adds
complications. Complications occur in two directions. One is that the existence of the
environmental attractor changes the nature of the strategy sets of the players. Second is the change
in the behavior of the pay-off functions of players towards the environmental attractor.
Environment eliminates the fixed point due to competition. The actual fixed point is decided by
the environment. The existence of the environmental attractor changes the nature of the strategy
sets. These sets will no longer be compact sets. To show this one must return to the general
definition of compact sets, and the definition of a fixed point space. By definition, compact sets
have the property that every collection of open sets has a finite sub-collection with the same
property. A set is a compact set if and only if it is closed and bounded. This property no longer
holds when an environmental attractor is introduced. The existence of this attractor means that
many open sets around each set point can be considered as valid sub-sets. These sets will never be
closed and bounded. This is due to the fact that at any point the environment can upgrade its
equilibrium meaning that it changes the attractor thus allowing for open sets to overlap. The
strategy set in the presence of the environmental attractor cannot have a fixed point property since
it loses its compact property. Given (s) an element of the strategy space (S), no mapping can be
found that would give (s = P(s)). The second reason is that pay-off functions in the presence of the
environmental attractor become non-contractive functions. The environmental attractor forces the
players to choose strategies around it. Thus pay-off functions become orbits of the environmental
attractor. The idea of pay-off functions as orbits becomes clear later on when mathematical
formulation of these functions is introduced.
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The vector formulation of the environmental attractor (€) starts here. Total num-
ber of players is (N=2). Let (.5;) be the strategy space of player (i), and (.S; ) be the
strategy space of player (j). Let (S = S;xS;:i # j ), the strategy space of the game be
the Cartesian product of the individual strategy spaces, (S;), and (S;). Let (st € S; ),
denote player (i) with strategy (k), where ((k € K). K =1,---.n, K\{0}). (n) repre-
sents a finite set of strategies available to both players (i), and (j). let (s], € S;), denote
player (j) with strategy (k' # k). Before the beginning of the game, the environment

is at equilibrium. In Figure 1, this equilibrinum is denoted by ((3(5’ = 523- ). None of the
0 0

players (i), and (j) have chosen a strategy, meaning strategy (s} = sé = 0). If both
playvers choose the same strategy, (H} = 3{ ), and player (i) wins the competition with
strategy(l) by receiving a higher pay-oft, then environment adopts the strategy of the
winning player, i.e. (i). The old equilibrium point is upgraded to a new equilibrium
point (Esg ). The environmental attractor for the new equilibrium point is denoted
by (E’fs;'). Environment simply ignores the other player,(j). On the other hand, if the
environment accepts the strategy choice of player (j), irrespective of a lower pay-off,
then the environmental attractor shifts to (9{ ) as is shown in Figure 1. The player
whose strategy choice is adopted by the environment, is the actual winner. In Figure
1, the grid represents the field of environmental attractors. The grid is made of (n)
rows of the strategies of player (i), and (n) columns of the strategics of player (j).
The process of upgrading the equilibrium point continues as long as the players are
engaged in a competition and as long as the environment reacts to the strategies of
the winner. Each time a new environmental attractor is found it replaces the old one
and the process continues from this point on.

Plaver (1)

Plaver (i)

Figure 1. Position of environmental attractor when players choose the same strategy

If each player chooses a different strategy, (s}), and {3‘1.,}, where (k # k'), and
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player (i) wins the competition with strategy (k € (1,---.,n)) in the set of given
strategies, ((1,---.n)), by receiving a higher pay-off, then the environment must
decide whether to adopt the strategy of the player that fits best the environment irre-
spective of whether player (i) wins or not. If the strategy of player (i) is adopted, then
the old equilibrium point is upgraded to a new equilibrium point (681 ), otherwise the
equilibrium point of the environment does not change. It stays at the previous equi-
librium point. The environmental attractor for the new equilibrium point is denoted
by ((?.S}-c ) if the environment adopts the strategy of player (i). If on the other hand,
it is player (j) who wins the competition with strategy (k’), by receiving a higher
pay-off, and the environment adopts the strategy of the winning player, (j), (k), then
the old equilibrium point is upgraded to a new equilibrium point. The environmental
attractor for the new equilibrium point is denoted by (c?'si ’ ). This situation is shown
in Figure 2, with the strategy of player (i), being (k=n-1), and the strategy of player
(j). being (K = 1). Figure 3, depicts the trajectory of the environmental attractor
during (3) consecutive competition runs. In Figure 3, (K(h),h = 1,2,3) indicates
rounds of competition. After the first round of competition R(1), the environmental
attractor is at equilibrium point (é’i;) The second round of competition, R(2), shifts
the environmental attractor to equilibrium point ((?251 ). The equilibrium point shifts

n—l1
from (ﬁit) to (Fii ). The third round of competition R(3), shifts the environmental
1 n—l1

attractor to equilibrium point (€%;). This process goes on as long as players compete
S
!

