

Volume 13, Issue 2

Published online: March 05, 2018|

Journal of Progressive Research in Mathematics

www.scitecresearch.com/journals

TOR DECOMPOSITION OF $bu_{p*}(B\mathbb{Z}/p)^{\wedge n}$

Khairia Mohamed Mira Department of Mathematics, Faculty of Science, Tripoli University, Libya [J.]khairiamera@yahoo.co.uk

> ABSTRACT. We decompose $bu_{p^*}(B\mathbb{Z}/p)^{\wedge n}$, the connective unitary *K*-theory with *p*-adic coefficients of the *n*-fold smash product of the classifying space for the cyclic group of prime order *p*, as a direct sum of some graded groups, which include the graded groups $bu_{p^*}(B\mathbb{Z}/p)$ and $Tor_{\mathbb{Z}_p[v]}^1(bu_{p^*}(B\mathbb{Z}/p), bu_{p^*}(B\mathbb{Z}/p))[-1]$. We deal with the results in [6, Theorem 3.8] together with the Künneth sequence for $bu_{p^*}(B\mathbb{Z}/p)^{\wedge n}$, to explain that there is no extension problem for this Künneth sequence, for any finite number *n* not just for n = 2 and therefore the middle term of this sequence is a direct sum of the left and the right side.

Keywords: The connective unitary K-theory; a Künneth formula short exact sequence.

1. Introduction

Let bu_* denote connective unitary K-homology on the stable homotopy category of CW spectra [1] so that if X is a space without a basepoint its unreduced *bu*-homology is $bu_*(\Sigma^{\infty}X_+)$, the homology of the suspension spectrum of the disjoint union of X with a base-point. In particular $bu_*(\Sigma^{\infty}S^0) = \mathbb{Z}[u]$ where $\deg(u) = 2$.

For a prime number p, we have bu_p , the connective unitary K-theory with p-adic integer coefficients \mathbb{Z}_p , where $bu_p \simeq \bigvee_{i=1}^{p-1} \Sigma^{2i-2} lu$, lu the Adams summand such that $bu_{p^*}(S^0) \cong \bigoplus_{i=1}^{p-1} lu_{*-2i+2}(S^0)$, $lu_*(S^0) \cong \mathbb{Z}_p[u^{p-1}] \cong \mathbb{Z}_p[v]$ and $\deg(v) = 2(p-1)$.

In §2 we deal with the results in [6, Lemma 3.4], together with the Künneth sequence for $bu_*(B\mathbb{Z}/2)^{\wedge n}$, to explain that there is no extension problem for this Künneth sequence, for any finite number n not just for n = 2 and therefore the middle term of this sequence is a direct sum of the left and the right side. From this we will decompose $bu_*(B\mathbb{Z}/2)^{\wedge n}$ as a direct sum of some graded groups.

For any prime p, In §3 we use the splitting $bu_p \simeq \bigvee_{i=1}^{p-1} \Sigma^{2i-2} lu$ and the Holzsager splitting [3] $B\mathbb{Z}/p \simeq \bigvee_{i=1}^{p-1} B_i$ to decompose $bu_{p^*}(B\mathbb{Z}/p)^{\wedge n}$ as a direct sum of some graded groups. This decomposition agreed with the result in [6, Theorem 3.8] and both also yield that there is no extension problems in the Künneth sequence for $bu_{p^*}(B\mathbb{Z}/p)^{\wedge n}$.

In this section we fix some notations that we will use for this paper and introduce some binomial coefficient identities which will support our calculation.

Notation 1.1.

- For $n \ge 1$, in §2 ,we write P_n for $(B\mathbb{Z}/2)^{\wedge n}$, the *n*-fold smash product of $B\mathbb{Z}/2$. In particular, $P_1 = B\mathbb{Z}/2$, whereas in §3 ,we write P_n for $(B\mathbb{Z}/p)^{\wedge n}$
- we write A_* for $bu_*(P_1)$.
- For a Z-graded group B_* , we write $B_*[n]$ for the graded group with $B_j[n] = B_{j+n}$, so that $bu_*(X)[-1] = bu_{*-1}(X)$.

Lemma 1.2. [2]. For any $j, k, m, n \in \mathbb{N}_0$, we have

(i) $\binom{n}{k} = 0$ if n and k both are not integers or if n < k,

(ii)
$$\sum_{0 \le k \le n} {n \choose k} = 2^n$$
,
(iii) $\sum_{0 \le k \le n} {k \choose m} = {n+1 \choose m+1}$, and
(iv) $\sum_{0 \le k \le n} {k \choose j} {n-k \choose m-j} = {n+1 \choose m+1}$, where $0 \le j \le m \le n$.

2. Tor decomposition of $bu_*(B\mathbb{Z}/2)^{\wedge n}$

2.1. For p = 2, in this section we will decompose $bu_*(P_n)$ as a direct sum of some graded groups, which include the graded groups $Tor^1_{\mathbb{Z}_2[u]}(bu_*(P_1), bu_*(P_1))[-1]$ and $bu_*(P_1)$.

Definition 2.2.

Let X be a graded group, and $r \ge 0$. We define $T^r(X)_*$ as

$$T^r(X)_* = T(T^{r-1}(X)_*)_*$$

where $T^{0}(X)_{*} = X$ and $T^{1}(X)_{*} = T(X)_{*} = Tor_{\mathbb{Z}_{2}[u]}^{1}(A_{*}, X)[-1].$

From this definition we can deduce that:

(1)
$$T^r(X)_* = T^m(T^k(X)_*)_*$$
, for $m + k = r$.
r times

(2) We have $T^r(A_*)_* = \overline{T(T(\ldots T(A_*)_* \ldots)_*)_*}$, where, by [7] §2.7, $T(A_*)_*$ is non-zero just in degrees $2t + 1 \ge 3$. Then, by applying $T(A_*)_* \otimes_{\mathbb{Z}_2[u]} -$ instead of $A_* \otimes_{\mathbb{Z}_2[u]} -$ to the free resolution of A_* , which is described in [7] Example 2.9, with shifting by (-1) and by using induction on r, we can calculate the graded group $T^r(A_*)_*$. This is non-zero just in degrees 2t + 1 for $t \ge r$.

