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ABSTRACT. We decompose buy« (BZ/p)"™, the connective unitary K—theory with p-adic co-
efficients of the n—fold smash product of the classifying space for the eyclic group of prime
order p, as a direct sum of some graded groups, which include the graded groups buy« (BZ/p)
and Torép[r] (buy,+ (BZ/p), buy,« (BL/p))[—1]. We deal with the results in [6, Theorem 3.8] to-

gether with the Kiinneth sequence for bu,- (BZ/p)"", to explain that there is no extension
problem for this Kiinneth sequence, for any finite number n not just for n = 2 and therefore
the middle term of this sequence is a direct sum of the left and the right side.
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1. Introduction

Let bu, denote connective unitary K-homology on the stable homotopy category of CW spectra
[1] so that if X is a space without a basepoint its unreduced bu-homology is bu, (XX ), the
homology of the suspension spectrum of the disjoint union of X with a base-point. In particular
bu, (2°°S%) = Z[u] where deg(u) = 2.

For a prime number p, we have bu,. the connective unitary K-theory with p-adic integer
coefficients Z,, where bu, ~ VPR -21y Jy the Adams summand such that buy-(S?) =

P e 9i49(59), lul(S0) = Z,[uP~1] 2 Z,[0] and deg(v) = 2(p — 1).

In §2 we deal with the results in [6, Lemma 3.4], together with the Kiinneth sequence for
b, (BZ/2) ", to explain that there is no extension problem for this Kiinneth sequence, for any
finite number n not just for n = 2 and therefore the middle term of this sequence is a direct sum
of the left and the right side. From this we will decompose bu, (BZ/2)"™ as a direct sum of some
graded groups.

For any prime p, In §3 we use the splitting bu, =~ sz_ll Y220y and the Holzsager splitting
[3] BZ/p == \/f;ll B; to decompose buy. (BZ/p)™" as a direct sum of some graded groups. This
decomposition agreed with the result in [6, Theorem 3.8] and both also yield that there is no
extension problems in the Kiinneth sequence for buy,- (BZ/p)"™.

In this section we fix some notations that we will use for this paper and introduce some
binomial coefficient identities which will support our calculation.

Notation 1.1.

e For n > 1, in §2 ,we write I, for (BZ/2)"". the n—fold smash product of BZ/2. In
particular, Py = BZ/2, whereas in §3 ,we write I, for (BZ/p)""

o we write A, for bu, ().

e For a Z-graded group B,, we write B,[n] for the graded group with B;[n] = B, so
that bu, (X )[—1] = bu._1(X).

Lemma 1.2. [2]. For any j. k,m,n € No, we have
(i) (¥) =01if n and k both are not integers or if n < k.
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(iv) D o<k<n (I;) (::;) = (;';ill) where 0 < j < m < n.
2. Tor decomposition of bu,.(BZ/2)""

2.1. For p = 2, in this section we will decompose bu.(FP,) as a direct sum of some graded groups,
which include the graded groups Tor%2 (4] (buy (Py). bu.(Py))[—1] and bu,(FPy).
Definition 2.2.

Let X be a graded group, and r > 0. We define T"(X), as

IT7(X)y =TT HX)s)s

where T°(X), = X and TH(X), = T(X), = Torég[ (A, X)[—1].

ul
From this definition we can deduce that:
(1) Tr(X), = T™(T*(X).)s, for m +k =r.

7T times

(2) We have TT (A, ), = T(T(.. . T(AL)x ... )i)s, where, by [7] §2.7, T'(A,), is non-zero just
in degrees 2t + 1 > 3. Then, by applying T(Ax )« ®z,[] — instead of Ax @z, — to the
free resolution of A,, which is described in [7] Example 2.9, with shifting by (—1) and
by using induction on r, we can calculate the graded group T7(A,).. This is non-zero
just in degrees 2t + 1 for t > r.

Notation 2.3. For the rest of this section, we will write:
o A” for A®" | the tensor of A, with itself over Zs[u] r—times,
o A, @B, for A, @z, [u] B, for a Zs[u]—module B, and
o TImdr=tedt for Tir (A, @TI 1 (A, @T72(... T2 (A, @T7 (A,)s)x ... )x)s)x. Where j; €
No.

Definition 2.4. Let 0 <k <n — 1, we define the weight £ iterated 1" as
'[Irk — @ Tjn—k,jn—k—l,...,j‘l
n *
> ji=k

where j; € Np.

We will see later, in 3.8, that bu.(P,) decomposes as a sum over the W¥’s. It is easy to check
that:

(i) Wk =0, for k > n,
(i) Wr—t =Tr=1 W9 = A7 and
(iii) Wr = (A, @WhHaT(WF 1) for 0 <k <n.

Since H"_,i“ is constructed from the graded groups 79" *#7n #1201 “then to calculate I.-l[fiﬂ as a

group we need to calculate each summand as a group. Let us start with the higher 2—torsion
when £ =n—1.

