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 Abstract 

     In this paper, the problem of sequencing a set of n jobs on single machine was considered 

to minimize multiple objectives function (MOF). The objective  is to find the optimal  solution 

(scheduling) for n independent jobs to minimize the objective function consists of a sum  of  

weighted number  of  early  jobs  and  total  weighted of completion time. This problem is 

strongly NP-hard and to resolve it we derived two lower bounds (LB1, LB2) and heuristic 

method to get an upper bound which are used in root node of branch and bound tree. Some 

special cases and dominance rule were proposed and proved. Results of extensive 

computational tests show that the proposed (BAB) algorithm effective in solving problems 

with up to (30) jobs in time less than or equal to (30) minutes. 

 Keywords: Single machine; Scheduling; number of early jobs; completion time. 

 

1. Introduction  

 We consider the scheduling n jobs on a single machine to minimize the bi-criteria 
problems. Our objective is to find a schedule that minimize sum of weighted number  of 
early  jobs  and  total  weighted of completion time, with condition all  jobs are 
available at time zero. we denoted to this problem  by  ℎ𝑗𝐺𝑗 +  𝑤𝑗𝐶𝑗

𝑛
𝑗=1

𝑛
𝑗=1   where ℎ𝑗  

the penalty of early job j, ℎ𝑗 ≥ 1 and 𝑤𝑗  the weighted  number of completion time for 

job j,𝑤𝑗 ≥ 1. 

Clearly that our  problem consist of two sub problems. The  first one 1/ /  ℎ𝑗𝐺𝑗
𝑛
𝑗=1 it is 

NP-hard problem. When ℎ𝑗=1, ∀𝑗 that is 1/  /  Gj
n
j=1   the number of early jobs  is p-

Type and it's studied firstly by Lann and Mosheiov [1]. They developed an polynomial-
time algorithm to find the minimum number  of early and tardy  jobs on a single-
machine where machine idle time is permitted.  Furthermore Lann and Mosheiov[2] 
solves the problem of the maximum number of on-time jobs on parallel identical 
machines. Huang RH and Yang CL (2007)[3], solved the 1/ /  𝐺𝑗

𝑛
𝑗=1 problem in 

polynomial time, and successfully developing such an algorithm. Computational 
performance of this algorithm on problems with various sizes is provided. Baruch Mor 
and GurMosheiov(2014) they studied the number of early jobs on aproportionate 
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flowshop[4]. The problem 1/ / WjCj
n
j=1  is solved  by  The shortest weighted 

processing time (SWPT) rule of Smith[5]. In the case of  Wj = 1  j ∈ N  the 

base(shortest processing time rule)(STP) Give solution to the problem  1/ / Cj
n
j=1 . But 

if conditions add precedence the  problem  becomes  NP-hard, even in the case where it 

is pj = 1 or Wj=1∀j [6,7]. Branch and bound  algorithms have been used  to the  

problem  1/prec / WjCj
n
j=1  By many researchers  remind  them Ronnie et al (1975)[8].   

Potts (1981) and Potts (1985)[9] gives the best algorithms to resolve the matter, 
where he was able problem solving up to 100 job. 

2. Formulation of  the  problem  

Single  machine   scheduling   models  seem  to  be  very   important   for  understanding  
and  modeling   multiple   machines   models.  A  set  N={1,2,…,n} of  n  independent  
jobs  has  to  be  scheduled  on a single  machine  in  order  to  optimize   a given  
criterion. 

This  study  concerns   the  one  machine  scheduling  problem  with   multiple   
objectives  function which is denoted  by  (1/  / (ℎ𝑗

𝑛
𝑗=1 𝐺𝑗 + 𝑤𝑗𝐶𝑗 )). 

In  this  problem,  preemption  is  not  allowed,  no  precedence   relation  among  jobs  
is  assumed and all jobs are available at the time zero, (that is 𝑟𝑗=0 ∀𝑗).  Each job  j  has  

positive  integer  processing  time  𝑝𝑗 , due date  𝑑𝑗  with weighted (importance weight 

for completion time of job j) 𝑤𝑗  and positive number (penalty for early of job j) ℎ𝑗 .  

