

Journal of Progressive Research in Mathematics(JPRM)

ISSN: 2395-0218

 Volume 13, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm 2151|

SCITECH Volume 13, Issue 1

RESEARCH ORGANISATION Published online: January 16, 2018|

Journal of Progressive Research in Mathematics

www.scitecresearch.com/journals

Branch and Bound Method to Solve The Sum of Two

Objective Functions

Al- Zuwaini
1
Mohammed Kadhim, Hussein Kamil Taher

2

1
Mkzz50@ yahoo.com

2
ssaa.kamal@ yahoo.com

Department of Mathematics, College of Computer Sciences and Mathematics

Thi-Qar University, Thi-Qar, Iraq

 Abstract

 In this paper, the problem of sequencing a set of n jobs on single machine was considered

to minimize multiple objectives function (MOF). The objective is to find the optimal solution

(scheduling) for n independent jobs to minimize the objective function consists of a sum of

weighted number of early jobs and total weighted of completion time. This problem is

strongly NP-hard and to resolve it we derived two lower bounds (LB1, LB2) and heuristic

method to get an upper bound which are used in root node of branch and bound tree. Some

special cases and dominance rule were proposed and proved. Results of extensive

computational tests show that the proposed (BAB) algorithm effective in solving problems

with up to (30) jobs in time less than or equal to (30) minutes.

 Keywords: Single machine; Scheduling; number of early jobs; completion time.

1. Introduction

 We consider the scheduling n jobs on a single machine to minimize the bi-criteria
problems. Our objective is to find a schedule that minimize sum of weighted number of
early jobs and total weighted of completion time, with condition all jobs are
available at time zero. we denoted to this problem by ℎ𝑗𝐺𝑗 + 𝑤𝑗𝐶𝑗

𝑛
𝑗=1

𝑛
𝑗=1 where ℎ𝑗

the penalty of early job j, ℎ𝑗 ≥ 1 and 𝑤𝑗 the weighted number of completion time for

job j,𝑤𝑗 ≥ 1.

Clearly that our problem consist of two sub problems. The first one 1/ / ℎ𝑗𝐺𝑗
𝑛
𝑗=1 it is

NP-hard problem. When ℎ𝑗=1, ∀𝑗 that is 1/ / Gj
n
j=1 the number of early jobs is p-

Type and it's studied firstly by Lann and Mosheiov [1]. They developed an polynomial-
time algorithm to find the minimum number of early and tardy jobs on a single-
machine where machine idle time is permitted. Furthermore Lann and Mosheiov[2]
solves the problem of the maximum number of on-time jobs on parallel identical
machines. Huang RH and Yang CL (2007)[3], solved the 1/ / 𝐺𝑗

𝑛
𝑗=1 problem in

polynomial time, and successfully developing such an algorithm. Computational
performance of this algorithm on problems with various sizes is provided. Baruch Mor
and GurMosheiov(2014) they studied the number of early jobs on aproportionate

http://www.scitecresearch.com/journals

Journal of Progressive Research in Mathematics(JPRM)

ISSN: 2395-0218

 Volume 13, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm 2152|

flowshop[4]. The problem 1/ / WjCj
n
j=1 is solved by The shortest weighted

processing time (SWPT) rule of Smith[5]. In the case of Wj = 1 j ∈ N the

base(shortest processing time rule)(STP) Give solution to the problem 1/ / Cj
n
j=1 . But

if conditions add precedence the problem becomes NP-hard, even in the case where it

is pj = 1 or Wj=1∀j [6,7]. Branch and bound algorithms have been used to the

problem 1/prec / WjCj
n
j=1 By many researchers remind them Ronnie et al (1975)[8].

Potts (1981) and Potts (1985)[9] gives the best algorithms to resolve the matter,
where he was able problem solving up to 100 job.

2. Formulation of the problem

Single machine scheduling models seem to be very important for understanding
and modeling multiple machines models. A set N={1,2,…,n} of n independent
jobs has to be scheduled on a single machine in order to optimize a given
criterion.

This study concerns the one machine scheduling problem with multiple
objectives function which is denoted by (1/ / (ℎ𝑗

𝑛
𝑗=1 𝐺𝑗 + 𝑤𝑗𝐶𝑗)).

In this problem, preemption is not allowed, no precedence relation among jobs
is assumed and all jobs are available at the time zero, (that is 𝑟𝑗=0 ∀𝑗). Each job j has

positive integer processing time 𝑝𝑗 , due date 𝑑𝑗 with weighted (importance weight

for completion time of job j) 𝑤𝑗 and positive number (penalty for early of job j) ℎ𝑗 .