and the environment accepts the strategy of onc of the players.

(@) 1t e

n-l

T TTTT T T T T s,

s

Player (i)

Player (j)

Figure 2. Position of environmental attractor when players choose different strategies
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~

Pl;lycr (1)
Player (j)

Figure 3. Trajectory of environmental attractor after (3) rounds of

competition with different strategies

Shift in environmental attractor oceurs if the environment accepts the strategy of
one of the players. Let the environment consist of (M) number of people not involved
in the Cournot-Nash competition. The environment is designated by "others”. Each
environmental attractor represents a subset of (M) who has accepted the strategy
of a player. Let’s designate this subset hy {L:;-r e M:k=1,--- ,mi=1,--- 1)
(r) is the environmental attractor number,(k) is a strategy, and (i) is the number of
players, (in this case [=2). Each new environmental attractor,{é’:i ) has a correspond-

ing subset (L7, ). Each time there is a shift in environmental attractor, this implies
k
that the new environmental subset is larger than the previous one, (L7, > LI, ).
E k—1

This procedure is demonstrated in Figure 3. In Figure 3, the initial environmen-
tal attractor is at (EEE} = é‘:g' ), where {Egé = E'LE} P S_Er — bié X s+ Cié X e}; ) or
0 TRV BT T S SRR SN S SN , : ye
(Es-; = b‘;é X 8p — a;,g X 8§ +ng'| x €}). (s',87,€*) are unit vectors representing player(i)
strategy choice axis, player (j) strategy choice axis, and the environment strategy
choice axis,(e®*) where (o) represents either (i), or (j). {ai,— )s (b‘:j]_. and (cgaj, are

o o
the coefficients. The coefficients are the quantitative values of the strategy choices
of the players. The strategy that is not adopted by the environment, is represented
as a negative entity. The environmental attractor is at point zero since players have

chosen not to compete (s, = s} = e = 0). In the first round of competition,
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R(1), the environmental attractor shifts to a new pc:-mt{ ] once the players com-
pete with strategies (s}, s) ;) and a subset of (M), (Ll E M), {Ll > Ll ), and
n—!
L:l- N L;J- = 0) adopts the strategy of player (i). The env1ronmenta1 attractor of
i 1l

the first round R(1), is formulated as (é’ii = ai!. X & — bJ x &7 + c'i.- x € ). In
Fn_t

the second round of competition, R(2), the players compete with strategies (s} . SE:I
Again the environment adopts the stlategy of pla}er (i), and the environmental at-

tractor shifts to point (e =al, X s — bj X 89 + X e_;‘} The subset of
—1 -1

el

(M), that accepts the stmtegy of player (i) in R( )s (Lg. > L), is greater than
I I

the subset in R(l) In the th1rd round, R(3), the environmental attractor shifts to

(%, =—a, % st +:5J x 87 —0—1’:7 X EJ) Players compete with strategies (s},s] ;).

3 3'
Sn—i -

This time t-he majority of the enwronrﬂent adopts the strategy of player (j), and thus
(ij > Lgi ). The environmental attractors shift as long as players compete and the
n—I i

majority takes sides.