     The start time of job j is denoted by 𝑡𝑗 , (𝑡𝑗  ≥ 0) and its completion time by 𝐶𝑗 , 

(𝐶𝑗 = 𝑡𝑗 + 𝑝𝑗 ), if job  j completed  befor it's  due  date  (𝐶𝑗 < 𝑑𝑗 then  𝐺𝑗=1) and  job j  is  

said to be early   otherwise  (𝐶𝑖 ≥ 𝑑𝑖 , then  𝐺𝑗=0), and job j is said to be late job or just 

in time,  for  each  job  j  can  be  calculate  the  slack  time  𝑆𝑗 = 𝑑𝑗 − 𝑝𝑗 .  Our  objective  

is to  find  a  schedule  that  minimize  the  sum  of  penalty number    for  early  jobs,  
which is  given  by: 

ℎ𝑗𝐺𝑗= 

ℎ𝑗                    𝑖𝑓                      𝑑𝑗 > 𝐶𝑗

0                   𝑖𝑓                      𝑑𝑗 ≤ 𝐶𝑗

  

 and  total  weighted of completion  time,  the  objective  is  to  find   the  schedule  
𝜋 = (𝜋 1 , 𝜋 2 , … , 𝜋 𝑛 ) of  the  jobs  that  minimize  the  total  cost  R which  is  
formulated   in  mathematic   form  as: 

 

min𝑅 = 𝑚𝑖𝑛𝜋∈𝛿{ ℎ𝑗𝐺𝑗
𝑛
𝑗=1 +  𝑤𝑗𝐶𝑗

𝑛
𝑗=1 }      

𝒔𝒖𝒃𝒋𝒆𝒄𝒕  𝒕𝒐                                                                     
𝐶𝜋 𝑗  ≥ 𝑝𝜋 𝑗                           𝑗 = 1,2,… , 𝑛

𝐶𝜋 𝑗  = 𝐶𝜋 𝑗−1 + 𝑃𝜋 𝑗   𝑗 = 2,3,… , 𝑛  

𝐺𝜋(𝑗 ) ∈ {0,1}               𝑗 = 1,2,… , 𝑛   

𝑝𝜋(𝑗 ) > 0,   𝑑𝜋(𝑗 ) > 0,    𝑤𝜋(𝑗 ) > 0,   ℎ𝜋(𝑗 ) > 0  
 
 
 

 
 
 

…………(H) 

Where  𝛿 the set  of  all  feasible  solutions, 𝜋 𝑗 denoted  the  position  of  job  j  in  the  
ordering  π. 

Theorem (1) 
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For  weights  ℎ1, ℎ2, … , ℎ𝑛   the   following   measures  are   equivalent  

  (i) ℎ𝑗𝐺𝑗
𝑛
𝑗=1         (ii) ℎ𝑗𝑈𝑗

𝑛
𝑗=1  

Proof: 

Let  C= 𝑝𝑗
𝑛
𝑗=1 ,  consider an instance  of  the  weighted number of tardy jobs   ℎ𝑗𝑈𝑗

𝑛
𝑗=1   

problem. Let  𝑝𝑗
′ = 𝑝𝑗 , ℎ𝑗

′ = ℎ𝑗  and 𝑑𝑗
′ = 𝐶 − 𝑑𝑗 + 𝑝𝑗  for j=1, …, n 

Suppose  S is an optimal schedule for this instance. Define  a schedule 𝑆′   as follows:  

If a job  j  is the 𝑘𝑡ℎ  job  scheduled  in S, then 𝑗 ′  is the (𝑛 − 𝑘 + 1)𝑡ℎ  job  scheduled  in   
𝑆′ .  Clearly   we  have 𝐶′𝑗 = 𝐶 − 𝐶𝑗 + 𝑝𝑗 ,  and  

ℎ𝑗𝑈𝑗
′  =  

ℎ𝑗𝐶𝑗
′ > 𝑑𝑗

′

0                           𝐶𝑗
′ ≤ 𝑑𝑗

′
  

          = 
ℎ𝑗             𝐶 − 𝐶𝑗 + 𝑝𝑗 > 𝐶 − 𝑑𝑗 + 𝑝𝑗
0              𝐶 − 𝐶𝑗 + 𝑝𝑗 ≤ 𝐶 − 𝑑𝑗 + 𝑝𝑗

  

          = 
ℎ𝑗−𝐶𝑗 > −𝑑𝑗

0                        −𝐶𝑗 ≤ −𝑑𝑗
  

          = 
ℎ𝑗𝐶𝑗 < 𝑑𝑗

0                           𝐶𝑗 ≥ 𝑑𝑗
  

          =ℎ𝑗𝐺𝑗  

Therefore, the minimum weighted number of early jobs is an equivalent with  the 
minimum weighted number of tardy jobs. Hence as we know that the weighted number 
of tardy jobs problem on one machine is NP-hard [10], then the weighted number of 
early jobs must also be NP-hard.∎ 

Algorithm(HY)[3] 

The  feasible  schedule  is  composed  of Set E and Set Q.  Set  E  precedes  Set  Q, so jobs 
in the  Set  E  must  be  given  priority  over  the  jobs  in  Set Q. 