Notation 2.5. In this section to simplify the indices in some formulas, we need to change the
indexing conventions in the resolution in [7] to be in the form

0 — @j~0Za[ul{a;,) —2— & 0Za[u](b;,) A, 0

where a;; and b;, are in degree 2j; — 1 and d(aj,) = 2b;, — ubj, _s.

Volume 13, Issue 2 available at www.scitecresearch.com/journals/index.php/jprm 2221 |




Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

Proposition 2.6. Forn = 0,1 > n,
T =227 Y vwnagag, .. a,),
i+2::1 Je=t

where we have the short exact sequence

d
0 —— @j>oLalul{az,) — Sji>0Z2[ul(bj;) A 0
as in 2.5, and vgi1a5,aj, ... a; , refers to

V2it1 @), Dajy -+ Raj, € A® (@jl -0 Zz[u](ajl)) ® (®j2>o Zinu] (ajg)) e ® (@jn>0 iy [u] (ajn}).

Proof The proof is by induction on n, where the case n = 1 is described in [7] and agrees
with the above statement. TFor n = 2. let us consider the same free resolution of A, after
applying (T, ® —) and shifting by (—1). We have T2 C To @ ( ®;,50 Z2[u]{a;,)), where Topriq =
Z/2°Y, it v9i41a5,) for £ > 1. Then by the same calculation as for T, see [7], we can calculate
that, for £ > 2. T3 is a group with generator Y itji = V204105, a5, Where £ 4 j, =1 . This
generator can be written as ), it gt V2i4105, Oy which contains a summand vy _gy4 a5, A5y,
with ji = jo = L and vo_0ys1 € Agy_oy41 = Z/2!71, see [7] for p = 2. Therefore T3, , =
Z/27N Y, et U2i410G4,5,). Now assume that the statement is true for n. Again using
the same free resolution of A,, and applying (7" @ —) with shifting by (—=1), we have, 77! C
IT ® @, ., >0Lz[u](aj, . ). where o1 = Z/QHI*”(ZHZLI ot V204105, Ay - a;, ) for £ > n.
Similarly to the case n = 2 above, where T""! = T(T"). we can calculate the generator of
the group i’g";jrll1 for t > n+1, to be Zi+23=1 et V204105, Ay - G, Where £+ g =t
This generator can be written as ZHZ:: ezt V2i4105, Ay - A ag, ., Where, for jr =1, k =
1,2...., n + 1, this sum has a summand of the form vy, _1y1qa5 a5, -..a;,.,. Again [7], for

_a . . n+l ~ t—mn Ve N .
p =2, implies that T5,7] = Z/2 <Ei+EL‘ii ot V2041051 Qg e Qi)

g

Lemma 2.7.
Let X be a Za[u]—module such that u acts trivially on A, ® X,. Then u also acts trivially
on T(A, @ Xy

Proof From 2.6, we have an inclusion of Zy[u]—modules, T(A. @ Xu)u CT A, @ X, ® (E{apg

Zy[u]{a;,)). where the right hand side is a graded group generated by {v @ x @ a;, }, for v@ 2 €
A, ® X,. By the action of uw on A, ® X,, we deduce that u also acts trivially on A, ® X, &
(@j>0 Za[u){ay, ). 0

Lemma 2.8. Let 0<% <n—1. With the exceptions of A, and T, each summand of WF is
a graded Fy—vector space, on which u acts trivially.
Proof By 2.6 and [7], we know that A, and T™ consist of higher 2—torsion groups with non-

trivial action of u, where wve;—1 = 2v2;41 and v2ir1 € Ay of degree 2i + 1. Now let us consider
the summand T2™ of Wk By 2.7, the results for the other summands are analogous.
0 . . L .
By 2.6, any z € 2;” = Bi—r4s+1A2041 ® T35 1 can be written as a linear combination of

Uag41 & E 1“2i+la'j1 ng RN ﬂ-jn = E U2p41 & 'U2i+la'jla‘j2 e (Ljn .
i+ h—1 JE=S T de=t—1
And by [7], we have

209401 ® Vo441 = U1 @ V41 = 20951 @ Vi3 = -+ + = 201 @ V4941 =0,
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and
V2041 @ V2i41 = 202043 @ V241 = UU2p43 @ U2i—1 =+ = 202¢42i43 @ v = 0.
This shows that 7™ is an Fo—vector space with a trivial action of u.

From the definition of W¥, we can recognise that any element of the summands of W can be
written as a linear combination of a product of (n — k) v;’s with some a;,’s. Therefore, by the
action of u on A.. we can prove the required result for the other summands of W}]f in exactly
the same way. O

Notation 2.9. For the rest of our calculations we will write (Z/2)% for a—times the direct
sum of Z/2 with itself.