Notation 2.3. For the rest of this section, we will write:

- A^r_* for $A^{\otimes r}_*$, the tensor of A_* with itself over $\mathbb{Z}_2[u]$ r-times,
- $A_* \otimes B_*$ for $A_* \otimes_{\mathbb{Z}_2[u]} B_*$, for a $\mathbb{Z}_2[u]$ -module B_* , and
- $T_*^{j_r, j_{r-1}, \dots, j_1}$ for $T^{j_r}(A_* \otimes T^{j_{r-1}}(A_* \otimes T^{j_{r-2}}(\dots T^{j_2}(A_* \otimes T^{j_1}(A_*)_*)_*\dots)_*)_*)_*$, where $j_i \in T_*^{j_r, j_{r-1}, \dots, j_1}$ \mathbb{N}_0 .

Definition 2.4. Let $0 \le k \le n-1$, we define the weight k iterated T as

$$W_n^k = \bigoplus_{\sum j_i = k} T_*^{j_{n-k}, j_{n-k-1}, \dots, j_1}$$

where $j_i \in \mathbb{N}_0$.

We will see later, in 3.8, that $bu_*(P_n)$ decomposes as a sum over the W_n^k 's. It is easy to check that:

(i)
$$W_n^k = 0$$
, for $k \ge n$,

(ii)
$$W_n^{n-1} = T_*^{n-1}, W_n^0 = A_*^n$$
, a

(ii) $W_n^{n-1} = T_*^{n-1}, W_n^0 = A_*^n$, and (iii) $W_{n+1}^k = (A_* \otimes W_n^k) \oplus T(W_n^{k-1})$ for $0 \le k \le n$.

Since W_n^k is constructed from the graded groups $T_*^{j_{n-k},j_{n-k-1},\ldots,j_1}$, then to calculate W_n^k as a group we need to calculate each summand as a group. Let us start with the higher 2-torsion when k = n - 1.

Notation 2.5. In this section to simplify the indices in some formulas, we need to change the indexing conventions in the resolution in [7] to be in the form

$$0 \longrightarrow \bigoplus_{j_i > 0} \mathbb{Z}_2[u] \langle a_{j_i} \rangle \xrightarrow{d} \bigoplus_{j_i > 0} \mathbb{Z}_2[u] \langle b_{j_i} \rangle \longrightarrow A_* \longrightarrow 0$$

where a_{j_i} and b_{j_i} are in degree $2j_i - 1$ and $d(a_{j_i}) = 2b_{j_i} - ub_{j_i-2}$.

Proposition 2.6. For $n \ge 0, t \ge n$,

$$T_{2t+1}^n \cong \mathbb{Z}/2^{t+1-n} \langle \sum_{i+\sum_{k=1}^n j_k=t} v_{2i+1} a_{j_1} a_{j_2} \dots a_{j_n} \rangle,$$

where we have the short exact sequence

$$0 \longrightarrow \oplus_{j_i > 0} \mathbb{Z}_2[u] \langle a_{j_i} \rangle \xrightarrow{d} \oplus_{j_i > 0} \mathbb{Z}_2[u] \langle b_{j_i} \rangle \longrightarrow A_* \longrightarrow 0$$

as in 2.5, and $v_{2i+1}a_{j_1}a_{j_2}\ldots a_{j_n}$ refers to

 $v_{2i+1} \otimes a_{j_1} \otimes a_{j_2} \cdots \otimes a_{j_n} \in A_* \otimes \left(\bigoplus_{j_1 > 0} \mathbb{Z}_2[u] \langle a_{j_1} \rangle \right) \otimes \left(\bigoplus_{j_2 > 0} \mathbb{Z}_2[u] \langle a_{j_2} \rangle \right) \cdots \otimes \left(\bigoplus_{j_n > 0} \mathbb{Z}_2[u] \langle a_{j_n} \rangle \right).$