Step 1. Let  Set  E  be empty. Place all jobs in Set Q, and Sequence  them  according  to  
the  MST  rule. 

Step 2. Find the last early job in Set Q, say  J[k] , in the Current   schedule  including  Set  

E  and  Set  Q. If all the jobs in Set Q are non-early, go to Step 4. 

Step 3. Find  the  job  in the  partial  sequence (J[k], J[k+1], … , J[n])  with the longest 

processing time, and  move  it  to  Set  E, which  may  be sequenced in any order. Return 
to Step 2. 

Step 4. Generate an optimal schedule by taking Set E preceding Set Q. 

3.  Problem  decomposition 

        In this  section,  the  problem  (H) is  decomposed  into  five  sub  problems   (𝐻𝑃1), 
(𝐻𝑃2),  𝐻𝑃3 ,  𝐻𝑃4  and (𝐻𝑃5) which  are  simple  structure  of  the  original  problem  
as  follow: 
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i.  The (1/  / ℎ𝑗𝐺𝑗
𝑛
𝑗=1 ) problem, weighted  number   of    early  jobs, it  is NP-

hard.  

 

𝑅1 = 𝑚𝑖𝑛𝜋∈𝛿  ℎ𝜋(𝑗 )
𝑛
𝑗=1 𝐺𝜋(𝑗 ) 

𝒔𝒖𝒃𝒋𝒆𝒄𝒕  𝒕𝒐  
𝐶𝜋 𝑗  ≥ 𝑝𝜋 𝑗                       𝑗 = 1,2, … , 𝑛

𝐶𝜋 𝑗  = 𝐶𝜋 𝑗−1 + 𝑝𝜋 𝑗  𝑗 = 2,3, … , 𝑛

 𝐺𝜋(𝑗 ) ∈ {0,1}                  𝑗 = 1,2,… , 𝑛

𝑝𝜋(𝑗 ) > 0,   𝑑𝜋(𝑗 ) > 0,    ℎ𝜋(𝑗 ) > 0  
  
 

  
 

………( 𝐻𝑃1)   

ii. The (1/  / 𝑤𝑖𝐶𝑖
𝑛
𝑖=1  ) problem, total  weighted of completion  time  which it 

solved  by (WSPT)[5]. 

 

𝑅2 = 𝑚𝑖𝑛𝜋∈𝛿{ 𝑤𝜋(𝑗 )𝐶𝜋 𝑗  }  𝑛
𝑗=1

        𝒔𝒖𝒃𝒋𝒆𝒄𝒕  𝒕𝒐                                                              
𝐶𝜋 𝑗  ≥ 𝑝𝜋 𝑗                              𝑗 = 1,2, … , 𝑛

𝐶𝜋 𝑗  = 𝐶𝜋 𝑗−1 + 𝑝𝜋 𝑗           𝑗 = 2,3,… , 𝑛 

𝑝𝜋(𝑗 ) > 0,   𝑤𝜋(𝑗 ) > 0           𝑗 = 1,2, … , 𝑛  
 
 

 
 

………( 𝐻𝑃2) 

iii. The (1/ / 𝐺𝑗 +  𝐶𝑗 )𝑛
𝑗=1

𝑛
𝑗=1 problem, sum number of early jobs and 

completion time, when ℎ𝑗 = 𝑤𝑗 = 1 

 

𝑅3 = 𝑚𝑖𝑛𝜋∈𝛿{ 𝐺𝑗 +  𝐶𝑗 }
𝑛

𝑗=1

𝑛

𝑗=1

      𝒔𝒖𝒃𝒋𝒆𝒄𝒕  𝒕𝒐                                                              
𝐶𝜋 𝑗  ≥ 𝑝𝜋 𝑗                              𝑗 = 1,2,… , 𝑛

𝐶𝜋 𝑗  = 𝐶𝜋 𝑗−1 + 𝑝𝜋 𝑗           𝑗 = 2,3,… , 𝑛 

                 𝐺𝜋 𝑗  ∈ {0,1}                         𝑗 = 1,2,… , 𝑛

𝑝𝜋(𝑗 ) > 0,   𝑑𝜋(𝑗 ) > 0           𝑗 = 1,2,… , 𝑛  
 
 
 