By 2.6 and 2.8, we can deduce the following result.
Corollary 2.10. Letn > 0 and s > 2n + 2. Then

avt—n o —
T0n o (Z/2)"=™,  when s = 2t,
s 0, otherwise .

ProofTQOt’” is an Fp —vector space with basis {vgi41®29q_;—1)+1 ¢ i =0, 1,....t—n—1}, where
To(t—i—1)+1 = Zf+2;=ljk:t_i_1 Vgt A, - .. 5 € T2(t—i—1)+1' The number of summands
t — n comes from the dimension of this basis. O

By 2.8, for n > 1, we know that the only summand of I'if";“ with higher 2—torsion is calculated

in 2.6. Now by using some binomial identities given in 1.2 we are going to calculate the rest of
the summands, where all of them are graded Fy—vector spaces.

Proposition 2.11. Let s > 251 + 252 + 2, we have
(Z/Q)G;%), when s = 2t,

TgQ:jl o
0., otherwise,

Proof The proof is by induction on jo, where the case j; = 0is considered in 2.10. Let assume
that the statement is true for jo, — 1, where TI2:91 = T(TSQ_l’j ). Now 2.8 shows that TI2=1a g
an Fo—vector space with a trivial action of u. Then

T3 = ker(I © d) = T © (@j5,50 Zalul{ay,))[~1],
where I = idpi,-1.0, and d @ @, »0Zo[ul{aj,) — @ju>0La[u](bj,) is described in 2.5. Therefore,
fort > j1+j2+ 1. 9> ji1 + j2 and j > 0, and by the binomial identity in 1.2(ii), we have

TP = @i, T @2 2{0;,} = Brmins (2/2) 50 = (2/2) ).
From 2.10, we know that 727" is non-zero only in even degrees and also we know that 7729t =
T92(T)7"). Therefore Tgf_fl‘ — 0. -
After we have calculated WF for k =n — 1,n — 2. let us now consider the cases for W* when
=01

Proposition 2.12. Let ¢,/ >0,t > (. Then
t+£)

(Z)2)\ 2,
AT = L (z/2)(%5)

when r =204+ 1, s =2t + 1,
when r = 2/, s = 2t, and

0. otherwise.
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Proof The proof is by induction on r, where the case » = 2 is described in [7]. That is, A2,
is the Fo—vector space with basis {v; ® V91,03 ® V93,05 @ Va5, ..., V21 @ v1 }. Therefore

A2, > (Z)2)t =~ (Z/Q)G), and A3, ., = 0. Now let us assume that the statement is true for
JHE—1y . . . .
r =20, that is, A3} = (Z/?)( 2-1) for j < t. Since A2+ =~ A @ A% is an Fy—vector space with

trivial action of u, then. for i > 0 and j > ¢, we have

] . j+E—-1 t ité—1 t+£
A > @i Agins ®p AY = @i Z/27 @ (2/2)(51) = (2/2)Fi=e (3) = (7/2)(50).

Similarly, for the case » = 2¢ + 1. we have Agiﬂ o (2/2)(:;;) for £ < j <t. So, fori >0 and
7 > (. we have

42€+2 o 4_254—1 ~

ite
A5 D5 = Birj=tAsit1 ®z A5 @z'+j:t(Z/2){ )

t+f+l)

= (Z/Z)E;=f (j;}e) o (Z/Q){ 2841

Finally, let us consider the case when r is odd and s is even or conversely. Since A7 =
r times

. ~ .
A, @A ®@---®A, for s > 7, wehave AL =B, o5 1, A2ii+1 ®2 Azip 11 @z -+ Oz Azi 41
This asserts that r is associated with s, in the sense that both should be odd or even, and
otherwise AL = (.

]

Lemma 2.13. Lett./>0,t>/(+1. Then

(Z/?)(;ffl), when r =20 +1, s = 2t 4+ 1,
1(AY)s = (Z/‘_))(H;f_]). when r = 20, s = 2¢, and
0, otherwise.

(Note that T(AL), = TirIr=10t  where j; = 1 for i = r and other jj are zero).

Proof We will calculate T(A%)y;. The other cases are similar. Let us start from the free
resolution of A,. which is described in 2.5, then applying (A%* ® —) and shifting by (—1) allows
us to calculate T{AEE)*. Since A% is an Fa—vector space with trivial action of u, see 2.8, then

T(A%), = ker(I @ d) = A% ® @j,>0Za[ul(a;,)

where I = id 2 and d : &, s0Z2[ul{aj,) — Bj,>0ZLa[u]{bs,) is described in 2.5. Therefore, by
2.12 for ¢ > ¢ and by 1.2(ii), we have

t—1 fite—1 t+£’—l)

T(A%)oy = Bimig AK @7 Z{a;,} = (2/2) 2= (35) = (z/2)("

By 2.12 and 2.13, we can check that A2[—1] = T(A2¢-1) and A2¢H1[—1] = T'(A2%Y).