 The start time of job j is denoted by 𝑡𝑗 , (𝑡𝑗 ≥ 0) and its completion time by 𝐶𝑗 ,

(𝐶𝑗 = 𝑡𝑗 + 𝑝𝑗), if job j completed befor it's due date (𝐶𝑗 < 𝑑𝑗 then 𝐺𝑗=1) and job j is

said to be early otherwise (𝐶𝑖 ≥ 𝑑𝑖 , then 𝐺𝑗=0), and job j is said to be late job or just

in time, for each job j can be calculate the slack time 𝑆𝑗 = 𝑑𝑗 − 𝑝𝑗 . Our objective

is to find a schedule that minimize the sum of penalty number for early jobs,
which is given by:

ℎ𝑗𝐺𝑗=

ℎ𝑗 𝑖𝑓 𝑑𝑗 > 𝐶𝑗

0 𝑖𝑓 𝑑𝑗 ≤ 𝐶𝑗

 and total weighted of completion time, the objective is to find the schedule
𝜋 = (𝜋 1 , 𝜋 2 , … , 𝜋 𝑛) of the jobs that minimize the total cost R which is
formulated in mathematic form as:

min𝑅 = 𝑚𝑖𝑛𝜋∈𝛿{ ℎ𝑗𝐺𝑗
𝑛
𝑗=1 + 𝑤𝑗𝐶𝑗

𝑛
𝑗=1 }

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐
𝐶𝜋 𝑗 ≥ 𝑝𝜋 𝑗 𝑗 = 1,2,… , 𝑛

𝐶𝜋 𝑗 = 𝐶𝜋 𝑗−1 + 𝑃𝜋 𝑗 𝑗 = 2,3,… , 𝑛

𝐺𝜋(𝑗) ∈ {0,1} 𝑗 = 1,2,… , 𝑛

𝑝𝜋(𝑗) > 0, 𝑑𝜋(𝑗) > 0, 𝑤𝜋(𝑗) > 0, ℎ𝜋(𝑗) > 0

…………(H)

Where 𝛿 the set of all feasible solutions, 𝜋 𝑗 denoted the position of job j in the
ordering π.

Theorem (1)

Journal of Progressive Research in Mathematics(JPRM)

ISSN: 2395-0218

 Volume 13, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm 2153|

For weights ℎ1, ℎ2, … , ℎ𝑛 the following measures are equivalent

 (i) ℎ𝑗𝐺𝑗
𝑛
𝑗=1 (ii) ℎ𝑗𝑈𝑗

𝑛
𝑗=1

Proof:

Let C= 𝑝𝑗
𝑛
𝑗=1 , consider an instance of the weighted number of tardy jobs ℎ𝑗𝑈𝑗

𝑛
𝑗=1

problem. Let 𝑝𝑗
′ = 𝑝𝑗 , ℎ𝑗

′ = ℎ𝑗 and 𝑑𝑗
′ = 𝐶 − 𝑑𝑗 + 𝑝𝑗 for j=1, …, n

Suppose S is an optimal schedule for this instance. Define a schedule 𝑆′ as follows:

If a job j is the 𝑘𝑡ℎ job scheduled in S, then 𝑗 ′ is the (𝑛 − 𝑘 + 1)𝑡ℎ job scheduled in
𝑆′ . Clearly we have 𝐶′𝑗 = 𝐶 − 𝐶𝑗 + 𝑝𝑗 , and

ℎ𝑗𝑈𝑗
′ =

ℎ𝑗𝐶𝑗
′ > 𝑑𝑗

′

0 𝐶𝑗
′ ≤ 𝑑𝑗

′

 =
ℎ𝑗 𝐶 − 𝐶𝑗 + 𝑝𝑗 > 𝐶 − 𝑑𝑗 + 𝑝𝑗
0 𝐶 − 𝐶𝑗 + 𝑝𝑗 ≤ 𝐶 − 𝑑𝑗 + 𝑝𝑗

 =
ℎ𝑗−𝐶𝑗 > −𝑑𝑗

0 −𝐶𝑗 ≤ −𝑑𝑗

 =
ℎ𝑗𝐶𝑗 < 𝑑𝑗

0 𝐶𝑗 ≥ 𝑑𝑗

 =ℎ𝑗𝐺𝑗

Therefore, the minimum weighted number of early jobs is an equivalent with the
minimum weighted number of tardy jobs. Hence as we know that the weighted number
of tardy jobs problem on one machine is NP-hard [10], then the weighted number of
early jobs must also be NP-hard.∎

Algorithm(HY)[3]

The feasible schedule is composed of Set E and Set Q. Set E precedes Set Q, so jobs
in the Set E must be given priority over the jobs in Set Q.