 

 
 
 
 

…(𝐻𝑃3) 

 

iv. The (1/  / 𝐺𝑗 +  𝑤𝑗𝐶𝑗 )𝑛
𝑗=1

𝑛
𝑗=1  problem, sum number of early jobs and total 

weighted of completion time, when ℎ𝑗 , ∀𝑗 

 

𝑅4 = 𝑚𝑖𝑛𝜋∈𝛿{ 𝐺𝑗 +  𝑤𝑗𝐶𝑗 }
𝑛

𝑗=1

𝑛

𝑗=1

      𝒔𝒖𝒃𝒋𝒆𝒄𝒕  𝒕𝒐                                                              
𝐶𝜋 𝑗  ≥ 𝑝𝜋 𝑗                              𝑗 = 1,2,… , 𝑛

𝐶𝜋 𝑗  = 𝐶𝜋 𝑗−1 + 𝑝𝜋 𝑗           𝑗 = 2,3, … , 𝑛 

               𝐺𝜋 𝑗  ∈ {0,1}                         𝑗 = 1,2,… , 𝑛

𝑝𝜋(𝑗 ) > 0,   𝑤𝜋(𝑗 ) > 0           𝑗 = 1,2,… , 𝑛  
 
 
 
 

 
 
 
 

… (𝐻𝑃4) 

v. The (1/  / ℎ𝑗𝐺𝑗 +  𝐶𝑗 )𝑛
𝑗=1

𝑛
𝑗=1  problem sum weighted  number  of early jobs 

and total  completion  time, when 𝑤𝑗 = 1, ∀𝑗 
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𝑅5 = 𝑚𝑖𝑛𝜋∈𝛿{ ℎ𝑗𝐺𝑗 +  𝐶𝑗 }
𝑛

𝑗=1

𝑛

𝑗=1

      𝒔𝒖𝒃𝒋𝒆𝒄𝒕  𝒕𝒐                                                              
𝐶𝜋 𝑗  ≥ 𝑝𝜋 𝑗                              𝑗 = 1,2,… , 𝑛

𝐶𝜋 𝑗  = 𝐶𝜋 𝑗−1 + 𝑝𝜋 𝑗           𝑗 = 2,3,… , 𝑛 

                   𝐺𝜋 𝑗  ∈ {0,1}                         𝑗 = 1,2,… , 𝑛

𝑝𝜋(𝑗 ) > 0,   ℎ𝜋(𝑗 ) > 0           𝑗 = 1,2,… , 𝑛  
 
 
 
 

 
 
 
 

…(𝐻𝑃5) 

 

 

Theorem (2) [11] 

𝑅1 + 𝑅2 ≤ 𝑅   where  𝑅1,  𝑅2   and  R  are  the  minimum  objective   function   values  of  
𝐻𝑃1, 𝐻𝑃2  and   H  respectively. 

4.  Special Cases 

A machine programming downsides of sort NP-hard isn't simply resolvable and it's 
tougher once the target operate is multi objective. victimization some Mathematical 
programming strategies to seek out best answer for this kind of downside as: dynamic 
programming and branch and bound methodology. generally special cases for this 
downside are often resolved. A special case for programming downside suggests that 
finding best schedule directly while not victimization mathematical programming 
techniques. A special case, if it exists, depends on satisfying some conditions so as to 
create the matter simply resolvable. These conditions rely on the target operate 
additionally because the jobs [12]. during this section, some special cases of downside 
(H) are given. 

Case (1): WSPT rule is optimal solution for  1/  / ℎ𝑗𝐺𝑗 +  𝑤𝑗𝐶𝑗
𝑛
𝑗=1

𝑛
𝑗=1   problem if  

𝐶𝑗 ≥ 𝑑𝑗   for each job j in WSPT. 