Corollary 2.14. Let ¢,/ >0, and s > r+ 3. Then

(Z/Q)(:H:l) when r =20 +1, s = 2t,
(AL ®T)), = orr=20 s=2t+1, and
0, otherwise.

(Note that A7 @ T1 = T7+1771 where j; = 1 for i = 1 and other j; are zero).
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Proof We will consider the case r = 20 + 1 and s = 2t. The other cases are similar. Fror
2.6, 2.12 and 1.2(4i), for i > £ and j > 1 we have

-1

itE t—2 (it
(AT®T ot = Srminjr (A2 @2 T 1) 2 Biminyar (2/2)(3) = (z/2) 20 (3) = (z/2) (3’
[

By 2.12 and 2.14, for » > 0, we can check the following.
Corollary 2.15. Let r > 0, then
AT @ T = ATTH=9).
Definition 2.16. Given j; € Ny for i > 1, we define 3;,, = X}_ji. (of course, 3; ,, depend

on ji,...,Jjn, but the sequence will be clear from the C011t0\t )
Corollary 2.17. Let n > 1, then
T.Jn I L P, TO,Jn 1yeeeyJ1 ® X;Sn n[ 3 'n, n]

where X, = &, >0Z2[ul{a;,). that is, Xos_ 1 = Zo{u™a,, : s = m + ji}.
Jn— times
. oy o e jnajn—l)"'!jl _ Dejn—l:"'!jl . - .
Proof The proof follows from T =T(T... T(T, )« ... )x, and the fact tha

I TP P . . . ) Ljnt e 0ujintyeesf
T.7m=t 9 s an Fy—vector space with trivial action of u. So T,7/m=t 7t = (T, In=tIt) -

TErjn—‘l:-"!jl ® X*[—l] a.].ld Tfe‘jn—ls"'le — T(Tj—:jn—l-"ﬂjl) — TE?jﬂ—l:"':jl ® XE[_Q] Thorefor(
inductively on n we get the required result.
L

Proposition 2.18. Letry >0, ry > 1 and s > ry +r2 + 2. Then
t+k
(Z/Q)(Tﬁ“z)._ when s =2t + 1. ry +7r9 =2k + 1,
(AL @ T'(A2)4)s = (Z/Q)(t:i:;), when s = 2¢, vy + 7y = 2k, and
0, otherwise.
(Note that A”* @ T(A"?), = Tt Ire It e j; = 1 for i = ry and other jj are zero.)

Proof Let us consider the above graded group in degree s = 2¢. The other cases are similai
By 2.12 and 2.13, for i > ¢ and j > €5 + 1. we have

E[at:iﬂ-Agfl ®g T(A22),; when r; = 201, ro = 205,

20141

AT @ T(AT), )y =
(A @ T(A2) ) {@t:HHlAMI ®z T(A? 2ty y. when ry =20y + 1, ry = 205 + 1.

t-}-l‘l—l)( tig—1

D= 1+J(Z/‘))( 2e-1 /4 285 ) when ry = 20y, rg = 20q,
ite
Doy (Z/2) 30 GER) | hen r =20 + 1, 7y = 205 + L.

1%

Then, for ry = 2¢; and ry = 2/, 1.2(ii) shows that

g (e (i _*“iﬁﬁ mo\(t+l b —2-m\ _ [(t+k-1
2‘?1 -1 252 N 251 -1 252 o "+ T ’

t=itj m=2¢ —1
where 2k = ry + ro. And similarly, for ry =20, + 1, 7 =20 + 1 and 2k =r| + 71

Z (-z.+fl)(3+€2)(t+£1+€2)(t+k1)
0 9 - ; Y 9] e e ’
t=it g1 204 20 + 1 201 + 205 + 2 1+ re
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Examples 2.19. For r; + 79 =5, and t > 3, we can calculate that
t+2
T(AY)or41 = (As @ T(AD )21 = (A2 @ T(A) )21 = (A2 @ T(A2). )1 (Z/‘—))( 5)
And for r{ +r5 =6, and t > 4, we can calculate that

T(A%) g = (A, ®T(A%) )2 = (A2 @ T(AY) )2 = (A2 @ T(A2),)2 = (A2 @ T(A2),)a,

t+‘2)

=~ (z/2)("%

By 2.6 we know that T7' is concentrated in odd degrees s > 251 + 1, whereas 2.11 shows that
T2t is concentrated in even degrees s > 2j; + 2jz + 2. Similarly to these two cases we can see
that 777" "' is concentrated in odd degrees s > 2631, +n if nis odd, and in even degrees if
n is even. This means Tf man=s01 g non-zero Just in degrees s > 23, ,, +n where s and n both
are odd or both are even.