Step 1. Let Set E be empty. Place all jobs in Set Q, and Sequence them according to
the MST rule.

Step 2. Find the last early job in Set Q, say J[k] , in the Current schedule including Set

E and Set Q. If all the jobs in Set Q are non-early, go to Step 4.

Step 3. Find the job in the partial sequence (J[k], J[k+1], … , J[n]) with the longest

processing time, and move it to Set E, which may be sequenced in any order. Return
to Step 2.

Step 4. Generate an optimal schedule by taking Set E preceding Set Q.

3. Problem decomposition

 In this section, the problem (H) is decomposed into five sub problems (𝐻𝑃1),
(𝐻𝑃2), 𝐻𝑃3 , 𝐻𝑃4 and (𝐻𝑃5) which are simple structure of the original problem
as follow:

Journal of Progressive Research in Mathematics(JPRM)

ISSN: 2395-0218

 Volume 13, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm 2154|

i. The (1/ / ℎ𝑗𝐺𝑗
𝑛
𝑗=1) problem, weighted number of early jobs, it is NP-

hard.

𝑅1 = 𝑚𝑖𝑛𝜋∈𝛿 ℎ𝜋(𝑗)
𝑛
𝑗=1 𝐺𝜋(𝑗)

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐
𝐶𝜋 𝑗 ≥ 𝑝𝜋 𝑗 𝑗 = 1,2, … , 𝑛

𝐶𝜋 𝑗 = 𝐶𝜋 𝑗−1 + 𝑝𝜋 𝑗 𝑗 = 2,3, … , 𝑛

 𝐺𝜋(𝑗) ∈ {0,1} 𝑗 = 1,2,… , 𝑛

𝑝𝜋(𝑗) > 0, 𝑑𝜋(𝑗) > 0, ℎ𝜋(𝑗) > 0

………(𝐻𝑃1)

ii. The (1/ / 𝑤𝑖𝐶𝑖
𝑛
𝑖=1) problem, total weighted of completion time which it

solved by (WSPT)[5].

𝑅2 = 𝑚𝑖𝑛𝜋∈𝛿{ 𝑤𝜋(𝑗)𝐶𝜋 𝑗 } 𝑛
𝑗=1

 𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐
𝐶𝜋 𝑗 ≥ 𝑝𝜋 𝑗 𝑗 = 1,2, … , 𝑛

𝐶𝜋 𝑗 = 𝐶𝜋 𝑗−1 + 𝑝𝜋 𝑗 𝑗 = 2,3,… , 𝑛

𝑝𝜋(𝑗) > 0, 𝑤𝜋(𝑗) > 0 𝑗 = 1,2, … , 𝑛

………(𝐻𝑃2)

iii. The (1/ / 𝐺𝑗 + 𝐶𝑗)𝑛
𝑗=1

𝑛
𝑗=1 problem, sum number of early jobs and

completion time, when ℎ𝑗 = 𝑤𝑗 = 1

𝑅3 = 𝑚𝑖𝑛𝜋∈𝛿{ 𝐺𝑗 + 𝐶𝑗 }
𝑛

𝑗=1

𝑛

𝑗=1

 𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐
𝐶𝜋 𝑗 ≥ 𝑝𝜋 𝑗 𝑗 = 1,2,… , 𝑛

𝐶𝜋 𝑗 = 𝐶𝜋 𝑗−1 + 𝑝𝜋 𝑗 𝑗 = 2,3,… , 𝑛

 𝐺𝜋 𝑗 ∈ {0,1} 𝑗 = 1,2,… , 𝑛

𝑝𝜋(𝑗) > 0, 𝑑𝜋(𝑗) > 0 𝑗 = 1,2,… , 𝑛

…(𝐻𝑃3)

iv. The (1/ / 𝐺𝑗 + 𝑤𝑗𝐶𝑗)𝑛
𝑗=1

𝑛
𝑗=1 problem, sum number of early jobs and total

weighted of completion time, when ℎ𝑗 , ∀𝑗

𝑅4 = 𝑚𝑖𝑛𝜋∈𝛿{ 𝐺𝑗 + 𝑤𝑗𝐶𝑗 }
𝑛

𝑗=1

𝑛

𝑗=1

 𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐
𝐶𝜋 𝑗 ≥ 𝑝𝜋 𝑗 𝑗 = 1,2,… , 𝑛