Proof: 

Let 𝜋 be a schedule  orderly  according   to  SWPT  rule  such that  𝐶𝑗 ≥ 𝑑𝑗   for  each j ∈ 

π, then   𝐺𝑗 = 0𝑛
𝑗=1    and  the  problem  1/  / 𝑤𝑗𝐶𝑗

𝑛
𝑗=1   which  is  optimal  by  WSPT  

rule  [5],  then  the  schedule 𝜋  gives an optimal  for 1/  / ℎ𝑗𝐺𝑗 +  𝑤𝑗𝐶𝑗
𝑛
𝑗=1

𝑛
𝑗=1  

problem.∎ 

Case (2): If 𝜋be a scheduling orderly such that  
𝑃𝑗

𝑤𝑗
≤
𝑃𝑗+1

𝑤𝑗+1
∀𝑗, 𝑗 = 1,2, … , 𝑛-1, j in 𝜋   and  

𝑝1=𝑑1,  𝑝𝑗=𝑑𝑗 − 𝑑𝑗 −1,  j=2,…,n  then   schedule𝜋 is  optimal  solution  for  1/  

/ ℎ𝑗𝐺𝑗 +  𝑤𝑗𝐶𝑗
𝑛
𝑗=1

𝑛
𝑗=1  

Proof :  

       For the conditions 𝑝1=𝑑1 and 𝑝𝑗=𝑑𝑗 − 𝑑𝑗−1 ,  j∈ 𝜋   we get  𝐶𝑗 = 𝑑𝑗∀j∈ 𝜋  and  𝐸𝑗=0  

then  the  problem  (H)  reduced  to 1/  / 𝑤𝑗𝐶𝑗
𝑛
𝑗=1   which  is  solved  by  smith rule  [5],  

then  the  schedule  𝜋  is  optimal  for  1/  / ℎ𝑗𝐺𝑗 +  𝑤𝑗𝐶𝑗
𝑛
𝑗=1

𝑛
𝑗=1 . ∎ 
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Case (3):  If   𝐺𝑗
𝑛
𝑗=1 (WSPT)= 𝐺𝑗

𝑛
𝑗=1 (HY) and  ℎ𝑗=1 ∀𝑗  then  the WSPT rule gives  an 

optimal  solution  for  problem  (H). 

Proof:  

As we know that WSPT gives an optimal solution for 1/ / 𝑤𝑗𝐶𝑗
𝑛
𝑗=1 [5] and HY 

algorithm gives optimal solution for 1/ / 𝐺𝑗
𝑛
𝑗=1 [3] then WSPT is optimal solution for 

1/  / ℎ𝑗𝐺𝑗 +  𝑤𝑗𝐶𝑗
𝑛
𝑗=1

𝑛
𝑗=1 .∎ 

Case (4): If 𝑤𝑗=𝑝𝑗 , ℎ𝑗=1, then HY algorithm gives an optimal  solution  for  problem  

(H). 

Proof:  

      From  𝑤𝑗 = 𝑝𝑗∀𝑗  we sad that any  order  gives a solution for  problem   𝑤𝑗𝐶𝑗
𝑛
𝑗=1 , 

and  the solution of  problem  H  depend upon solution of problem   1// ℎ𝑗𝐺𝑗
𝑛
𝑗=1 but  

ℎ𝑗=1 then  HY  algorithm is  optimal  solution  for  problem  (H).∎ 

Case (5): The HY algorithm is optimal solution for  1/𝑝𝑗 = 𝑝, 𝑤𝑗 = 𝑤,ℎ𝑗 = ℎ /
 ℎ𝑗𝐺𝑗
𝑛
𝑗=1 + 𝑤𝑗𝐶𝑗

𝑛
𝑗=1  problem. 

Proof:  

         Since  𝑝𝑗 = 𝑝  and 𝑤𝑗 = 𝑤∀𝑗  hence  any  order  gives optimal  for  1// 𝑤𝑗𝐶𝑗
𝑛
𝑗=1 ,  

but  the  problem   ℎ𝑗𝐺𝑗
𝑛
𝑗=1   is  solved  by  HY algorithm (when  ℎ𝑗=h ),  then  HY 

algorithm  is  optimal   solution  for problem H.∎ 

Case (6): If 𝑤𝑗 = ℎ𝑗 = 1  ∀𝑗   and  𝐺𝑗
𝑛
𝑗=1 (SPT)= 𝐺𝑗

𝑛
𝑗=1 (HY) then  SPT rule is  optimal  

solution  for  problem  (H).  