By all the previous calculations. we can deduce the next proposition. which is about the
calculation of T99n=1r01 45 4 graded group, for any n > 0, and using this we can calculate W
forany 0 <r <n-—1.

Proposition 2.20. Let n > 1. Then, using the notation of 2.16,

s4+n—2

dndn—tyedt o (52271,+n__j11)
T3 ~ (2/2)\ %)

for s > 28, , + n.

Proof If jp, = 0, for all k > 1, then the left hand side is A", which is considered in 2.12 and
agrees with the above result. And if there is only one k such that j; # 0, then the left hand side
has the form A?F @ T7¢(A¥),. which can be calculated by 2.6. 2.12 and 2.18. Now, if there are
at least ky, ko such that j,, and ji, are not zero, then in this case we need to use induction on n
to calculate the above graded group, where the case n = 2 is considered in 2.11. Let us assume

TimIm=tJ1 is concentrated in odd degrees. Since

that the statement is true for n where
Jn+1:dna-d LU P | Brn+in /
Tt P =T 9m i @ X =B ),
see 2.17, where X, = ®;,~0Z2[u](a;,) and

254+14n—2
=

(2/2) sann’),

R T TR Jnsdn—1,--:J1
TImedt = @y Agpa @ ToerT = Brmkgst1

for k> 0and s > 3y, + ”T_l That is, by 1.2(i1),
) . t—1 2stn—l ) ttn—1
Tt & (7,/2) s=srnt2pt amin=t) (7000 ™),
Then, for 2t > 25 oy +n+ 1,4, > 51 + ”TH +7r—1and m, >0 where 1 <r < j,11, We get
Tgﬂ-f'l':.jﬂi"":j]
t

. : : 0. eedt o < s
= ( '\:J?t:i_,'n+1+m_,-n+1 ( .- (eiazi:»-i-mz (eéQ:iL+m1TQil '® szl—l}QiQ @ X21712—1)2i2 s )Zijn+1 ® XQmjn_q_l _I)Qt
where the right hand side isomorphic to

@t:i;n+1 RELTENE T Dig=iz+ms Bis=i1+mi (Z/Q)(
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and

t—1 ig—1 in—1 2ig4n—1 jl
— 2
D= Z o Z Z ( Bon+n )

?"Jn+1:.81‘n+nTH+jn+1_l i2=)91‘n+ﬂT+1+1 1'1={31,n+nT+l
By 1.2(i%), we have

i2—1 i1 +n— . igtn— -
22 % —in) _ % -7
Bop+n Bon+1+n

i1=B1,n+25t

izg—1 2 4+n— . i3+n— :
BZ 2 2+2 1 — 1 _ 2 3-{—2 1 — 1
Bon+1+n Bom+2+n)

io=f1 n+ 2 +1

and

Therefore we can deduce that
t—1 24 +1+n—1 . 2t+n—1 . s+(n+1)—2 .
D= Z ( —— 1 . Tn—h)_ — 5 .
, = Bapn+ n+1 — L +n Bome1 + 1 Bans1+n
1_77]'_1_1 :.81:n+T+Jn+1_1

where s =2t > 2031 p+1 + 1+ L.
O

Now we have calculated the summands of W] as groups. In the next theorem we will deal
with the results in [6, Lemma 3.4], together with the Kiinneth sequence for P,. to explain that
there is no extension problem for this Kiinneth sequence, for any finite number n not just for
n = 2 and therefore the middle term of this sequence is a direct sum of the left and the right
side. From this we will decompose bu,(FP,) as a direct sum of W, for 0 <r <n — 1.

Theorem 2.21. TLet n > 1. Then

n—1
bu.(Pn) = EP Wy
r=0

Proof The proof is by induction on n. Let us start from the Kiinneth short exact sequence
for P,,
0= A, @bu(FPp_1) = bu(P,) = T(bu.(FPn—q1)) — 0,

and consider the case n = 3. The case n = 2 was already considered in [7] and there is no
extension problem for the Kiinneth sequence when n = 2 because the left hand side is non-zero
only in even degrees, whereas the right side is non-zero only in odd degrees. Therefore

bu (Pp) =2 A2 T(A) =T T = W) @ W;.
For n = 3. the analogous Kiinneth sequence has the form

0T T 5 bu, (P3) > TH o T? - 0.
Now 2.12 and 2.14 show that

(Z/Z)(tql), when s = 2, t > 2,
(T e TP, = (Z/Q)(tgl)._ when s =2t + 1, ¢ > 1, and
0 otherwise.
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Whereas 2.13 and 2.6 show that
(2/2)(;)1 when s = 2t, t > 2,
(T T2 =< Z/2t71,  when s =2t +1,t> 2 and
0 otherwise.