3 Analysing environmental attractor

In the previous section two elements are identified as important factors when envi-
ronmental attractors are introduced in a two-persons competition. Element one is
the strategy sets of players and the environment. The strategy sets of players (i),
and (j) and the environment (e), (5; C S§), (5; € S), (E C §) are subsets of a
general compact and convex space (S). It is defined that there exists a mapping (P)
from (S;) into (S;). Any element (s € 5;) has a mapping (P) such that (s = P(s)),
in which case (s) is considered to be a fixed point of (5;). Similarly, there exists a
mapping (P’) from (S;) into (S;). Any element (s" € S;) has a mapping (P’) such
that (s’ = P'(s')), in which case (s') is considered to be a fixed point of (5;). Let
(E' = (e1,e1,--- ear) : EA{S;}: E\{S;}) be the set of strategy choices for the envi-
ronment. (M) is the number of strategies in the set (E). These strategy choices do not
include the strategy choice set of players (i), and (j). Set (E) is a compact convex set
such that ((£'NS;) =0), and ((ENS;) =0). Once players (i), and (j) are engaged in
a competition, then, the strategy set of the environment (E) has to expand to include
(5:i), and (S;). In order to simplify the arguments that follow, let the two players
have the same strategy set, (5; = S; C §). Let’s denote this equality set by (L).
This simplification is possible since the case (8; #£ 5;), where the two strategy sets
of players are not equal, is just an extension of the equality case. Let’s denote the
expanded set (E), by (E' = FUL). Must show that the expanded set (E'), has a
fixed point in the set (L). The following theorem proves the existence of a fixed point
for the expanded set (E’).

Given that players (i), and (j) are engaged in a competition, the strategy sets of
the two players have fixed points. Let (s) be the fixed point of the set (L). Let (f)
be a map (f : L — L) such that (f(s) = ). The strategy set (E) of the environment
or the “others” has a fixed point, since by induction “others” is an extension of one
plaver, and the strategy set of a player is a fixed point set, then the stratecy set of
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the environment is a fixed point set. Let the fixed point of the strategy set of the
environment (E), be denoted by point (e). There exists a map (g : E — E) such that
(g(e) = e). The existence of fixed points for the sets (L), and (E), does not follow
that the expanded set (E') is a fixed point set. To illustrate that the set (E') is a
fixed point set, the following Theorem is introduced.

Theorem 3.1. If sets (L), and (E), are fived point sets, then the expanded set (E')
is a fized point set.

Proof. By definition, the strategy set of the environment can be expanded to include
the strategy set of the players, (E’ = E UL). Since both sets (L), and (E) are
retractions of the set (E’), and they both are fixed point sets, then the set (E’), is a
fixed point set. O

Theorem 3.2. The fized point of the set (E') is the point (s), the fized point of the
set (L).

Proof. Let (B.(e)) be a closed ball with center (e), and radius (e = d(e — s)), where
(d(e — s)) is the distance from point (e) to point (s) on the boundary (s € 0B,) of
(Be(e)). Let (f) beamap (f: L — L), and g be amap (g : E — E), then by the
Banach contraction principal, [8], (d(f(s)—g(e)) < axd(e—s)), with (o« = 1). Now,
taking the limit of both sides as ((l-‘é;rn.)), ((J-ﬁn)d(f(.s) —gle)) < (l-i-%m)d.(e —5)), shows

that there exists a map d : (d : B.(e) — E’) that takes (E’) to the boundary (63,)
of the closed ball (B¢(e)). By the Theorem of nonlinear alternative, [9] there exists a
unique fixed point, (s) on the boundary of the ball (B.(e)) such that (s = f(s)). O

Based on Theorem 3.1 the set (E’) will always have a fixed point if it is made up
of exactly (2) fixed point sets. By Theorem 3.2 the fixed point of the set (E’) is found
in the set (L). The conclusion is that the fixed point of the environment strategy set
(E") is in the set (L) of the strategy sets of the players in the Nash equilibrium.

4 Reaction functions and environmental attractors

The payoff functions of players (i.,j), are denoted by (gsi € R), and (951 € R), where
(R) is the space of real numbers. (9551- ) takes on a new characteristic in addition to
the characteristics that are attributed to it in the standard Cournot-Nash game such
as continuity, boundedness, and concavity. The new characteristic is the strategy
dynamics. Strategies of players interact with each other and create a dynamic. This
dynamic dictates what diametrically opposed players can gain and loose. The payoft
function, (95?; (p)) is the function of strategy dynamics of players ((i,j):i # j). The
payoff functions in the presence of the environmental attractor become orbits, [3]. The
reason for the shape of the payoff functions is the behavior of the reaction functions
which hecome dynamic due to the interaction of the strategies of the two players. The
payoff functions rather than being the formulation of gains, they reflect the interplay
of strategies.To define the payoff function one must define the interaction of the these
strategies. These strategies in turn are influenced by environmental attractors. To
construct and formulate strategy interactions one can attach a desirability (V) level
to each choice. Logically each time a player picks a strategy this strategy has to
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have the highest level of desirability for that player. Desirability is a function of the
strategies of the players. Each player picks the strategy that maximizes his gains,
while simultaneously reducing the strategy choices of his opponent and forcing him
to pick a less desirable strategy, and thus incur a loss. This is shown in Figure 4. At
each round of competition, there exists one strategy with the highest desirability level.
Once a player selects this strategy. the other player is forced to pick a strategy in either
region (1), or region (2). If the opponent picks the same exact strategy, it is known in
advance that he is incurring losses. Therefore, if for example, player (i) picks strategy
(1), among (n) available strategies, then player (j) has to pick strategies either within