𝐶𝜋 𝑗 = 𝐶𝜋 𝑗−1 + 𝑝𝜋 𝑗 𝑗 = 2,3, … , 𝑛

 𝐺𝜋 𝑗 ∈ {0,1} 𝑗 = 1,2,… , 𝑛

𝑝𝜋(𝑗) > 0, 𝑤𝜋(𝑗) > 0 𝑗 = 1,2,… , 𝑛

… (𝐻𝑃4)

v. The (1/ / ℎ𝑗𝐺𝑗 + 𝐶𝑗)𝑛
𝑗=1

𝑛
𝑗=1 problem sum weighted number of early jobs

and total completion time, when 𝑤𝑗 = 1, ∀𝑗

Journal of Progressive Research in Mathematics(JPRM)

ISSN: 2395-0218

 Volume 13, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm 2155|

𝑅5 = 𝑚𝑖𝑛𝜋∈𝛿{ ℎ𝑗𝐺𝑗 + 𝐶𝑗 }
𝑛

𝑗=1

𝑛

𝑗=1

 𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐
𝐶𝜋 𝑗 ≥ 𝑝𝜋 𝑗 𝑗 = 1,2,… , 𝑛

𝐶𝜋 𝑗 = 𝐶𝜋 𝑗−1 + 𝑝𝜋 𝑗 𝑗 = 2,3,… , 𝑛

 𝐺𝜋 𝑗 ∈ {0,1} 𝑗 = 1,2,… , 𝑛

𝑝𝜋(𝑗) > 0, ℎ𝜋(𝑗) > 0 𝑗 = 1,2,… , 𝑛

…(𝐻𝑃5)

Theorem (2) [11]

𝑅1 + 𝑅2 ≤ 𝑅 where 𝑅1, 𝑅2 and R are the minimum objective function values of
𝐻𝑃1, 𝐻𝑃2 and H respectively.

4. Special Cases

A machine programming downsides of sort NP-hard isn't simply resolvable and it's
tougher once the target operate is multi objective. victimization some Mathematical
programming strategies to seek out best answer for this kind of downside as: dynamic
programming and branch and bound methodology. generally special cases for this
downside are often resolved. A special case for programming downside suggests that
finding best schedule directly while not victimization mathematical programming
techniques. A special case, if it exists, depends on satisfying some conditions so as to
create the matter simply resolvable. These conditions rely on the target operate
additionally because the jobs [12]. during this section, some special cases of downside
(H) are given.

Case (1): WSPT rule is optimal solution for 1/ / ℎ𝑗𝐺𝑗 + 𝑤𝑗𝐶𝑗
𝑛
𝑗=1

𝑛
𝑗=1 problem if

𝐶𝑗 ≥ 𝑑𝑗 for each job j in WSPT.

Proof:

Let 𝜋 be a schedule orderly according to SWPT rule such that 𝐶𝑗 ≥ 𝑑𝑗 for each j ∈

π, then 𝐺𝑗 = 0𝑛
𝑗=1 and the problem 1/ / 𝑤𝑗𝐶𝑗

𝑛
𝑗=1 which is optimal by WSPT

rule [5], then the schedule 𝜋 gives an optimal for 1/ / ℎ𝑗𝐺𝑗 + 𝑤𝑗𝐶𝑗
𝑛
𝑗=1

𝑛
𝑗=1

problem.∎

Case (2): If 𝜋be a scheduling orderly such that
𝑃𝑗

𝑤𝑗
≤
𝑃𝑗+1

𝑤𝑗+1
∀𝑗, 𝑗 = 1,2, … , 𝑛-1, j in 𝜋 and

𝑝1=𝑑1, 𝑝𝑗=𝑑𝑗 − 𝑑𝑗 −1, j=2,…,n then schedule𝜋 is optimal solution for 1/

/ ℎ𝑗𝐺𝑗 + 𝑤𝑗𝐶𝑗
𝑛
𝑗=1

𝑛
𝑗=1

Proof :

 For the conditions 𝑝1=𝑑1 and 𝑝𝑗=𝑑𝑗 − 𝑑𝑗−1 , j∈ 𝜋 we get 𝐶𝑗 = 𝑑𝑗∀j∈ 𝜋 and 𝐸𝑗=0

then the problem (H) reduced to 1/ / 𝑤𝑗𝐶𝑗
𝑛
𝑗=1 which is solved by smith rule [5],

then the schedule 𝜋 is optimal for 1/ / ℎ𝑗𝐺𝑗 + 𝑤𝑗𝐶𝑗
𝑛
𝑗=1

𝑛
𝑗=1 . ∎

Journal of Progressive Research in Mathematics(JPRM)

ISSN: 2395-0218

 Volume 13, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm 2156|

Case (3): If 𝐺𝑗
𝑛
𝑗=1 (WSPT)= 𝐺𝑗

𝑛
𝑗=1 (HY) and ℎ𝑗=1 ∀𝑗 then the WSPT rule gives an

optimal solution for problem (H).