Proof: 

Since  𝐺𝑗
𝑛
𝑗=1 (SPT)= 𝐺𝑗

𝑛
𝑗=1 (HY) and  SPT gives an optimal   solution  for 1/  /  𝐶𝑗

𝑛
𝑗=1  

[5],  then  SPT gives  an  optimal   solution  for  the  problem  1/  / ℎ𝑗𝐺𝑗
𝑛
𝑗=1 + 𝑤𝑗𝐶𝑗

𝑛
𝑗=1  

with given condition.∎ 

 Case (7): If ℎ𝑗=1, 𝑑𝑗=d,  
𝑝𝑗

𝑤𝑗 =K  ∀𝑗  then the LPT( largest  processing  time ) is  

optimal  solution  for  the  problem  H. 

proof: 

since 
𝑝𝑗

𝑤𝑗 =K  ∀𝑗 then  any  order is  optimal solution for the problem  1/  /  𝑤𝑗𝐶𝑗
𝑛
𝑗=1  

and  the problem  (H)  is  depends on   1/   / ℎ𝑗𝐺𝑗
𝑛
𝑗=1 .  Since  ℎ𝑗=1  and 𝑑𝑗=d then  the 

LPT rule is optimal  for 𝐺𝑗
𝑛
𝑗=1   and its  optimal  solution  for  the  problem (H).∎ 

 

Case (8): if   𝑝𝑗 < 𝑑𝑛
𝑗=1 , d=min{𝑑𝑗 }, 𝑗 = 1,2,… , 𝑛 then (WSPT)  is  the  optimal  

solution  for  the  problem 1/  / ℎ𝑗𝐺𝑗
𝑛
𝑗=1 + 𝑤𝑗𝐶𝑗

𝑛
𝑗=1 . 

proof: 
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      from  𝑝𝑗 < 𝑑𝑛
𝑗=1  and d=min{𝑑𝑗 } ∀𝑗, clearly   𝐶𝑗<𝑑𝑗   for  any order, then all the  jobs  

are early  for  any  order and  ℎ𝑗𝐺𝑗
𝑛
𝑗=1 = ℎ𝑗

𝑛
𝑗=1  it's constant. So(WSPT)  is optimal  

solution  for the  problem  1/  / ℎ𝑗𝐺𝑗
𝑛
𝑗=1 + 𝑤𝑗𝐶𝑗

𝑛
𝑗=1 .∎ 

5. Branch and Bound (BAB) Method  
       Our branch and  bound  algorithm uses forward  sequencing  branching rule for 
which nodes at level (L) of the search tree  correspond  to  initial partial  sequenced  in 
the  first (L) positions. 

5.1 Upper bound (UB) 

    We  suggest  a heuristic  method  which  is applied at  the root  node of  the  branch  
tree  to find an upper  bound  UB  on the minimize value of  problem  (H). 

 Algorithm of (UB):- 

Step (1):- 

Ordered the jobs by WSPT rule to get the sequence 𝜋 = (𝜋 1 , 𝜋 2 , … , 𝜋 𝑛 ) let L=0,  
T=0  and  i=1. 

Step (2) :- 

If  
𝑝𝜋(𝑖)

𝑤𝜋(𝑖)
=

𝑝𝜋(𝑗)

𝑤𝜋(𝑗)
,  then  ordered  the  jobs i, j  according  to  the  MST  rule. 

Step (3) :- 

Compute the completion time for each  job  j  in 𝜋, 𝐶𝜋(𝑗)= 𝑝𝜋(𝑖)
𝑗
𝑖=1 . 

Step (4) :- 

If  𝑑𝜋(𝑗 ) > 𝐶𝜋(𝑗 ), set L=L+ℎ𝜋(𝑗 )and 𝑇 = 𝑇 + 𝑤𝜋(𝑗 )𝐶𝜋(𝑗 ). Go  to  step (5); otherwise, set  

𝑇 = 𝑇 + 𝑤𝜋(𝑗 )𝐶𝜋(𝑗). 

Step (5):- 

     Set  i=i+1, if  i ≤ n go to step 2, otherwise  

UB=L+T. 

Step (6):- Stop. 

 

6. Derivation of  Lower Bound 

The  lower  bound  for  the  problem  H is  based  on  decomposed problem  H  to  two 
sub  problems  𝐻𝑃1 and  𝐻𝑃2 . Moreover, calculated  R1   and R2  to be the lower  bounds  
for  𝐻𝑃1 and  𝐻𝑃2respectively  as  in  section   (2.3), and  applied theorem  (2.1) to get  a 
lower bound  LB  for  problem  H. 

for  sub  problem  𝐻𝑃1we relax the penalty  of early jobs by  putting  h=min{ℎ𝑗 }for  

j=1,…,n  then applying  (HY) algorithm  𝑅1=  𝐺𝑗ℎ
𝑛
𝑗=1 . in  addition, for problem  𝐻𝑃2 , 