Therefore bu;(P3) = 0 for @ < 3, busg(P3) =2 Z/2 and for t > 2, we have exact sequences

0= (Z/2)('7) 5 bug (Ps) = (Z/2)2) - 0,
and
(t+1) ) t—1
0= (Z/2)\ 2 ) = bugp1(FP3) = Z/27 — (.
By [6, Lemma 3.4], we have

j)(t+j—1

by (FPy) = (Z/Q)Z}:u ()53 = (Z/‘_))(t—ll)+(;)
and
bugip1(Ps) 2 Z/2' 71 @ (Z/z)Z}=O DGR = Z/21 @ (Z/z)(t-;l).

Thus the above calculations tell us that there are no extension problems in the Kiinneth sequence.
Therefore

2
bu.(P3) 2T o 10 o T @ 12 = (P Wy,
r=0

where
I’{’?O _ ;43 _ TD’O’D.
Wil= (A, @T(A,).)&T(A?), =T>' @ T, and
Wi =T%A,). =T2.

Now, let us assume that there is no extension problem for the above Kiinneth sequence for
n = 2n,y, and the statement is true in this case. And let us start again from the Kiinneth
sequence,
0— A, @bty (Pap, ) — by (Papyo1) — T(buy(Pap,)) — 0
where
bt (Pony 1) = (2/2)%070 T (3)(C500

fort >mny + 1.

By 2.8, A, ®@ bu,(FPap, ) is an Fo—vector space with trivial action of u, where, by [6, Lemma
3.4], we have

2n)]—2 xn1—2 ] t—2nq+i+i+3
buzesr (Pany) = Z/272M%2 5 (2/2) T35 Tia” () (T
and Z/2'72m1+2 comes from the only summand Tgﬁﬁl— L of bu, (Pay, )2¢ which consists of a higher
2—torsion group with non-trivial action of v. Then, by 2.10 for m > ny and ¢ > 0, we have
2ny—2 ny—2 i m—2ny+i+i+3
(Au @ bita(Pon, )t 2 (Aw @ T2 V)30 @ Bumegmir Azers ® (Z/2)200 Eio” ) (T

an—Qan—‘Z( i )(m—2n1+1+t+3)

— (Z/2)t g (Z/Q)an‘:‘nl DDFF N DHLT PV 1

In the other side of the sequence, for £ > ny + 1, m > ny and k > (0, we have

T(b'lb*(sz))zt = ®t:m+kbu2'm{P2nl) @ Xog—1,
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where Xop_1 = Z{u™ay, : k = m + {;, and ay, of degree 2¢; — 1}. Then [6, Lemma 3.4] shows
that

=2 gn - 1( )(mEa e
21 j+1

T(De(Pan, )2t == @ty k(Z/2)Zi=0
— (Z/?)Z:n:lnl 5L P (3) (M)

Inductively on ¢ and ny, we can see that

t—1 2n1—2 n1—2 . . .
m—2n +j+1+3
Pl ) Z Z (22+1)( j+1 )

M="n1
t—1 2ny—2ny1— 2n1—1mny
?:1—2121+j+3+2 t—in—i—j—i—z—i—l
o b 1] Sttt B b S ] Gus V|
m=n1 j=0 1=0 =0
Therefore,

bigg(Pan, 1) = (Aw @ b (Pon, ) )or & T (bt (Pap, ) )24

Similarly, we can deduce the same result for degree 2¢ + 1. This yields that there is no extension
problem in the Kiinneth sequence for s, 11, S0 bty (o, 1) = (Ax @bus(Pap, ) BT (bt (o, ) )-
By 3.5, we have

2111 2'!11 21’!1—

@112n1+1 = @(A w Wy, &@T(Wi ) = @ (A, Wi, @ T(W3, )

where the right side is equal to (A, @bty (Pon, ) )BT (bus (Pan, ). Thus buy (Pep,+1) = G}fnlo W 41

Similarly, if we assume the result for n = 2n; + 1, a similar calculation shows that there
is no non-trivial extension in the Kiinneth sequence for Ps,, .2, that is, bu, (FPan,12) =2 (A, ®
by (P, +1)) &1 (bt (Pan, +1)). and again 3.5 gives the required result for 2n; + 2. Thus

2n1+1
bty (Pap, 42) = @ Wi o

O

Remark 2.22. FEach W has (”;1) summands, which gives the total number of summands of
by (Pn) to be Sy ("71) = 2L,

Example 2.23. For n =5, we have bu.(P5) = @i:n WI. where

ﬂ"}o — T0,0,0,U,O

1[{'51 — T*l,O,O,IJ e TE,l,O,O ® TE’O’I’O @ TE’O’D’I

ﬂf{? — TE,0,0 D TB,LO @ TS,O,Z o T*l,l,O @ T*I,O.,l @ Tf’l’l
W2 =121 aTH? & 7%, and

Wi =T%
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Hence bu, (Ps) has 2* = 16 summands. In degree 2t, we have W2 = W2 = W2 = 0, whereas