Proof:

As we know that WSPT gives an optimal solution for 1/ / 𝑤𝑗𝐶𝑗
𝑛
𝑗=1 [5] and HY

algorithm gives optimal solution for 1/ / 𝐺𝑗
𝑛
𝑗=1 [3] then WSPT is optimal solution for

1/ / ℎ𝑗𝐺𝑗 + 𝑤𝑗𝐶𝑗
𝑛
𝑗=1

𝑛
𝑗=1 .∎

Case (4): If 𝑤𝑗=𝑝𝑗 , ℎ𝑗=1, then HY algorithm gives an optimal solution for problem

(H).

Proof:

 From 𝑤𝑗 = 𝑝𝑗∀𝑗 we sad that any order gives a solution for problem 𝑤𝑗𝐶𝑗
𝑛
𝑗=1 ,

and the solution of problem H depend upon solution of problem 1// ℎ𝑗𝐺𝑗
𝑛
𝑗=1 but

ℎ𝑗=1 then HY algorithm is optimal solution for problem (H).∎

Case (5): The HY algorithm is optimal solution for 1/𝑝𝑗 = 𝑝, 𝑤𝑗 = 𝑤,ℎ𝑗 = ℎ /
 ℎ𝑗𝐺𝑗
𝑛
𝑗=1 + 𝑤𝑗𝐶𝑗

𝑛
𝑗=1 problem.

Proof:

 Since 𝑝𝑗 = 𝑝 and 𝑤𝑗 = 𝑤∀𝑗 hence any order gives optimal for 1// 𝑤𝑗𝐶𝑗
𝑛
𝑗=1 ,

but the problem ℎ𝑗𝐺𝑗
𝑛
𝑗=1 is solved by HY algorithm (when ℎ𝑗=h), then HY

algorithm is optimal solution for problem H.∎

Case (6): If 𝑤𝑗 = ℎ𝑗 = 1 ∀𝑗 and 𝐺𝑗
𝑛
𝑗=1 (SPT)= 𝐺𝑗

𝑛
𝑗=1 (HY) then SPT rule is optimal

solution for problem (H).

Proof:

Since 𝐺𝑗
𝑛
𝑗=1 (SPT)= 𝐺𝑗

𝑛
𝑗=1 (HY) and SPT gives an optimal solution for 1/ / 𝐶𝑗

𝑛
𝑗=1

[5], then SPT gives an optimal solution for the problem 1/ / ℎ𝑗𝐺𝑗
𝑛
𝑗=1 + 𝑤𝑗𝐶𝑗

𝑛
𝑗=1

with given condition.∎

 Case (7): If ℎ𝑗=1, 𝑑𝑗=d,
𝑝𝑗

𝑤𝑗 =K ∀𝑗 then the LPT(largest processing time) is

optimal solution for the problem H.

proof:

since
𝑝𝑗

𝑤𝑗 =K ∀𝑗 then any order is optimal solution for the problem 1/ / 𝑤𝑗𝐶𝑗
𝑛
𝑗=1

and the problem (H) is depends on 1/ / ℎ𝑗𝐺𝑗
𝑛
𝑗=1 . Since ℎ𝑗=1 and 𝑑𝑗=d then the

LPT rule is optimal for 𝐺𝑗
𝑛
𝑗=1 and its optimal solution for the problem (H).∎

Case (8): if 𝑝𝑗 < 𝑑𝑛
𝑗=1 , d=min{𝑑𝑗 }, 𝑗 = 1,2,… , 𝑛 then (WSPT) is the optimal

solution for the problem 1/ / ℎ𝑗𝐺𝑗
𝑛
𝑗=1 + 𝑤𝑗𝐶𝑗

𝑛
𝑗=1 .

proof:

Journal of Progressive Research in Mathematics(JPRM)

ISSN: 2395-0218

 Volume 13, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm 2157|

 from 𝑝𝑗 < 𝑑𝑛
𝑗=1 and d=min{𝑑𝑗 } ∀𝑗, clearly 𝐶𝑗<𝑑𝑗 for any order, then all the jobs

are early for any order and ℎ𝑗𝐺𝑗
𝑛
𝑗=1 = ℎ𝑗

𝑛
𝑗=1 it's constant. So(WSPT) is optimal

solution for the problem 1/ / ℎ𝑗𝐺𝑗
𝑛
𝑗=1 + 𝑤𝑗𝐶𝑗

𝑛
𝑗=1 .∎

5. Branch and Bound (BAB) Method
 Our branch and bound algorithm uses forward sequencing branching rule for
which nodes at level (L) of the search tree correspond to initial partial sequenced in
the first (L) positions.

