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Abstract. 

We use mathematical induction method to prove the Poincare Formula. To demonstrate the usefulness of 

this formula, we provide five examples. This formula is related to a broad class of counting problems in 

which several interacting properties either all must hold, or none must hold. When there are only two or 

three events that need to be counted, we usually use a Venn diagram. In section 4, we present a general 

mathematical formula to count any finite number of inclusion and exclusion events. This leads to an easy 

way to apply the Poincare Formula to define the probability 

Mathematical Subject Classification: 60C05  

Key Words and Phases: Begins with a vowel; Consecutive appearance; Ends with a vowel; 

Inclusion and exclusion probability; Kolomogorov axioms. Poincare Formula; Probability space; Randomly 

selected 5-letter word. 

 

I  Introduction 

The inclusion and exclusion principle is a counting technique which generalizes the familiar method of 

obtaining the number of elements in the union of two finite sets. 

The name comes from the idea that the principle is based on over by generous inclusion, followed by 

compensating exclusion. Generalizing the results to the union of n sets: 

we include the cardinalities of the sets, then exclude the cardinalities of the pair-wise intersections, 

followed by inclusion of the cardinalities of the triple-wise intersections, 

and exclusion of the cardinalities of the quadruple-wise intersections. Continuing, until the cardinality of 

the n-tuple-wise intersection is included or excluded. The formulas for the principle of inclusion-

exclusion remain valid when the cardinalities of sets are replaced by finite probabilities. In this article, we 

adopt the fundamental inclusion and exclusion rule but write in the probabilities Poincare Formula. In this 

way, a broad class of the complicated counting probabilities can be solved. For example, if we ask:” what 
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is the chance that for n people randomly reaching into a dark closet to retrieve their hats, no person will 

pick their own hat?” Another example: “What is the chance that, if we randomly select a positive integer 

,i, between 1 through n, are there in which never selected immediately followed number i+1, for 

i=1,2,….n-1. Questions like these naturally involve  counting the subsets of outcomes in which various 

combinations of the properties hold. Usually, when events are small, we use Venn Diagrams to depict 

these different combinations. When the events turn out to be large, we give out a more general 

mathematical formula counting rule. This formula is given in section 4. In the concluding remarks we 

provide a more general theorem due to Ch. Jordan that will turn the Poincare Formula to be a special case. 

2. DEFINE THE PROBABILITY SPACES 

In this section, we define the fundamental properties of the probability. Later, we use these properties to 

find the complicated events probabilities.   

DEFINITION (Kolmogorov axioms) 

The pair ),( a  is said to be a probabilizable space if there is a non-negative real valued function defined 

for each aA  such that  
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next, we state some of the basic properties of the probability measure P, but do not prove it in this article. 

All of the proofs can be found in standard textbooks. 
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Now, we use the above lemma to derive the main theorem, namely, “Poincare Formula”, 

as follows: 
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Proof:  We prove this formula by induction on n. For n=1, the formula is trivial. The case 

N=2 has been established in lemma (5). Now, let us assume that the formula is true for n=m. We need to 

prove it is true for n=m+1. We have 
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This establishes the Poincare Formula. 

3. SOME SAMPLE EXAMPLES 

Example 3.1: Find the probability that for a randomly selected 5-letter word, letters may be repeated, 

either beginning or ending with a vowel ? 

Let B be an event that begins with a vowel,  and E event that ends with a vowel. 

Let N total possible outcomes,  
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Example 3.2 

Find the  probability that randomly selected n-digit ternary (0,1,2) sequences  are there with at least one 0, 

at least one 1, and at least one 2? 

Let us define iA  as the number of n-digit ternary sequences with no i’s . where i=0,1,2. 

Let a  be the set of all n-digit ternary sequences. Then the probability we seek with at  least one of each 

digit will be ).AP( 210 AA  The number of n-digit ternary sequences  is   .3nN   The number of n-

digit ternary sequences with no 0’s is simply the number of n-digit sequences of 1’s and 2’s. Thus 
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of all 2’s . Thus  ,1)( 10 AAN  ,1)()( 2021  AANAANalso  Finally, there is no ternary 

sequence with no 0’s or 1’s or 2’s.  Thus  we can compute the joint probability as follows: 
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Example 3.3.  

Find the probability that a randomly selected positive integer between 1 and 280 is relatively prime to 

280. 

7*5*2280 3  
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4. Define the Notation 

Often we meet the case where n is large, (say, n is greater than 5). It would be tedious to write the 

Poincare Formula. In this section we introduce the summation notation to replace the unions or 

intersections. 
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Example 4.1. 

What are the chances if we wish an arrangement of “a,a,a,b,b,b,c,c,c” without three consecutive letters 

being the same. 
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Example 4.2 

What is the chance that if a random letter is selected from secret codes that can be made by assigning each 

letter of the alphabet a unique different letter? 

Let iA by assigning each letter of the alphabet a same letter. 
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5. Concluding Remarks: 

The Poincare formula is a special case of a more general theorem due to Ch. Jordan. 

JORDAN THEOREM. 

Let P(n, r) denote the probability of the occurrence of exactly r among the n given events 

nAAA ,....., 21  then   
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J=1, 2, 3,… and the summation is to be extended over all combinations of the members 

1,2,….n. at any time, repetitions are not allowed. 
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