Wi = TL000 o 70100 g 70010 6 70001 =~ (7,/9)3("1)+(5) and

W2 & (z/2)(+(3)+H(3)+H(),

3 1 i t4+i+i—3
so buge(Ps) = (Z/ Q)Zj:f’z':ﬁ G and this result agrees with the result in [6. Lemma

3.4]. Similarly, in degree 2t + 1 we have W2 = W2 = 0 whereas

| = (Z)(tiz)

- 2,0,0 0,2,0 0,0,2 1,1,0 1,0,1 01,1 ~ t+1 t—1 t
Wi = Toiy @Toith @ 1o @100 @ 1oy 157 = (Z/Q)S( #)+(5)+20) ana

Wi =Th, =2 Z/2.

Thus bugs 1 (P5) X Z/203 & (Z/?)ZLO ico (22)("557%) and this result also agrees with the

result in [6, Lemma 3.4].

3. Tor decomposition of bu,«(BZ/p)""

3.1. In 1972, Holzsager [3] split the space ¥ BZ/p with p-adic coefficients into the wedge of p—1
spaces B;, where B; has homology only in dimensions 2k(p — 1) + 2i, for all natural numbers k.
So the spectrum > BZ/p splits as X BZ/p ~ \/f:_l1 Y B;. see also [4]. Here the spectrum B;
has stable cells in dimension 2k(p — 1) 4+ 2i — ¢, for € = 0,1 such that 2k(p—1)+2i — e > 0. The
splitting of BZ/p as a spectrum is also written as BZ/p ~ Vf:_llBi.

By [5]. for the case E = lu the Adams summand and X = BZ/p, we have the Thom iso-
morphism i, 2(T(£)) = lug(BZ/p), that is, lu.(T(€)) =2 lu,(S2BZ/p). This isomorphism is
induced by a homotopy equivalence lu AT(£) ~ lu AX? BZ/p. By applying the splitting of BZ/p

and substituting 7'(£) = B BZ{ P in this homotopy equivalence we get

-‘I'u/\(B]_VB2V"‘VBP_1)/(BI) ZI'U,/\EQ(Bl VBQ V"'VBP_'l).

Both sides of the last equivalence are wedges of p— 1 pieces, and by comparing the dimensions of
bottom cells we deduce the following homotopy equivalence (uAYX2B; ~ luAB;., for 1 <i < p—1.
Inductively on i, we get lu A X20-D B ~ lu A B;.

It would be more interesting if we can carrying on for any prime p using the splitting bu, ~
sz_llﬂzi_zlu and the Holzsager splitting BZ /p ~ sz_llBi to decompose bu,-(BZ/p)"™ as a direct
sum of some graded groups. This decomposition agreed with the result in [6, Theorem 3.8] and
both yield that there is no extension problems in the Kiinneth sequence for buy. (BZ/p)"".

The purpose of this section is the composition of lu,(By)™ first and using the above splitting
to deduce the composition of buy- (BZ/p)"".

Notation 3.2.

e In order to exploit certain splittings of spectra and at the same time to simplify the
writing, we will write bu for bu,, the connective unitary K-theory with p-adic integer
coefficients Z,,, where bu,, ~ Vf:_llzﬁ_%u.

e Here we write A, for lu.(B).

By the Atiyah-Hirzebruch spectral sequence, see [1], for X = By and E = lu we have lu;(B) =
Z/p**t! when j = 2k(p — 1) + 1 and it is zero otherwise.
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Example 3.3. Asin [7, 2.9], for X = By, the Kiinneth sequence has the form
0 — lu,(By) @z, [v) lux(B1) — lu(By A By) — Tor}zp[,t,}(lu*(Bl),lu*(Bl))[—l] — 0.
So, in degree 2k(p — 1) + 2, the left-hand side is the graded F,—vector space spanned by
{1 @ U2k(p—1)+1; V2(p—1)+1 @ V2(k—1)(p—1)+1s - - - » V2k(p—1)+1 & vy }.
which is concentrated in even degrees.

To calculate the graded group Tor%p[b,]{lu*(Bl). lu,(B1))[—1], we can consider the following
free Zp,[v]|—resolution of lugg, 1)1 (B1)

d £
0 —— @jzozp[l'}<a-2j(p_l)+l) _— @jzozp[l.’]<sz(p_l)+l) _— Eu’Z(p—l)*-l—l(Bl) — 0
where £(baj(p—1)+1) = V2j(p—1)+1 for all j > 0 and d(as;p—1)+1) = Ph2jp—1)+1 — vh2(j—1)(p—1)+1
tor 7 > 0.
After applying (lugp—1).41(B1) ®z,[») —) to the above resolution, we can calculate
kOI‘(I ® d) = ker(@jzoliﬁg(p_l)*_i_l(Bl)((le(p_l)+1> — GBjEUIUZ(p—l)*-i-l(BI)<b2j(p—l)+l>)'
In degree 2k:(p — 1) + 2, this graded group has a generator of the form
U1 @ Qap(p—1)+1 T V2(p—1)41 @ Aok —1)(p—1)+1 T~ T Vag(p—1)+1 @ a1.

