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Abstract 

We study generalized Dirac oscillators with complex interactions in (1+1) dimensions. It is shown that for the 
choice of interactions considered here, the Dirac Hamiltonians are   pseudo Hermitian with respect to certain 

metric operators  . Exact solutions of the generalized Dirac Oscillator for some choices of the interactions 

have also been obtained. It is also shown that generalized Dirac oscillators can be identified with Anti Jaynes 
Cummings type model and by spin flip it can also be identified with Jaynes Cummings type model.  

Keywords: Dirac oscillators; pseudo Hermitian; Factorization Method; Partner Potential. 

1  Introduction 

The Dirac oscillator which is linear in both momenta and coordinates is one of a few relativistic systems admitting exact 

solutions [1-3]. This system has many applications and over the years it has been studied extensively by a number of 

authors [4]. Various exactly solvable generalizations of the Dirac oscillator have also been proposed [5]. On the other hand 

during the last decade non Hermitian interaction in non relativistic [6] as well as relativistic quantum mechanics [7] have 

been examined from various points of view. One of the main interest in the study of such systems is that a class of 

potentials, namely the PT symmetric [8] and ç-pseudo Hermitian [9] ones admit real eigenvalues despite being non 

Hermitian. Analogues of some of these non Hermitian systems have been found in optics [10] and have also been realized 

experimentally [11]. It may be noted that relativistic non Hermitian (PT symmetric) interactions can be realized in optical 

structures [12]. Also there exists photonic realization of the (1 + 1) dimensional Dirac oscillator [13]. Here we shall 

consider  -pseudo Hermitian interactions in the context of relativistic quantum mechanics [14, 15]. To be more specific, 

we shall examine  -pseudo Hermitian interactions within the framework of generalized Dirac oscillator in (1 + 1) 

dimensions. In particular, we shall obtain a class of interactions which are  -pseudo Hermitian and the metric operator   

will also be found explicitly. Subsequently we shall employ the mapping between the Dirac oscillator and the Jaynes 

Cummings (JC) model [16–18] to obtain a class of exactly solvable non Hermitian JC as well as anti Jaynes Cummings 

(AJC) type models. The rest of the paper is organized as follows: sec. II introduces the generalized Dirac oscillator system 

and discusses the conditions for which it is pseudo hermitian. Sec. III provides two explicit examples. Sec. IV discusses the 

relation with the generalized AJC and JC type models while sec. V contains the conclusions.  

2  Generalized Dirac equation 

As we know the Hamiltonian of the Dirac oscillator in 1)(1  dimensions is given by [19],  

 
2)(= mcxipcH xx    (1) 

where c  is the velocity of light and x  and 2=  are the standard pauli matrices given by,  
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Here we note that the generalization of this system can be constructed by replacement )()( xgxvxm   so, the 

corresponding Hamiltonian (1) will be as,  
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an the corresponding eigenvalue equation reads,  
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In terms of the components the above equation reads,  
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So the corresponding Schrödinger equation will be as,  
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3  Example of generalized Dirac equation and factorization method 

Now we consider two different examples of pseudo Hermitian interactions by choosing suitable expressions for )(xg . 

Also we that a Hamiltonian H  is said to be   pseudo Hermitian if it satisfies the relation [–9] 
1=  HH . We also 

note that the form of   will be as,  

 ,= xP
e





 (7) 

where   is a real parameter. Then it can be shown that   has the following properties [20],  

 ),(=)(,=,= 111  ixVxVPPcc xx 
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In order to obtain exact solution of the problem we use the 
xeiBADxg  )(=)(  in equation (6), so we have,  

 ,=)))((2)(( 11

222

2

2
2  

n

xx eiBADeiBAD
dx

d
    (9) 

with comparing by following Laguree and,  

 ,=)))((2)(( 11

222

2

2
2  

n

x''x' eiBADeiBAD
dx

d
    (10) 



Journal of Progressive Research in Mathematics(JPRM) 
ISSN: 2395-0218 

 
Volume 1, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm/index                          20| 

Now we take following variable,  
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0=m , and 1= . Here we use the Normalization condition as,  
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In order to obtain eigenfunction and eigenvalue for the generalized Dirac equation we compare equation (10) with the 

following associated Laguerre differential equation [17,18,19],  
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where for our case we have 0=m , 1= . So, the corresponding wave function and energy spectrum will be as,  
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So, the solution associated Laguerre in the Rodrigues representation are,  
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where,  
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In here we also discuss the raising and lowering operator which is corresponding to the generalized Dirac equation. So, we 

can factorize the associated Laguerre differential equation for the corresponding problem with respect to the parameter n  

as follows,  
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So, the differential operators as functions of parameters n  will be as,  
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Note that the shape invariance equation (18),(19) can also be written and the raising and lowering relation,  
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Also, we note the   can be written as ),(=
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corresponding wave function. As a before the generalized Dirac equation for the 2  will be as,  
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By comparing the associate Laguerre equation we obtain n  as,  
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Also, here we discuss the raising and lowering operator which is corresponding to the generalized Dirac equation. So, we 

can factorize the associated Laguerre differential equation for the corresponding problem with respect to the parameter n  

as follows,  
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So, the differential operators as functions of parameters n  will be as,  
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Note that the shape invariance equation (27)and (28) can also be written as the raising and lowering relation,  
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4  Conclusion 

 In this paper we studied the massless scalar field on the 3AdS  and obtained the Schrödinger like equation. This 

corresponding hamiltonian factorized in terms of two first order operators which are known raising and lowering operators. 

These two operators have a index n  and m . In order to have shape invariance condition 21 = HH  or 21 = VV , two 

operators must be just factorized in terms of m . The shape invariance conditions lead us to obtained the partner potential 

and superpotential. Finally, we have shown the raising and lowering operators satisfied to the commutation relation 

algebra. It may be interesting to do this process for the massive particle in 3AdS  or any arbitrary space. 
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