5.1 Upper bound (UB)

 We suggest a heuristic method which is applied at the root node of the branch
tree to find an upper bound UB on the minimize value of problem (H).

 Algorithm of (UB):-

Step (1):-

Ordered the jobs by WSPT rule to get the sequence 𝜋 = (𝜋 1 , 𝜋 2 , … , 𝜋 𝑛) let L=0,
T=0 and i=1.

Step (2) :-

If
𝑝𝜋(𝑖)

𝑤𝜋(𝑖)
=

𝑝𝜋(𝑗)

𝑤𝜋(𝑗)
, then ordered the jobs i, j according to the MST rule.

Step (3) :-

Compute the completion time for each job j in 𝜋, 𝐶𝜋(𝑗)= 𝑝𝜋(𝑖)
𝑗
𝑖=1 .

Step (4) :-

If 𝑑𝜋(𝑗) > 𝐶𝜋(𝑗), set L=L+ℎ𝜋(𝑗)and 𝑇 = 𝑇 + 𝑤𝜋(𝑗)𝐶𝜋(𝑗). Go to step (5); otherwise, set

𝑇 = 𝑇 + 𝑤𝜋(𝑗)𝐶𝜋(𝑗).

Step (5):-

 Set i=i+1, if i ≤ n go to step 2, otherwise

UB=L+T.

Step (6):- Stop.

6. Derivation of Lower Bound

The lower bound for the problem H is based on decomposed problem H to two
sub problems 𝐻𝑃1 and 𝐻𝑃2 . Moreover, calculated R1 and R2 to be the lower bounds
for 𝐻𝑃1 and 𝐻𝑃2respectively as in section (2.3), and applied theorem (2.1) to get a
lower bound LB for problem H.

for sub problem 𝐻𝑃1we relax the penalty of early jobs by putting h=min{ℎ𝑗 }for

j=1,…,n then applying (HY) algorithm 𝑅1= 𝐺𝑗ℎ
𝑛
𝑗=1 . in addition, for problem 𝐻𝑃2 ,

𝑅2= 𝑤𝑗𝐶𝑗
𝑛
𝑗=1 (WSPT), hence LB =𝑅1 + 𝑅2, is initial lower bound which is used in

root node of search tree.

Journal of Progressive Research in Mathematics(JPRM)

ISSN: 2395-0218

 Volume 13, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm 2158|

Below we gives an example to illustrates the procedures of the lower and upper bounds

1. Example: consider the six jobs in table below.

J 1 2 3 4 5 6

𝒑𝒋 3 5 6 9 11 15

𝒅𝒋 41 24 50 30 23 42

𝒘𝒋 9 5 8 6 14 11

𝒉𝒋 8 10 9 6 13 5

𝑺𝒋 38 19 44 21 12 27

Solution:

 Let A=∅, B=MST, π=∅, set A precedes B Job 3 is the last early job in B then
A=(3), B=(5,2,4,6,1)

Job 2 is the last early job in B and job 6 is larger processing time from any job
after job 2, then A=(6,3), B=(5,2,4,1)

Clearly is not early job in B, then π=(6,3,5,2,4,1)

 𝐺𝑗
𝑛
𝑗=1 = 2, and h = min(ℎ𝑗)=5, j=1,2,…,6

𝐿𝐵1= 𝐺𝑗ℎ 𝑛
𝑗=1 = 2(5) = 10

LB2 = 1238, LB = LB1+LB2 = 10+1238 =1248

UB=1273

 optimal schedule is(1,3,5,2,6,4)with optimal cost is 1273.

7. Dominance Rule

Because of branching theme, the scale of the search tree is directly joined to the length
of this sequence (which represents the amount of nodes). Hence, a preprocessing step
is performed so as to get rid of as several positions as attainable. Reducing this
sequence is completed by victimization many dominance rules. Dominance rules
typically specify whether or not a node may be eliminated before its edge is calculated.
Clearly, dominance rules are notably helpful once a node may be eliminated that
features an edge that's not up to the optimum solution[12]. a number of dominance
rules are valid for decrease of the sum of weighted number of early jobs and total
weighted completion time. As within the a preprocessing step, similar dominance rules
also are used at intervals the branch and bound procedure to chop nodes that's
dominated by others. These enhancements result in terribly massive decrease within
the variety of nodes to get the best answer.

