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Abstract  

In this paper, we consider the second order neutral difference equation of the form  

 

    
 
where  and  are ratios of odd positive integers. Examples are provided to 

illustrate the results.  
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1. Introduction 

In this paper, we study the oscillatory behavior of second order neutral difference equation of the form  

               (1) 

 where  and  are ratios of odd positive integers,  and  are positive integers. 

Throughout this paper, we assume that:   

 (H1)  ,  and  are positive real sequences with , ,  and  is a 

positive real sequence with   as .  

 (H2)   and  are ratios of odd positive integers,  and  are positive integers.  

 

By a solution of equation (1), we mean a real sequence  defined for all  and satisfying equation (1). A 

solution  of equation (1) is said to be oscillatory if it is neither eventually positive nor eventually negative, 

otherwise it is said to be non-oscillatory. 

Recently there has been an increasing interest in the study of the oscillation and non-oscillation of the second order 

neutral difference equations, see for example [6, 7, 10-14] and the references cited there in. In [6], we see that the 

oscillation criteria for second order difference equation of the form  

              (2) 

 is discussed. 
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In [14], we see that the oscillation criteria for second order non-positive neutral term of the form   

               (3) 

 where ,  is a ratio of odd positive integers. 

Also Thandapani et.al [14] studied the oscillatory behavior of the equation  

                          (4) 

This observation motivated us to study oscillation criteria for second order neutral difference equation. In section 1, 

we present some lemmas which will be useful to prove our main results. In section 2, we obtain new oscillation 

criteria of equation (1) and in section 3, we provide some examples to illustrate the main results.  

Definition 1.1. A solution  of equation (1) is said to be almost oscillatory if either  is oscillatory or  

is oscillatory or  as .  

 We provide two lemmas which are useful in proving the main results.  

Lemma 1.1.  Set  

                (5) 

 If  and , then  attains its minimum  

                  (6) 

 Lemma 1.2.  For all  and , we have the following inequality  

                  (7)  

2. Oscillation Results 

In this section, by using the Riccati substitution we will establish new almost oscillation criteria for equation (1).  

Theorem 2.1.  Assume that there exists a sequence  such that  

                (8) 

 and  

                 (9) 

 where  

                (10) 

 and  

    

  and . Then every solution of equation (1) is almost oscillatory.  

 Proof. Suppose that sequence  is not almost oscillatory solution of equation (1). There exists a positive 

solution  of equation (1) such that  and  for all . Then by definition of almost 

oscillatory there are two possible cases arise.  eventually positive (or)  eventually negative 

Case Ia: Assume that  for all . Thus  for all , we have . Then from 

equation (1) and , we have  

    

              (11) 
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 From the above inequality, we have  

              (12) 

 

 Define  

               (13) 

 Then ,  

   

          

         

                  (14) 

 It follows from , we have , and , we obtain  

                 (15) 

 From inequalities (12), (14) and (15), we obtain  

             (16) 

 In the view of (11), (13) and (16), we obtain  

               (17) 

 Set  

   

It is easy to verify that function  is increasing for positive constant. Since  is increasing, there is a constant  

such that  and  

              (18) 

 From inequality (17) and (18), we obtain  

              (19) 

 Using completing the square, we have  

    

           

 Summing both side the above inequality from  to , we obtain   

              (20) 

 Noting that  for , we have . Hence  

    

 Letting , we obtain  

              (21) 

 which is contradiction to (8). 

Case Ib: Assume that  for all , then  for all . From  and , we obtain  

                 (22) 

 Then there exists  such that  for  Therefore, we have  

               (23) 

 Set . Summing the last inequality from  to , we get  
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 and  

                  (24) 

 Again summing the above inequality from  to , we obtain  

             (25) 

 Letting , from condition (9) implies that  is negative for all . This contradiction ended the proof of 

this case. 

Finally, we assume that  is an eventually negative solution of equation (1). There exists  such that 

 for all . We use the transformation  in equation (1). Then we have  is an eventually 

positive solution of the equation  

               (26) 

 where . 

We have two possible cases arise.  eventually positive (or)  eventually negative 

Case IIa: Assume that  for all . Thus  for all . 

Define  

               (27) 

 Thus  and from (14) and (26), we have  

           (28) 

 Putting ,  and , we have  

    

 Using Lemma 1.1, we have  

               (29) 

 and also (18) are hold. Then the rest of the proof similar to that of the above and hence is omitted. 

Case IIb: Assume that  for all . Hence  is a positive solution and the proof is similar to that of 

Case Ib and hence omitted. The proof is now complete.                ▄ 

 Corollary 2.1  Assume that all the conditions of Theorem 2.1 hold except the condition (8) is replaced by  

                (30) 

 and  

               (31) 

 Then every solution of equation (1) is almost oscillatory.  

 Before starting the next theorem, we define functions  such that   

    (i).   for ,  for .  

    (ii).   for  and there exists a positive real sequence  such that  

  

 Theorem 2.2  Assume that condition (9) holds. If there exists a positive real sequence  such that  

            (32) 

 then every solution of equation (1) is almost oscillatory.  

 Proof. Proceeding as in Theorem 2.1, we have two cases to consider.      

Case I: Assume that  for all . Define  by (13), then  and satisfies  
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              (33) 

 Multiply both side by  and summing from  to , we obtain  

  

         (34) 

 By using summation by parts, we obtain  

         (35) 

 Using completing the square in the last inequality, we obtain  

   

   

which contradicts the assumption (32). 

Next we consider the case when  for all . We use the transformation  then  is a positive 

solution of equation  

               (36) 

 when . Define  by (13) and (29) holds. The remaining of the proof is similar to that of first 

case of Theorem 2.1 and hence omitted. The proof of the case II is similar to that of second case of Theorem 2.1. 

The proof is now complete.                    ▄ 

  

Corollary 2.2  Assume that all the conditions of Theorem 2.2 hold except the condition (32) is replace by  

    

 and  

    

 Then every solution of equation (1) is almost oscillatory.  

 

3. Examples 

In this section, we provide three examples.  

Example 3.1. Let us consider the second order neutral difference equation of the form  

             (37) 

 Here , , , , , ,  and . All the conditions of 

Theorem 2.1 are satisfied. Hence every solutions of equation (37) is almost oscillatory. In fact one such solution is 

. Here  is oscillatory.  

  

Example 3.2. Let us consider the second order neutral difference equation of the form  

           (38) 

Here , , , , , ,  and . All the conditions 

of Theorem 2.1 are satisfied. Hence every solutions of equation (38) is almost oscillatory. In fact one such solution 

is . Here  is non-oscillatory and  is oscillatory.  

 

Example 3.3. Let us consider the second order neutral difference equation of the form  

           (39) 
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 Here , , , , , ,  and . All the conditions of 

Theorem 2.1 are satisfied. Hence every solutions of equation (39) is almost oscillatory. In fact one such solution is 

. Here  is tends to zero as . 
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