the set (1,---,(l — 1)), or the ((I +1),---.n). Since the two sets are symmetric
with respect to desirability, let’s assume that player (j) picks a strategy from set
((l+1),---.n). In the second round of competition, the two players must choose

from the set of residual strategies. The residual strategy set does not include the
strategy that is adopted by the environment. At this point there are (n-1) strategies
available to players (i), and (n-2) strategies available to player (j). This is shown in
Figure 5.

Desirability (V)
A

Max (V*)

[

Optimal strategy (s*) Strategy (s)

Figure 4. Strategies and their desirability levels
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Desirability (V)
A

Max (V¥)

>
-1y @O  (1+1) (n) Strategy (s)

Figure 5. Strategy regions for player (j)

Added to this desirability factor is the interplay of the strategies of the plavers.
This is formulated in the reaction functions (), where (x = s} ) and (p,), where

(y = si] of players (i), and (j) respectively. The best formulation for the reaction
functions is a polynomial formulation. The polynomial formulation of the strategy

interaction for player (i) is given as:

(4.1) wr=ax (22 + >+ )

(V' = A) is a constant the choice of which depends on the desirability level of the
strategy choice of player (i). The interpretation of equation (4.1) is as follows: The
strategy choice of player (i) is given by variable (x). The strategy choice of the other
player, (j) is given by variable (y). Player (i} is confident about his strategy choice,
which is shown by the power of (x) and the value of (A). But player (i) takes into
account the importance of the strategy choice of the other player, the term {yz]l and
acknowledges the interaction of his strategy choice with the strategy choice of the
other player, the term (x x y2). A numerical example of such a function can be given
in Figure 6. It is assumed that both players (i) and (j) have 100 strategy choices. The

desirability range for both players is between (0) and (10).
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Reaction function Q(x)
® (x)

' mon =
1apgn -
12007

o \

=" - L

zam =

Figure 6. Graphical representation of polynomial function (¢.)

Values of the polynomial () give a quantitative meaning to the reaction function
of players (i). In Figure 6, the x-axis represents the number of strategies of player
(i), which is chosen to be equal to (100). When player (i) picks strategy (x=95), the
reaction function (p, = 1900) units is at maximum. The strategy dynamics of player
(i) can be represented by a polynomial function similar to player (i) denoted by ().

(4.2) ey =ux (& +v" +p)

Equation (4.2) has the same interpretation as equation (4.1). In equation (4.2)
player (j) has confidence in his choice of strategy, variable (v), which is re-enforced.
Still the strategy choice of player (i) affects player (j), and this is represented by
variable (x). (V = pu) is the desirability level of the strategy choice of player (j). The
numerical example of the reaction function of player (j) is given in Figure 7. The
x-axis represents the strategy choices of player (j). When player (j) picks strategy
(y=85), the reaction function (v, = 1800) units is at maximum.
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O (¥) Reaction function @ (y)

?i??: \

- ) I}
o J

znn—- y I_H
| \

o T T T T T T T T T T T T T | T T T T T (Y)

Figure 7. Graphical representation of polynomial function ()

Environmental attractor has a significant influence on the strategy choice dynamics
of the players. The reaction function of the environment is denoted by a polynomial
equation (y; ,) of degree (4) as:

(4.3) Pry — [IQ + 'yz]z{i:'mz{i}y?{i]v

Equation (4.3) can be interpreted as the magnitude of the environmental vector
which is fortified and prioritized by adding the strategy choice of one player as an
acceptable environmental variable and subtracting the strategy choice of the other
player as the rejected variable. Variable (v) represents either the desirability level
of the strategy choice of player (i), (A), or of player (j), (¢). Figures 8, and 9, give
numerical examples of polynomial (g ). In Figure 8, the environmental attractor
accepts the choice strategy of player (i), which is (x = 95). The value of the corre-
sponding environmental attractor (¢, = 34000) is maximum at (34000) units. In
Figure 9, environmental attractor accepts the choice strategy of player (j), which is
(v = 85). The value of the corresponding environmental attractor (g, , = 24000) is
maximum at (24000) units.
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Q (x¥) Environmental attractor 0 (x.y). advantage player (1)
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Figure 8. Graphical representation of polynomial (y. ,), advantage player (i)

P (x.¥) Environmental attractor ¢ (x.y). advantage plaver (j)
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Figure 9. Graphical representation of polynomial (¢, ,), advantage player (j)
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5 Formulation of desirability

The most important factor about choosing a strategy, is the degree of its effectiveness.
Given that players (i), and (j) both have the same strategy set (s1,--- . 8n), then the
desirability of any strategy for player (i) is whether this strategy can maximize his
pay-off function, minimize the pay-off function of the opponent, and limit the strategy
choices of player (j). This means that at any round of competition, if player (i) can
pick a strategy among the set of available strategies, (s1,--- , 8, ), then player (j) can
pick among (n-1) residual strategies. Let the strategy set of player (i) be denoted
by (S), and the residual strategy set of player (j) be denoted by (S’ € S). Let
(s™ € §) be the strategy chosen by player (i) during the round (r) of competition, and
(s € S') be the strategy chosen by player (j) from the set of residual strategy set (S7).
Let (V(s",s'")) represent the desirability function. The objective of player (i) is to
maximize the desirability of the chosen strategy (s"), while minimizing the desirability
of the strategy chosen by player (j), (s), (ﬂ{g arV (s",s") = ﬂ-{ grﬂ-grz;nV{sr,s"T)}.
Given that there is a finite choice of strategies available during a round of competition,
it is appropriate to formulate the desirability function as, (V(s",s) = w x 8" x
e(=axs")) It is assumed that the desirability function (V(s",s'")) is differentiable.
Before going on to finding the solution of the desirability function, must introduce
some background materials. Let the set of strategies be an ordered set based on
the perceived importance of each strategy. The ordered set of strategies is denoted
by (S° = (&) < s§ < ... < &%), The residual ordered set available to the competing
player is denoted by (8" € §%). At any round of competition, once one player chooses
from the ordered strategy set (S°), then there are (n-1) residual strategy choices left
for the competing player to choose from [10]. The following theorem and Lemma are
used to find the maximum-minimum solution to the desirability function.

Theorem 5.1. Given an ordered set (8" = (s < s < ... < sU), and given ((s),
the strategy choice, then the directional derivative of (V (s})), (D EV{S?] ) from either

direction (j < 1) or (j = 1) erists and is given by (DSDV{SI) M} where
J

(di = |s§ —sp| = \/(s] =s0)2) if (i < 1), and (d; = |s] = s}| = {/(s] = s])?) if
(7 =1). Then (11m30__,3!a Ej:l Ds?V(SI ) =s?), for (i <1).

Proof. Given (s}'), the function (V/(s)) is maximum at this point. By definition the
derivative is given as (Do V(s)) = w] Since the set (S” = (s{ < & <
cdots < 87 is ordered t—hElfl (V(s)) < V{S%J] < --- < V(s2)). Therefore ((D,V(s]) <
DaV(s3) < - < DV(&)) for (j < 1) and (D V(s0) > DpV(0_y) > - >
Ds;V{s?]] for (7 = I]J The left derivatives of thejpoint ((s9) z:re positive and in
inc‘i‘easing order, (DoV(s{) > 0), and the right derivatives of the point (s¥) are
negative and in de::re;_lsing order, (Do V(s}) < 0). Maximization requires that only
the left side of the point (s}) should i‘Je considered. This results in the limit of the
derivatives approaching the point (sf), ( 1rnso_mJ Z D uV (s¥) = sf) for (j < 1). O

Lemma 5.2. Suppose that in the ordered set (S° = (s§ < 8§ < -.. < ¥ ), there is
one strategy choice that marimizes the desirability function (V (s",s")). Then there
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erists (p > 0) such that the directional derivative {DS?V{S?) = o) if (s} € [s%,s]_4]).