Proof The proof is by induction on n, where the case n = 1 is described in [7] and agrees with the above statement. For n = 2, let us consider the same free resolution of A_* after applying $(T_* \otimes -)$ and shifting by (-1). We have $T^2_* \subset T_* \otimes (\bigoplus_{j_2>0} \mathbb{Z}_2[u]\langle a_{j_2} \rangle)$, where $T_{2\ell+1} \cong$ $\mathbb{Z}/2^{\ell}\langle \sum_{i+j_1=\ell} v_{2i+1}a_{j_1}\rangle$ for $\ell \geq 1$. Then by the same calculation as for T_* , see [7], we can calculate that, for $t \geq 2$, T_{2t+1}^2 is a group with generator $\sum_{i+j_1=\ell} v_{2i+1}a_{j_1}a_{j_2}$, where $\ell + j_2 = t$. This generator can be written as $\sum_{i+j_1+j_2=t} v_{2i+1}a_{j_1}a_{j_2}$, which contains a summand $v_{2(t-2)+1}a_{j_1}a_{j_2}$, with $j_1 = j_2 = 1$ and $v_{2(t-2)+1} \in A_{2(t-2)+1} \cong \mathbb{Z}/2^{t-1}$, see [7] for p = 2. Therefore $T_{2t+1}^2 \cong$ $\mathbb{Z}/2^{t-1} \langle \sum_{i+j_1+j_2=t} v_{2i+1} a_{j_1} a_{j_2} \rangle$. Now assume that the statement is true for n. Again using the same free resolution of A_* , and applying $(T^n_* \otimes -)$ with shifting by (-1), we have $T^{n+1}_* \subset T^n_* \otimes \oplus_{j_{n+1}>0} \mathbb{Z}_2[u]\langle a_{j_{n+1}} \rangle$, where $T^n_{2\ell+1} \cong \mathbb{Z}/2^{\ell+1-n} \langle \sum_{i+\sum_{k=1}^n j_k \in \ell} v_{2i+1}a_{j_1}a_{j_2}\ldots a_{j_n} \rangle$ for $\ell \ge n$. Similarly to the case n = 2 above, where $T_*^{n+1} = T(T_*^n)$, we can calculate the generator of the group T_{2t+1}^{n+1} , for $t \ge n+1$, to be $\sum_{i+\sum_{k=1}^{n} j_k \in \ell} v_{2i+1} a_{j_1} a_{j_2} \dots a_{j_n} a_{j_{n+1}}$, where $\ell + j_{n+1} = t$. This generator can be written as $\sum_{i+\sum_{k=1}^{n+1} j_k=t} v_{2i+1}a_{j_1}a_{j_2}\dots a_{j_n}a_{j_{n+1}}$ where, for $j_k = 1, k = 1$ $1, 2, \ldots, n+1$, this sum has a summand of the form $v_{2(t-n-1)+1}a_{j_1}a_{j_2}\ldots a_{j_{n+1}}$. Again [7], for p = 2, implies that $T_{2t+1}^{n+1} \cong \mathbb{Z}/2^{t-n} \langle \sum_{i+\sum_{k=1}^{n+1} j_k=t} v_{2i+1} a_{j_1} a_{j_2} \dots a_{j_{n+1}} \rangle$.

Lemma 2.7.

Let X_* be a $\mathbb{Z}_2[u]$ -module such that u acts trivially on $A_* \otimes X_*$. Then u also acts trivially on $T(A_* \otimes X_*)_*$.

Proof From 2.6, we have an inclusion of $\mathbb{Z}_2[u]$ -modules, $T(A_* \otimes X_*)_* \subset A_* \otimes X_* \otimes (\bigoplus_{i>0} \mathbb{Z}_2[u])$ $\mathbb{Z}_2[u]\langle a_{j_1}\rangle$, where the right hand side is a graded group generated by $\{v \otimes x \otimes a_{j_1}\}$, for $v \otimes x \in$ $A_* \otimes X_*$. By the action of u on $A_* \otimes X_*$, we deduce that u also acts trivially on $A_* \otimes X_* \otimes X_*$ $(\bigoplus_{j>0} \mathbb{Z}_2[u]\langle a_{j_1}\rangle).$

Lemma 2.8. Let $0 \le k \le n-1$. With the exceptions of A_* and T_*^n , each summand of W_n^k is a graded \mathbb{F}_2 -vector space, on which u acts trivially.

Proof By 2.6 and [7], we know that A_* and T^n_* consist of higher 2-torsion groups with nontrivial action of u, where $uv_{2i-1} = 2v_{2i+1}$ and $v_{2i+1} \in A_*$ of degree 2i + 1. Now let us consider the summand $T^{0,n}_*$ of W^k_n . By 2.7, the results for the other summands are analogous. By 2.6, any $x \in T^{0,n}_{2t} = \bigoplus_{t=\ell+s+1} A_{2\ell+1} \otimes T^n_{2s+1}$ can be written as a linear combination of

$$v_{2\ell+1} \otimes \sum_{i+\sum_{k=1}^{n} j_k = s} v_{2i+1} a_{j_1} a_{j_2} \dots a_{j_n} = \sum_{i+\ell+\sum_{k=1}^{n} j_k = t-1} v_{2\ell+1} \otimes v_{2i+1} a_{j_1} a_{j_2} \dots a_{j_n}.$$

And by [7], we have

$$2v_{2\ell+1} \otimes v_{2i+1} = uv_{2\ell-1} \otimes v_{2i+1} = 2v_{2\ell-1} \otimes v_{2i+3} = \dots = 2v_1 \otimes v_{2i+2\ell+1} = 0,$$

and

$$uv_{2\ell+1} \otimes v_{2i+1} = 2v_{2\ell+3} \otimes v_{2i+1} = uv_{2\ell+3} \otimes v_{2i-1} = \dots = 2v_{2\ell+2i+3} \otimes v_1 = 0.$$

This shows that $T^{0,n}_*$ is an \mathbb{F}_2 -vector space with a trivial action of u.

From the definition of W_n^k , we can recognise that any element of the summands of W_n^k can be written as a linear combination of a product of $(n-k) v_i$'s with some a_{j_i} 's. Therefore, by the action of u on A_* , we can prove the required result for the other summands of W_n^k in exactly the same way.

Notation 2.9. For the rest of our calculations we will write $(\mathbb{Z}/2)^a$ for *a*-times the direct sum of $\mathbb{Z}/2$ with itself.

By 2.6 and 2.8, we can deduce the following result.

Corollary 2.10. Let $n \ge 0$ and $s \ge 2n + 2$. Then

$$T_s^{0,n} \cong \begin{cases} (\mathbb{Z}/2)^{t-n}, & \text{when } s = 2t, \\ 0, & \text{otherwise }. \end{cases}$$

Proof $T_{2t}^{0,n}$ is an \mathbb{F}_2 -vector space with basis $\{v_{2i+1} \otimes x_{2(t-i-1)+1} : i = 0, 1, \dots, t-n-1\}$, where $x_{2(t-i-1)+1} = \sum_{\ell + \sum_{k=1}^{n} j_k = t-i-1} v_{2\ell+1} a_{j_1} a_{j_2} \dots a_{j_n} \in T_{2(t-i-1)+1}^n$. The number of summands t-n comes from the dimension of this basis.