Since this generator has a summand vap(p—1)+1. S0 in degree 2k(p — 1) + 2, the group
Tor%’,p[rl;](lu2*+l(-81)alu‘Z*—i—l(Bl)) 18

Z/p* (v ® Uak(p—1)+1 T V2(p—1)+1 @ Q1) (p—1)+1 T + Vap(p—1)41 @ @1}
So Torép[t,](lug*ﬂ(Bl). lug,r1(By))[—1], in degree 2k(p— 1)+ 3, is the finite cyclic group of order
pF. this group is concentrated in odd degrees. So the middle group lu,(B; A By) in any given

degree is isomorphic to the one on the left or the one on the right side.

By applying T(A.). ®z,[v] — nstead of A, ®gz_[,) — to the previous free resolution of A, with
shifting by (—1) and by using induction on n, we can calculate the graded group T}*. This is
non-zero just in degrees 2t(p — 1) + 2n + 1.

Proposition 3.4. For n,t > 0,
g ot . o )
2”.5(;;—1)+2n+1 =Z/p" Z 02i(p—1)+104, Ajs - - - A, )
i+z;€1:1 jk:t
where aj, is in degree 2ji(p — 1) + 1.
Definition 3.5. Let 0 <k <n — 1, we define the weight % iterated T' as
H_rrf: _ @ Tf“*k':jﬂ*k*l:"'ajl
> gi=k
where j; € Ny, and TIn—kdn—k-1,-71 35 in 2.3,
Lemma 3.6. Let 0 <k <n—1. With the exceptions of A, and T", each summand of V[f’,f is
a graded F,—vector space, on which v acts trivially.

By all the previous calculations, we can deduce the next result, which is about the calculation
of T/~ a5 a graded group, which is non-zero just in degrees 2t(p — 1) + 281, + n for
t > 0, and again using this to calculate W) for any 0 <r <n — 1.

Proposition 3.7. Let n > 1. Then, using the notation of 2.16,
:+_32‘ﬂ+n—1)

dnsdn—1:--sd o (7 1o\ B
Do )26y pn = (Z/p)" P2t
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For p = 2, we can get the same result in 2.20. By 3.7, it jp =0 for all k =1.2,...n, we can
calculate the graded group A” which is non-zero just in degrees 2t(p — 1) +n

n times
e
0.0,....0 P—
A;t(pfl)Jrn = Tgt(p,1)+n = (Z/p)( not )

This result also agree with 2.12 when p = 2.
By the splitting bu ~ V?~¥%=2[u, the Holzsager splitting BZ/p ~ VI~ B; and lun¥2(=1 By ~
lu A B; we have

n times p—2 22;::112'.% n times

bu A BZ/p ABZL[pA---NBL[p ~ V >N wABIABIA-ABy

11,1240+ 1=0

Applying the homotopy group m, we get that

p—2
bu*(BZ/p)An ~ @ Zu**QEZ:llik(Bl)An'
11,09, rig 1 =0

Again we have calculated the summands of W for lu.([B;) as graded groups. In the next
theorem we will deal with the results in [6, 3.8], together with the Kiinneth sequence for lu,(5)
and using the above discutient to explain that there is no extension problem for this Kiinneth
sequence for bu,(BZ/p)"™, for any finite number n, and decompose bu,(BZ/p)"™ as a direct
sum of some graded groups. The proof is similar to 3.8, so it is enough to consider some spacial
cases as examples.

Theorem 3.8. Let n > 1. Then

r—2

n—1
. (BZ/p)" = B  Pwn

i1,12,..yin1=0 r=0

o T — Jn—rin—r—1,..,J1
where Wi = @By, —, T*—ZE:i}ik .

Example 3.9. Forn = p =3, bug(BZ/3)"* = P! @izo W3 where W3 = Py, _, IS Taret

i1,in,4,i4=0 9-25%_ 4k
By 3.4 and 3.7 we have bug(BZ/3)" = T2 & (T2"") & (12)° & (15"")* = Z/3? & (Z/3)®. And

i_y2—i
A4+i=E_ 1 3a

ZioXi (@ )
by [6, 3.8], we have bug(BZ/3)"3 = T(k,4) @ (Z/3)=7=0 = 122 A2 =0 i+ =7Z/3%a
Zalida

1 1 ) (4+i—
~ 2]} — c = 1:A2seei A2 5= 3 —
(Z/3)22, where T(k, 4) = Z,/32 & (Z,/3) and (Z,/3)=7=0 Trsrawna—y=0 (750 79016
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