Proof. From Theorem 5.1, for any point '[:SE' < S_? < S?], the directional derivative

(DE?V{SE'] > 0) is positive, and at the limit (limsg_,s? DS?V(SID) = s). In general,

this can be extended to any multiples of (s), which is denoted by (g). Therefore,

Theorem 5.1, can be generalized to (Do V{:S?] = p). O
J

By Lemma 5.2, the directional derivative of (V(s",s™) = w x s" x el=%*%"))  is

(DV (s",8'™) = p(s")) for any choice of (s" > 0), where (p(s")) is a fixed value that
corresponds to the strategy choice (s").

6 Payoff functions as orbits of the environmental
attractor

The payoff functions of players (i), and (j) can be formulated as the interaction of
the strategy dynamics of the two players. The payoff function of player (i), given the
strategy choice of player (j) is (g2 ), and the payoff function of player (j) given the
strategy choice of player (i), is given as (g, ). The payoff functions are formulated
as in equations (6.1), and (6.2).

(6.1) Gzy = Vz X (Pz X Pzy) — vy X Py

(6.2) Gy.z = vy X (Py X Poy) — vz X Pz

Both (v, ) and (v,) are monetary rewards associated with strategy choices of play-
ers. The Nash equilibrium point is where the derivatives of player’s payolfl functions
with respect to the strategy choices of the players are equal. This is shown in equation
(6.3).

(6.3) % — %
dx Ay

The derivative of the player with strategy choice (x), {%ﬁ = f(vz, A)) is a func-
tion of the monetary reward, (v;), and the magnitude of desirability, (A). Similarly,
the derivative of the player with strategy choice (v), (aga—";;’ = f(vy,p)) is a function
of the monetary reward, (v, ), and the magnitude of desirability, (u). Thus the payoft
functions of the players become orbits around the strategy choice attractor. Figure
10, shows payoff functions as orbits around the environmental attractor (0). The en-
vironmental attractor (0) occurs when players (i), and (j), do not choose strategies or
the environment chooses not to adopt any of the strategy choices of players (i), and (j)
at the start of the competition procedure. A range (0,0.35) around the environmental

attractor (0) is considered.
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Figure 10. Payoff functions as orbits around the environmental attractor (0)

Payoff functions do not intersect at a fixed point. How can an equilibrium point be
defined, [4],[5],[6].[7]- The most evident answer is that there is no equilibrium point. A
player adopts an orbit that best fits his objectives and best corresponds to the environmental
attractor. The other player reacts to this and in his turn adopts an orbit that best responds to
the environmental attractor and the other player. The orbits of the two players cannot
intersect and thus prevent any possibility of an equilibrium solution. The non-existence of
an equilibrium point is not a sign of chaos. Though no equilibrium point can be found,

there is still many possibilities for the two players to choose among orbits available to them
and find one that is most optimal for them.

7 Conclusion

In this paper a special case of strategic competition is presented. The idea of competition
within an environment that reacts is new. It presents new aspects of a strategic competition
that have not been considered up to now. The environmental interference is different from
cooperative or n-persons games. Environment does not compete. It has one permanent
objective and that is to preserve the equilibrium of the environment. If this equilibrium is
disturbed then environment reacts to restore it back to either its previous state or if change

is perceived as positive for the environment, then it will upgrade the previous state to a new
state. Environment does not take sides;
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it adopts a strategy of one of the players if it is an improvement compared to its previous
state. Though this act re-enforces the position of the player whose strategy is chosen by the
environment, it does not in any way lead to the player winning the game. Therefore,
environment does not cooperate or ally itself with any of the players.

New ideas are introduced in this paper. The environmental attractor represents the impact
of the environment on the players. Players can not choose strategies to counteract the
environment. The attractor forces the players to modify their strategies with respect to the
environmental attractor. The reaction functions of the players behave differently from what
is assumed in the fixed point theory. The reaction functions become orbits around the
environmental attractor. This concept is new. Is there an equilibrium point in such a
circumstance? The answer in this paper is no. There is no equilibrium point in the
traditional sense. Each player chooses an appropriate orbit that fits best the objectives that
he pursues given the environmental attractor.
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