By 2.8, for n > 1, we know that the only summand of W_n^k with higher 2-torsion is calculated in 2.6. Now by using some binomial identities given in 1.2 we are going to calculate the rest of the summands, where all of them are graded \mathbb{F}_2 -vector spaces.

Proposition 2.11. Let $s \ge 2j_1 + 2j_2 + 2$, we have

$$T_s^{j_2,j_1} \cong \begin{cases} (\mathbb{Z}/2)^{\binom{t-j_1}{j_2+1}}, & \text{when } s = 2t, \\ 0, & \text{otherwise.} \end{cases}$$

Proof The proof is by induction on j_2 , where the case $j_2 = 0$ is considered in 2.10. Let assume that the statement is true for $j_2 - 1$, where $T_*^{j_2,j_1} = T(T_*^{j_2-1,j_1})$. Now 2.8 shows that $T_*^{j_2-1,j_1}$ is an \mathbb{F}_2 -vector space with a trivial action of u. Then

$$T_*^{j_2,j_1} = \ker(I \otimes d) = T_*^{j_2 - 1,j_1} \otimes \big(\oplus_{j_k > 0} \mathbb{Z}_2[u] \langle a_{j_k} \rangle \big) [-1],$$

where $I = id_{T_*^{j_2-1,j_1}}$ and $d: \bigoplus_{j_k>0} \mathbb{Z}_2[u]\langle a_{j_k}\rangle \to \bigoplus_{j_k>0} \mathbb{Z}_2[u]\langle b_{j_k}\rangle$ is described in 2.5. Therefore, for $t \ge j_1 + j_2 + 1$, $i \ge j_1 + j_2$ and j > 0, and by the binomial identity in 1.2(ii), we have

$$T_{2t}^{j_2,j_1} = \bigoplus_{t=i+j_k} T_{2i}^{j_2-1,j_1} \otimes_{\mathbb{Z}} \mathbb{Z}\{a_{j_k}\} \cong \bigoplus_{t=i+j_k} (\mathbb{Z}/2)^{\binom{i-j_1}{j_2}} = (\mathbb{Z}/2)^{\binom{t-j_1}{j_2+1}}.$$

From 2.10, we know that T_*^{0,j_1} is non-zero only in even degrees and also we know that $T_*^{j_2,j_1} = T^{j_2}(T_*^{0,j_1})$. Therefore $T_{2t+1}^{j_2,j_1} = 0$.

After we have calculated W_n^k for k = n - 1, n - 2, let us now consider the cases for W_n^k when k = 0, 1.

Proposition 2.12. Let $t, \ell > 0, t \ge \ell$. Then

$$A_s^r \cong \begin{cases} (\mathbb{Z}/2)^{\binom{t+\ell}{2\ell}}, & \text{when } r = 2\ell+1, \, s = 2t+1, \\ (\mathbb{Z}/2)^{\binom{t+\ell-1}{2\ell-1}}, & \text{when } r = 2\ell, \, s = 2t, \text{ and} \\ 0, & \text{otherwise.} \end{cases}$$

Proof The proof is by induction on r, where the case r = 2 is described in [7]. That is, A_{2t}^2 is the \mathbb{F}_2 -vector space with basis $\{v_1 \otimes v_{2t-1}, v_3 \otimes v_{2t-3}, v_5 \otimes v_{2t-5}, \ldots, v_{2t-1} \otimes v_1\}$. Therefore $A_{2t}^2 \cong (\mathbb{Z}/2)^t \cong (\mathbb{Z}/2)^{\binom{t}{1}}$, and $A_{2t+1}^2 = 0$. Now let us assume that the statement is true for $r = 2\ell$, that is, $A_{2j}^{2\ell} \cong (\mathbb{Z}/2)^{\binom{j+\ell-1}{2\ell-1}}$ for $j \leq t$. Since $A_*^{2\ell+1} \cong A_* \otimes A_*^{2\ell}$ is an \mathbb{F}_2 -vector space with trivial action of u, then, for $i \geq 0$ and $j \geq \ell$, we have

$$A_{2t+1}^{2\ell+1} \cong \bigoplus_{i+j=t} A_{2i+1} \otimes_{\mathbb{Z}} A_{2j}^{2\ell} \cong \bigoplus_{i+j=t} \mathbb{Z}/2^{i+1} \otimes_{\mathbb{Z}} (\mathbb{Z}/2)^{\binom{j+\ell-1}{2\ell-1}} = (\mathbb{Z}/2)^{\sum_{j=\ell}^{t} \binom{j+\ell-1}{2\ell-1}} \cong (\mathbb{Z}/2)^{\binom{t+\ell}{2\ell}}.$$

Similarly, for the case $r = 2\ell + 1$, we have $A_{2j+1}^{2\ell+1} \cong (\mathbb{Z}/2)^{\binom{j+\ell}{2\ell}}$ for $\ell \leq j \leq t$. So, for $i \geq 0$ and $j \geq \ell$, we have

$$A_{2t+2}^{2\ell+2} \cong \bigoplus_{i+j=t} A_{2i+1} \otimes_{\mathbb{Z}} A_{2j+1}^{2\ell+1} \cong \bigoplus_{i+j=t} (\mathbb{Z}/2)^{\binom{j+\ell}{2\ell}} = (\mathbb{Z}/2)^{\sum_{j=\ell}^{t} \binom{j+\ell}{2\ell}} \cong (\mathbb{Z}/2)^{\binom{t+\ell+1}{2\ell+1}}.$$

Finally, let us consider the case when r is odd and s is even or conversely. Since $A_*^r = r \ times$

 $A_* \otimes A_* \otimes \cdots \otimes A_*$, for $s \ge r$, we have $A_s^r = \bigoplus_{s=2\sum_{k=1}^r i_k+r} A_{2i_1+1} \otimes_{\mathbb{Z}} A_{2i_2+1} \otimes_{\mathbb{Z}} \cdots \otimes_{\mathbb{Z}} A_{2i_r+1}$. This asserts that r is associated with s, in the sense that both should be odd or even, and otherwise $A_s^r = 0$.