Journal of Progressive Research in Mathematics(JPRM)

ISSN: 2395-0218

 Volume 13, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm 2159|

 Below state dominance rule to decrease the number of nodes in search tree as well
as decreasing the time.

Theorem(7.1): Let 𝛿𝑘 be a partial sequence 𝑘 ⊂ 𝑁 for 𝑖, 𝑗 ∈ 𝑘 = 𝑁 − 𝑘 and let 𝐶 be a
completion time of last job in 𝛿𝑘 , if 𝑝𝑖 ≤ 𝑝𝑗 , 𝑤𝑖 ≥ 𝑤𝑗 and 𝐶 ≥ max⁡{𝑑𝑖 , 𝑑𝑗 }. Then 𝑖 ≺ 𝑗 in

optimal solution for the problem H.

Proof:

Let (𝛿𝑘 , 𝑗, 𝑖) be the schedule which is obtained by interchanging jobs 𝑖 and 𝑗in (𝛿𝑘 , 𝑖, 𝑗).

Since 𝐶 ≥ 𝑑𝑖 and 𝐶 ≥ 𝑑𝑗 , then the jobs 𝑖 𝑎𝑛𝑑 𝑗 are late i.e.ℎ𝑖𝐺𝑖 = ℎ𝑗𝐺𝑗 = 0. So the effect

on the cost depends only on weighted completion time. Since 𝑝𝑖 ≤ 𝑝𝑗 , 𝑤𝑖 ≥ 𝑤𝑗 then
𝑝𝑖

𝑤 𝑖
≤

𝑝𝑗

𝑤𝑗
 and 𝑖 ≺ 𝑗 in optimal solution for the problem (H).∎

8. Computational Experience
 An intensive work of numerical experimentations has been performed. We first
present in subsection (8.1) how instances (test problems) can be randomly generated.

8.1 Test Problems

The data were generated in this paper in the same way as in [13] that generates as
follows:

 The processing time Pj is uniformly distributed in the interval [1,10].

 The due date di is uniformly distributed in the interval

[P(1-TF-RDD/2),P(1-TF+RDD/2)]; where 𝑃 = 𝑃𝑗
𝑛
𝑗=1 depending on the relative range of

due date (RDD) and on the average tardiness factor (TF).

 The an integer weights 𝑤𝑗 were generated from uniform

distribution [1,10].

 The an integer penalty ℎ𝑗 were generated from uniform

 distribution[1,10].

For both parameters, the values 0.2, 0.4, 0.6, 0.8 and 1.0 are considered. For each
selected value of n (where n is the number of jobs), ten problems were generated.

8.2. Computational Experience with the Lower and Upper

Bound of (BAB) Algorithm

 The BAB algorithm was tested by coding it in MATLAB 8.3.0 (R2014a) and
implemented on Intel (R) Core(TM) i3-6100U CPU @ 2.30 GHZ, with RAM 4.00 GB
personal computer.

Journal of Progressive Research in Mathematics(JPRM)

ISSN: 2395-0218

 Volume 13, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm 2160|

Table (1.1) and table(1.2) illustrates the results for problem (H) obtained by(BAB)
algorithm, we list 10 problems for each value of n, where n ∈{5,10,15,20,25,30},
and the optimal value, upper bound (UB), initial lower bound (ILB), the number of
generated nodes (Nodes), the computational time in second (Time), and the number of
unsolved problems (Status) and table (1.3) shows the results for problem (H) number
of example which can solved in number of nodes of BAB algorithm.

 The stopping condition for the BAB algorithm was determined and we consider that
the problem is unsolved (state is 1), that the BAB algorithm is stopped after a fixed
period of time, here after 30 minutes.

 We observed from table (1.1), the heuristics of upper bound is good algorithm. It
gives the value for objective function equal or near optimal value.

From the observation of the table (2.1) we find that the method of branch and bound
(BAB) gives the optimal solution comparable to the method of complete enumeration
(CE) Method.

Table (2.1) Compare between BAB and CE

Table (1.1): The performance of initial number of nodes and computational time in
second of BAB algorithm.

N AV. of opt. AV. Of time AV. Of nodes
no. of

un sol.