𝑅2= 𝑤𝑗𝐶𝑗
𝑛
𝑗=1 (WSPT), hence  LB =𝑅1 + 𝑅2, is  initial  lower  bound  which  is used  in  

root  node  of  search  tree. 
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Below we gives an example to illustrates the procedures of the lower and upper bounds  

1. Example: consider  the  six  jobs in table below. 

 

J 1 2 3 4 5 6 

𝒑𝒋 3 5 6 9 11 15 

𝒅𝒋 41 24 50 30 23 42 

𝒘𝒋 9 5 8 6 14 11 

𝒉𝒋 8 10 9 6 13 5 

𝑺𝒋 38 19 44 21 12 27 

 

Solution: 

 Let  A=∅, B=MST, π=∅, set  A  precedes  B Job 3 is the last early job in B  then  
A=(3), B=(5,2,4,6,1) 

Job 2 is the  last  early  job in B  and  job 6 is larger  processing  time from  any  job    
after   job  2, then  A=(6,3), B=(5,2,4,1) 

Clearly is not early job in  B, then  π=(6,3,5,2,4,1) 

 𝐺𝑗
𝑛
𝑗=1 = 2, and h = min(ℎ𝑗 )=5, j=1,2,…,6 

𝐿𝐵1= 𝐺𝑗ℎ 𝑛
𝑗=1 = 2(5) = 10   

LB2 = 1238,  LB = LB1+LB2 = 10+1238 =1248 

UB=1273 

  optimal schedule is(1,3,5,2,6,4)with optimal cost is 1273.  

 

7. Dominance Rule 

Because of branching theme, the scale of the search tree is directly joined to the length 
of this sequence (which represents the amount of nodes). Hence, a preprocessing step 
is performed so as to get rid of as several positions as attainable. Reducing this 
sequence is completed by victimization many dominance rules. Dominance rules 
typically specify whether or not a node may be eliminated before its edge is calculated. 
Clearly, dominance rules are notably helpful once a node may be eliminated that 
features an edge that's not up to the optimum solution[12]. a number of dominance 
rules are valid for decrease of the sum of weighted number of early jobs and total 
weighted completion time. As within the a preprocessing step, similar dominance rules 
also are used at intervals the branch and bound procedure to chop nodes that's 
dominated by others. These enhancements result in terribly massive decrease within 
the variety of nodes to get the best answer. 
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      Below state dominance rule to decrease the number of nodes in search tree as well 
as decreasing the time. 

Theorem(7.1): Let 𝛿𝑘  be a partial sequence 𝑘 ⊂ 𝑁 for 𝑖, 𝑗 ∈ 𝑘 = 𝑁 − 𝑘 and let 𝐶 be a 
completion time of last job in 𝛿𝑘 , if 𝑝𝑖 ≤ 𝑝𝑗 , 𝑤𝑖 ≥ 𝑤𝑗   and 𝐶 ≥ max⁡{𝑑𝑖 , 𝑑𝑗 }. Then 𝑖 ≺ 𝑗 in 

optimal solution for the problem H.  

Proof: 

Let (𝛿𝑘 , 𝑗, 𝑖) be the schedule which is obtained by interchanging jobs 𝑖 and 𝑗in (𝛿𝑘 , 𝑖, 𝑗).  

Since 𝐶 ≥ 𝑑𝑖  and 𝐶 ≥ 𝑑𝑗 , then the jobs 𝑖 𝑎𝑛𝑑 𝑗 are late i.e.ℎ𝑖𝐺𝑖 = ℎ𝑗𝐺𝑗 = 0. So the effect 

on the cost depends only on   weighted completion time. Since 𝑝𝑖 ≤ 𝑝𝑗 , 𝑤𝑖 ≥ 𝑤𝑗 then 
𝑝𝑖

𝑤 𝑖
≤

𝑝𝑗

𝑤𝑗
 and 𝑖 ≺ 𝑗 in optimal solution for the problem (H).∎ 

8. Computational Experience 
    An intensive work of numerical experimentations has been performed. We first 
present in subsection (8.1) how instances (test problems) can be randomly generated. 

8.1 Test Problems  

The data were generated in this paper in the same way as in [13] that generates as 
follows: 

  The processing time Pj is uniformly distributed in the interval [1,10]. 