Lemma 2.13. Let $t, \ell > 0, t \ge \ell + 1$. Then

$$T(A_*^r)_s \cong \begin{cases} (\mathbb{Z}/2)^{\binom{t+\ell}{2\ell+1}}, & \text{when } r = 2\ell+1, \ s = 2t+1, \\ (\mathbb{Z}/2)^{\binom{t+\ell-1}{2\ell}}, & \text{when } r = 2\ell, \ s = 2t, \text{ and} \\ 0, & \text{otherwise.} \end{cases}$$

(Note that $T(A_*^r)_* = T_*^{j_r, j_{r-1}, \dots, j_1}$, where $j_i = 1$ for i = r and other j_k are zero).

Proof We will calculate $T(A_*^{2\ell})_{2t}$. The other cases are similar. Let us start from the free resolution of A_* , which is described in 2.5, then applying $(A_*^{2\ell} \otimes -)$ and shifting by (-1) allows us to calculate $T(A_*^{2\ell})_*$. Since $A_*^{2\ell}$ is an \mathbb{F}_2 -vector space with trivial action of u, see 2.8, then

$$T(A_*^{2\ell})_* = \ker(I \otimes d) = A_*^{2\ell} \otimes \bigoplus_{j_i > 0} \mathbb{Z}_2[u] \langle a_{j_k} \rangle$$

where $I = id_{A_*^{2\ell}}$ and $d : \bigoplus_{j_k > 0} \mathbb{Z}_2[u] \langle a_{j_k} \rangle \to \bigoplus_{j_k > 0} \mathbb{Z}_2[u] \langle b_{j_k} \rangle$ is described in 2.5. Therefore, by 2.12 for $i \ge \ell$ and by 1.2(*ii*), we have

$$T(A_*^{2\ell})_{2t} = \bigoplus_{t=i+j_k} A_{2i}^{2\ell} \otimes_{\mathbb{Z}} \mathbb{Z}\{a_{j_k}\} = (\mathbb{Z}/2)^{\sum_{i=\ell}^{t-1} \binom{i+\ell-1}{2\ell-1}} = (\mathbb{Z}/2)^{\binom{t+\ell-1}{2\ell}}.$$

By 2.12 and 2.13, we can check that $A_*^{2\ell}[-1] \cong T(A_*^{2\ell-1})$ and $A_*^{2\ell+1}[-1] \cong T(A_*^{2\ell})$.

Corollary 2.14. Let $t, \ell > 0$, and $s \ge r + 3$. Then

$$(A_*^r \otimes T_*^1)_s \cong \begin{cases} (\mathbb{Z}/2)^{\binom{t+\ell-1}{r}}, & \text{when } r = 2\ell+1, \, s = 2t, \\ & \text{or } r = 2\ell, \, s = 2t+1, \text{ and} \\ 0, & \text{otherwise.} \end{cases}$$

(Note that $A_*^r \otimes T_*^1 = T_*^{j_{r+1}, j_r, \dots, j_1}$, where $j_i = 1$ for i = 1 and other j_k are zero).

Proof We will consider the case $r = 2\ell + 1$ and s = 2t. The other cases are similar. From 2.6, 2.12 and 1.2(*ii*), for $i \ge \ell$ and $j \ge 1$ we have

$$(A_*^r \otimes T_*^1)_{2t} = \bigoplus_{t=i+j+1} (A_{2i+1}^{2\ell+1} \otimes_{\mathbb{Z}} T_{2j+1}^1) \cong \bigoplus_{t=i+j+1} (\mathbb{Z}/2)^{\binom{i+\ell}{2\ell}} \cong (\mathbb{Z}/2)^{\sum_{i=\ell}^{t-2} \binom{i+\ell}{2\ell}} = (\mathbb{Z}/2)^{\binom{t+\ell-1}{2\ell+1}}$$

By 2.12 and 2.14, for r > 0, we can check the following.

Corollary 2.15. Let r > 0, then

$$A^r_* \otimes T^1_* \cong A^{r+1}_* [-2].$$

Definition 2.16. Given $j_i \in \mathbb{N}_0$ for $i \ge 1$, we define $\beta_{i,n} = \sum_{k=i}^n j_k$. (of course, $\beta_{i,n}$ depend on j_i, \ldots, j_n , but the sequence will be clear from the context.)