5 274.6 0.0097 12.1 0

10 1166.8 0.0418 193.3 0

15 2402.8 2.4798 13924 0

20 3531 8.6435 37100.3 0

25 5948.5 856.9530 1369890.3 1

30 7888.6 671.14604 2134214.5 2

n BAB CE

5 260 260

6 437 437

7 471 471

8 666 666

9 761 761

10 631 631

Journal of Progressive Research in Mathematics(JPRM)

ISSN: 2395-0218

 Volume 13, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm 2161|

Table (1.2): The performance of initial lower bound, upper bound, number of nodesand
computational time in second of BAB algorithm (n=25)

n EX Optimal UB ILB Nodes Time Status

25

1 5499 5510 5453 22854 4.1230 0

2 6073 6073* 6041 2060 0.3679 0

3 6064 6064* 5978 562765 120.9006 0

4 5547 5547* 5494 37387 7.1316 0

5 6717 6726 6668 20063 3.6163 0

6 6696 6701 6618 1414914 265.6157 0

7 5271 5283 5219 1795998 393.1902 0

8 5975 5975* 5910 171254 30.7993 0

9 5660 5669 5646 1219 0.2178
0

10 5983 5983* 5897 9670389 1800 1

no of opt. 5 0 _ _ _

Optimal = the optimal value obtained by BAB method.

UB = upper bound.

ILB = initial lower bound.

Nodes = the number of generated nodes.

Time = Computational time in seconds.

* = The upper bound gives the optimal value.

** = The initial lower bound gives the optimal value.

Status=
0 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 𝑠𝑜𝑙𝑣𝑒𝑑

1 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠𝑛′𝑡 𝑠𝑜𝑙𝑣𝑒𝑑

Table (1.3): The performance of number of example which solved in number of
nodes of BAB algorithm For a table (1.1).

Journal of Progressive Research in Mathematics(JPRM)

ISSN: 2395-0218

 Volume 13, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm 2162|

Table(1.3): number of example which solved in number of nodes in branch tree

 n

no.of nodes

5
10 15 20 25 30

0-100 10 3 1

101-500 6 2 2

501-1000 1 4 1

1001-
10000

 3 6 2 1

10001-
100000

 3 1

100001-
500000

 1 1 1

500001-
1000000

 1 1

1000001-
20000000

 3 6

REFERENCES

[1] A. Lann, and G. Mosheiov, “Single machine scheduling to minimize the number of

early and tardy jobs.” Computers & Operations Research, vol. 8, pp. 769-781,

1996.

[2] A. Lann, and G. Mosheiov, “A note on the maximum number of on-time jobs on

parallel identical machines”. Computers & Operations Research, vol. 30,

pp.1745-1749, 2003.

[3] Huang RH and Yang CL (2007). "Single-machine scheduling to minimize the

number of early jobs". Proceedings of the IEEE International Conference on

Industrial Engineering and Engineering Management, 2–4 December, pp. 955,

957, doi: 10.1109/IEEM.2007.4419333.

[4] Baruch Mor and GurMosheiov ''Minimizing the number of early jobs on a

proportionate flowshop'' Journal of the Operational Research Society (2014), 1–

4.

[5] Smith, W.E., "Various optimizers for single stage production", Naval Research

Logistics Quarterly 3/1, 59-66 (1956).

Journal of Progressive Research in Mathematics(JPRM)

ISSN: 2395-0218

 Volume 13, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm 2163|

[6] E. L. Lawler, Sequencing jobs to minimize total weighted completion time subject

to precedence constraints. Ann. Discrete. Math. 2, (1978) 75-90.

[7] J. K. Lenstra and A. H. G. RinnooyKan, Complexity of scheduling under

precedence constraints. Ops. Res,. 26 (1978) 22-35.

[8] A. H. G. RinnooyKan; B. J. Lageweg and J. K. Lenstra, Minimizing total costs in

one-machine scheduling, Oper, Res. 23 (1975) 908-927.

[9] C. N. Potts, A Lagrangean based branch and bound algorithm for single machine

sequencing with precedence constraints to minimize total weighted completion

time, Management Science, Vol. 31, No. 10, October (1985) 1300-1311.

[10] R. M. Karp, Reducibility among combinatorial problems. In complexity of

computer computations, Miller, R. E. and Thatcher, J. W. Eds. Plenum Press, New

York (1972) 95-103.

[11] Araibi S.M., "Machine Scheduling Problem to Minimize Two and Three Objectives

Function" M.Sc thesis, Dept. of mathematics, college of Education for Pure

Sciences, Thi-Qar University (2012).

[12] Husein, N.A.,'' Machine Scheduling Problem to Minimize Multiple Objective

Function'', M.Sc thesis, Dept. of Mathematics College of Education (Ibn AL-

Haitham), Baghdad University (2012).

[13] Abdul-Razaq, T.S., Potts C.N. and Van Wassenhove, ''A survey of algorithms for

the single machine total weighted tardiness scheduling problem'', Discrete App.

Math. 26235-253(1990).