  The  due  date di  is  uniformly  distributed  in  the  interval  

[P(1-TF-RDD/2),P(1-TF+RDD/2)];  where 𝑃 =  𝑃𝑗
𝑛
𝑗=1 depending on the relative range of 

due date (RDD) and on the average tardiness factor (TF). 

    The an integer weights 𝑤𝑗  were generated from uniform 

distribution [1,10]. 

    The an integer penalty ℎ𝑗  were generated from uniform        

      distribution[1,10]. 

For  both  parameters, the values 0.2, 0.4, 0.6, 0.8 and 1.0 are considered. For each 
selected value of n (where n is the number of jobs), ten problems were generated. 

 

 

8.2. Computational  Experience  with  the Lower  and  Upper 

Bound of (BAB) Algorithm 

          The BAB algorithm was tested by coding it in  MATLAB 8.3.0 (R2014a) and 
implemented on Intel (R) Core(TM) i3-6100U CPU @ 2.30 GHZ, with RAM 4.00 GB 
personal computer. 
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Table (1.1) and table(1.2) illustrates the  results for  problem (H) obtained by(BAB) 
algorithm, we list 10 problems for  each value of  n, where    n ∈{5,10,15,20,25,30},    
and   the  optimal  value, upper  bound (UB), initial lower bound (ILB), the number of 
generated nodes (Nodes), the computational time in second (Time), and the number of 
unsolved problems (Status) and table (1.3) shows  the  results for  problem (H) number 
of example which can solved in number of  nodes of  BAB algorithm. 

    The stopping condition for the BAB algorithm was determined and we consider that 
the problem is unsolved (state is 1), that the BAB algorithm is stopped  after a fixed 
period of  time, here after  30 minutes. 

    We observed from table (1.1), the heuristics of upper bound is good algorithm. It 
gives the value for objective function equal or near optimal value. 

From the observation of the table (2.1) we find that the method of  branch and bound 
(BAB) gives the optimal solution comparable to the method of  complete enumeration 
(CE) Method. 

Table (2.1) Compare between BAB and CE 

 

 

 

 

 

 

 

 

 

Table (1.1): The performance of initial number of nodes and computational time in 
second of BAB algorithm. 

N AV. of opt. AV. Of time AV. Of nodes 
no. of 

un sol. 

5 274.6 0.0097 12.1 0 

10 1166.8 0.0418 193.3 0 

15 2402.8 2.4798 13924 0 

20 3531 8.6435 37100.3 0 

25 5948.5 856.9530 1369890.3 1 

30 7888.6 671.14604 2134214.5 2 

 

n BAB CE 

5 260 260 

6 437 437 

7 471 471 

8 666 666 

9 761 761 

10 631 631 
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Table (1.2): The performance of initial lower bound, upper bound, number of nodesand 
computational time in second of BAB algorithm (n=25) 

 

n EX Optimal UB ILB Nodes Time Status 

 

 

 

 

25 

1 5499 5510 5453 22854 4.1230 0 

2 6073 6073* 6041 2060 0.3679 0 

3 6064 6064* 5978 562765 120.9006 0 

4 5547 5547* 5494 37387 7.1316 0 

5 6717 6726 6668 20063 3.6163 0 

6 6696 6701 6618 1414914 265.6157 0 

7 5271 5283 5219 1795998 393.1902 0 

8 5975 5975* 5910 171254 30.7993 0 

9 5660 5669 5646 1219 0.2178 
0 

10 5983 5983* 5897 9670389 1800 1 

no of opt. 5 0 _ _ _ 

 

Optimal = the optimal value obtained by BAB method. 

UB = upper bound. 

ILB = initial lower bound. 

Nodes = the number of generated nodes. 

Time = Computational time in seconds. 

* = The upper bound gives the optimal value. 

** = The initial lower bound gives the optimal value. 

Status= 
0        𝑖𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 𝑠𝑜𝑙𝑣𝑒𝑑                         

1       𝑖𝑓  𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠𝑛′𝑡 𝑠𝑜𝑙𝑣𝑒𝑑                 
  

Table (1.3): The  performance  of  number of example which solved in number of  
nodes of  BAB algorithm For a table (1.1). 
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Table(1.3): number of example which solved in number of  nodes in branch tree 

        n  

no.of nodes 

5 
10 15 20 25 30 

0-100 10 3  1   

101-500  6 2 2   

501-1000  1 4   1 

1001-
10000 

  3 6 2 1 

10001-
100000 

    3 1 

100001-
500000 

  1 1 1  

500001-
1000000 

    1 1 

1000001-
20000000 

    3 6 
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