Corollary 2.17. Let n > 1, then

$$T^{j_n, j_{n-1}, \dots, j_1} = T^{0, j_{n-1}, \dots, j_1} \otimes X_*^{\beta_{n,n}} [-\beta_{n,n}]$$

where $X_* = \bigoplus_{j_k > 0} \mathbb{Z}_2[u] \langle a_{j_k} \rangle$, that is, $X_{2s-1} = \mathbb{Z}_2\{u^m a_{j_k} : s = m + j_k\}.$

Proof The proof follows from $T_*^{j_n,j_{n-1},\ldots,j_1} = T(T \ldots T(T_*^{0,j_{n-1},\ldots,j_1})_* \ldots)_*$, and the fact tha $T_*^{0,j_{n-1},\ldots,j_1}$ is an \mathbb{F}_2 -vector space with trivial action of u. So $T_*^{1,j_{n-1},\ldots,j_1} = T(T_*^{0,j_{n-1},\ldots,j_1})_* = T_*^{0,j_{n-1},\ldots,j_1} \otimes X_*[-1]$ and $T_*^{2,j_{n-1},\ldots,j_1} = T(T_*^{1,j_{n-1},\ldots,j_1}) = T_*^{0,j_{n-1},\ldots,j_1} \otimes X_*^2[-2]$. Therefore inductively on n we get the required result.

Proposition 2.18. Let $r_1 \ge 0, r_2 > 1$ and $s \ge r_1 + r_2 + 2$. Then

$$(A_*^{r_1} \otimes T(A_*^{r_2})_*)_s \cong \begin{cases} (\mathbb{Z}/2)^{\binom{t+k}{r_1+r_2}}, & \text{when } s = 2t+1, \ r_1+r_2 = 2k+1, \\ (\mathbb{Z}/2)^{\binom{t+k-1}{r_1+r_2}}, & \text{when } s = 2t, \ r_1+r_2 = 2k, \text{ and} \\ 0, & \text{otherwise.} \end{cases}$$

(Note that $A_*^{r_1} \otimes T(A_*^{r_2})_* = T_*^{j_{r_2+r_1},...,j_r_2,...,j_1}$ where $j_i = 1$ for $i = r_2$ and other j_k are zero.)

Proof Let us consider the above graded group in degree s = 2t. The other cases are similar By 2.12 and 2.13, for $i \ge \ell_1$ and $j \ge \ell_2 + 1$, we have

$$(A_*^{r_1} \otimes T(A_*^{r_2})_*)_{2t} = \begin{cases} \oplus_{t=i+j} A_{2i}^{2\ell_1} \otimes_{\mathbb{Z}} T(A_*^{2\ell_2})_{2j}, & \text{when } r_1 = 2\ell_1, r_2 = 2\ell_2, \\ \oplus_{t=i+j+1} A_{2i+1}^{2\ell_1+1} \otimes_{\mathbb{Z}} T(A_*^{2\ell_2+1})_{2j+1}, & \text{when } r_1 = 2\ell_1 + 1, r_2 = 2\ell_2 + 1. \end{cases}$$
$$\cong \begin{cases} \oplus_{t=i+j} (\mathbb{Z}/2)^{\binom{i+\ell_1-1}{2\ell_1-1}\binom{j+\ell_2-1}{2\ell_2}}, & \text{when } r_1 = 2\ell_1, r_2 = 2\ell_2, \\ \oplus_{t=i+j+1} (\mathbb{Z}/2)^{\binom{i+\ell_1}{2\ell_1+1}\binom{j+\ell_2}{2\ell_2+1}}, & \text{when } r_1 = 2\ell_1 + 1, r_2 = 2\ell_2 + 1. \end{cases}$$

Then, for $r_1 = 2\ell_1$ and $r_2 = 2\ell_2$, 1.2(iii) shows that

$$\sum_{t=i+j} \binom{i+\ell_1-1}{2\ell_1-1} \binom{j+\ell_2-1}{2\ell_2} = \sum_{m=2\ell_1-1}^{t+\ell_1+\ell_2-2} \binom{m}{2\ell_1-1} \binom{t+\ell_1+\ell_2-2-m}{2\ell_2} = \binom{t+k-1}{r_1+r_2},$$

where $2k = r_1 + r_2$. And similarly, for $r_1 = 2\ell_1 + 1$, $r_2 = 2\ell_2 + 1$ and $2k = r_1 + r_2$
$$\sum_{t=i+j+1} \binom{i+\ell_1}{2\ell_1} \binom{j+\ell_2}{2\ell_2+1} = \binom{t+\ell_1+\ell_2}{2\ell_1+2\ell_2+2} = \binom{t+k-1}{r_1+r_2}.$$

[

Examples 2.19. For $r_1 + r_2 = 5$, and $t \ge 3$, we can calculate that

$$T(A_*^5)_{2t+1} = (A_* \otimes T(A_*^4)_*)_{2t+1} = (A_*^2 \otimes T(A_*^3)_*)_{2t+1} = (A_*^3 \otimes T(A_*^2)_*)_{2t+1} \cong (\mathbb{Z}/2)^{\binom{t+2}{5}}.$$

And for $r_1 + r_2 = 6$, and $t \ge 4$, we can calculate that

$$T(A_*^6)_{2t} = (A_* \otimes T(A_*^5)_*)_{2t} = (A_*^2 \otimes T(A_*^4)_*)_{2t} = (A_*^3 \otimes T(A_*^3)_*)_{2t} = (A_*^4 \otimes T(A_*^2)_*)_{2t}$$
$$\cong (\mathbb{Z}/2)^{\binom{t+2}{6}}.$$

By 2.6 we know that $T_*^{j_1}$ is concentrated in odd degrees $s \ge 2j_1 + 1$, whereas 2.11 shows that $T_*^{j_2,j_1}$ is concentrated in even degrees $s \ge 2j_1 + 2j_2 + 2$. Similarly to these two cases we can see that $T_*^{j_n,j_{n-1},\ldots,j_1}$ is concentrated in odd degrees $s \ge 2\beta_{1,n} + n$ if n is odd, and in even degrees if n is even. This means $T_*^{j_n,j_{n-1},\ldots,j_1}$ is non-zero just in degrees $s \ge 2\beta_{1,n} + n$ where s and n both are odd or both are even.

By all the previous calculations, we can deduce the next proposition, which is about the calculation of $T_*^{j_n,j_{n-1},\ldots,j_1}$ as a graded group, for any n > 0, and using this we can calculate W_n^r for any $0 \le r \le n-1$.

Proposition 2.20. Let n > 1. Then, using the notation of 2.16,

$$T_s^{j_n, j_{n-1}, \dots, j_1} \cong (\mathbb{Z}/2)^{\left(\frac{s+n-2}{\beta_{2,n+n-1}}-j_1\right)},$$

for $s \geq 2\beta_{1,n} + n$.

Proof If $j_k = 0$, for all $k \ge 1$, then the left hand side is A^n_* , which is considered in 2.12 and agrees with the above result. And if there is only one k such that $j_k \ne 0$, then the left hand side has the form $A^{n-k}_* \otimes T^{j_k}(A^k_*)_*$, which can be calculated by 2.6, 2.12 and 2.18. Now, if there are at least k_1, k_2 such that j_{k_1} and j_{k_2} are not zero, then in this case we need to use induction on n to calculate the above graded group, where the case n = 2 is considered in 2.11. Let us assume that the statement is true for n where $T^{j_n, j_{n-1}, \dots, j_1}_*$ is concentrated in odd degrees. Since

$$T_*^{j_{n+1},j_n,\dots,j_1} = T_*^{0,j_n,\dots,j_1} \otimes X_*^{\beta_{n+1,n+1}} [-\beta_{n+1,n+1}],$$

see 2.17, where $X_* = \bigoplus_{j_i > 0} \mathbb{Z}_2[u] \langle a_{j_i} \rangle$ and

$$T_{2t}^{0,j_n,\dots,j_1} = \bigoplus_{t=k+s+1} A_{2k+1} \otimes_{\mathbb{Z}} T_{2s+1}^{j_n,j_{n-1},\dots,j_1} \cong \bigoplus_{t=k+s+1} (\mathbb{Z}/2)^{\binom{\frac{2s+1+n-2}{2}-j_1}{\beta_{2,n}+n-1}},$$

for $k \ge 0$ and $s \ge \beta_{1,n} + \frac{n-1}{2}$. That is, by 1.2(*ii*),

$$T_{2t}^{0,j_n,\dots,j_1} \cong (\mathbb{Z}/2)^{\sum_{s=\beta_{1,n}+\frac{n-1}{2}}^{t-1} \binom{2s+n-1}{\beta_{2,n}+n-1}} = (\mathbb{Z}/2)^{\binom{2t+n-1}{\beta_{2,n}-j_1}}$$

Then, for $2t \ge 2\beta_{1,n+1} + n + 1$, $i_r \ge \beta_{1,n} + \frac{n+1}{2} + r - 1$ and $m_r > 0$ where $1 \le r \le j_{n+1}$, we get $T_{2r+1,j_n,\dots,j_1}^{j_n+1,j_n,\dots,j_1}$

 $= \left(\bigoplus_{i=i_{j_{n+1}}+m_{j_{n+1}}} (\dots (\bigoplus_{i_3=i_2+m_2} (\bigoplus_{i_2=i_1+m_1} T_{2i_1}^{0,j_n,\dots,j_1} \otimes X_{2m_1-1})_{2i_2} \otimes X_{2m_2-1})_{2i_3} \dots)_{2i_{j_{n+1}}} \otimes X_{2m_{j_{n+1}}-1} \right)_{2t}$ where the right hand side isomorphic to

$$\oplus_{t=i_{j_{n+1}}+m_{j_{n+1}}}\cdots\oplus_{i_3=i_2+m_2}\oplus_{i_2=i_1+m_1}(\mathbb{Z}/2)^{\left(\frac{2i_1+n-1}{\beta_{2,n}^2+n}-i_1\right)}=(\mathbb{Z}/2)^D$$

and

$$D = \sum_{i_{j_{n+1}}=\beta_{1,n}+\frac{n+1}{2}+j_{n+1}-1}^{t-1} \cdots \sum_{i_{2}=\beta_{1,n}+\frac{n+1}{2}+1}^{i_{3}-1} \sum_{i_{1}=\beta_{1,n}+\frac{n+1}{2}}^{i_{2}-1} \left(\frac{2i_{1}+n-1}{2}-j_{1}\right) \beta_{2,n} + n^{2} \beta_{2,n} + n$$

By 1.2(ii), we have

$$\sum_{i_1=\beta_{1,n}+\frac{n+1}{2}}^{i_2-1} \binom{\frac{2i_1+n-1}{2}-j_1}{\beta_{2,n}+n} = \binom{\frac{2i_2+n-1}{2}-j_1}{\beta_{2,n}+1+n}$$

and

$$\sum_{i_2=\beta_{1,n}+\frac{n+1}{2}+1}^{i_3-1} \binom{\frac{2i_2+n-1}{2}-j_1}{\beta_{2,n}+1+n} = \binom{\frac{2i_3+n-1}{2}-j_1}{\beta_{2,n}+2+n}.$$

Therefore we can deduce that

$$D = \sum_{i_{j_{n+1}}=\beta_{1,n}+\frac{n+1}{2}+j_{n+1}-1}^{t-1} \binom{\frac{2i_{j_{n+1}}+n-1}{2}-j_1}{\beta_{2,n}+j_{n+1}-1+n} = \binom{\frac{2t+n-1}{2}-j_1}{\beta_{2,n+1}+n} = \binom{\frac{s+(n+1)-2}{2}-j_1}{\beta_{2,n+1}+n}$$

where $s = 2t \ge 2\beta_{1,n+1} + n + 1$.

Now we have calculated the summands of W_n^r as groups. In the next theorem we will deal with the results in [6, Lemma 3.4], together with the Künneth sequence for P_n , to explain that there is no extension problem for this Künneth sequence, for any finite number n not just for n = 2 and therefore the middle term of this sequence is a direct sum of the left and the right side. From this we will decompose $bu_*(P_n)$ as a direct sum of W_n^r , for $0 \le r \le n-1$.

Theorem 2.21. Let $n \ge 1$. Then

$$bu_*(P_n) = \bigoplus_{r=0}^{n-1} W_n^r.$$

Proof The proof is by induction on n. Let us start from the Künneth short exact sequence for P_n ,

$$0 \to A_* \otimes bu_*(P_{n-1}) \to bu_*(P_n) \to T(bu_*(P_{n-1})) \to 0,$$

and consider the case n = 3. The case n = 2 was already considered in [7] and there is no extension problem for the Künneth sequence when n = 2 because the left hand side is non-zero only in even degrees, whereas the right side is non-zero only in odd degrees. Therefore

$$bu_*(P_2) \cong A^2_* \oplus T(A_*) = T^{0,0}_* \oplus T^1_* = W^0_2 \oplus W^1_2.$$

For n = 3, the analogous Künneth sequence has the form

$$0 \to T^{0,0,0}_* \oplus T^{0,1}_* \to bu_*(P_3) \to T^{1,0}_* \oplus T^2_* \to 0.$$

Now 2.12 and 2.14 show that

$$(T^{0,0,0}_* \oplus T^{0,1}_*)_s \cong \begin{cases} (\mathbb{Z}/2)^{\binom{t-1}{1}}, & \text{when } s = 2t, t \ge 2, \\ (\mathbb{Z}/2)^{\binom{t+1}{2}}, & \text{when } s = 2t+1, t \ge 1, \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

Whereas 2.13 and 2.6 show that

$$(T^{1,0}_* \oplus T^2_*)_s \cong \begin{cases} (\mathbb{Z}/2)^{\binom{t}{2}}, & \text{when } s = 2t, \ t \ge 2, \\ \mathbb{Z}/2^{t-1}, & \text{when } s = 2t+1, \ t \ge 2, \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

Therefore $bu_i(P_3) = 0$ for i < 3, $bu_3(P_3) \cong \mathbb{Z}/2$ and for $t \ge 2$, we have exact sequences

$$0 \to (\mathbb{Z}/2)^{\binom{t-1}{1}} \to bu_{2t}(P_3) \to (\mathbb{Z}/2)^{\binom{t}{2}} \to 0,$$

and

$$0 \to (\mathbb{Z}/2)^{\binom{t+1}{2}} \to bu_{2t+1}(P_3) \to \mathbb{Z}/2^{t-1} \to 0.$$

By [6, Lemma 3.4], we have

$$bu_{2t}(P_3) \cong (\mathbb{Z}/2)^{\sum_{j=0}^1 {j \choose 0} {t+j-1 \choose j+1}} = (\mathbb{Z}/2)^{{t-1 \choose 1} + {t \choose 2}}$$

and

$$bu_{2t+1}(P_3) \cong \mathbb{Z}/2^{t-1} \oplus (\mathbb{Z}/2)^{\sum_{j=0}^{1} {j \choose j} {t+j \choose j+1}} = \mathbb{Z}/2^{t-1} \oplus (\mathbb{Z}/2)^{{t+1 \choose 2}}.$$

Thus the above calculations tell us that there are no extension problems in the Künneth sequence. Therefore

$$bu_*(P_3) \cong T^{0,0,0}_* \oplus T^{0,1}_* \oplus T^{1,0}_* \oplus T^2_* = \bigoplus_{r=0}^2 W^r_3,$$

where

$$W_3^0 = A_*^3 = T_*^{0,0,0},$$

$$W_3^1 = (A_* \otimes T(A_*)_*) \oplus T(A_*^2)_* = T_*^{0,1} \oplus T_*^{1,0}, \text{ and}$$

$$W_3^2 = T^2(A_*)_* = T_*^2.$$

Now, let us assume that there is no extension problem for the above Künneth sequence for $n = 2n_1$, and the statement is true in this case. And let us start again from the Künneth sequence,

$$0 \to A_* \otimes bu_*(P_{2n_1}) \to bu_*(P_{2n_1+1}) \to T(bu_*(P_{2n_1})) \to 0$$

where

$$bu_{2t}(P_{2n_1+1}) = (\mathbb{Z}/2)^{\sum_{j=0}^{2n_1-1} \sum_{i=0}^{n_1-1} \binom{j}{2i}\binom{t-2n_1+j+i+1}{j+1}},$$

for $t \ge n_1 + 1$.

By 2.8, $A_* \otimes bu_*(P_{2n_1})$ is an \mathbb{F}_2 -vector space with trivial action of u, where, by [6, Lemma 3.4], we have

$$bu_{2t+1}(P_{2n_1}) = \mathbb{Z}/2^{t-2n_1+2} \oplus (\mathbb{Z}/2)^{\sum_{j=0}^{2n_1-2} \sum_{i=0}^{n_1-2} \binom{j}{2i+1}\binom{t-2n_1+j+i+3}{j+1}}$$

and $\mathbb{Z}/2^{t-2n_1+2}$ comes from the only summand $T_{2t+1}^{2n_1-1}$ of $bu_*(P_{2n_1})_{2t}$ which consists of a higher 2-torsion group with non-trivial action of u. Then, by 2.10 for $m \ge n_1$ and $\ell \ge 0$, we have

$$(A_* \otimes bu_*(P_{2n_1}))_{2t} \cong (A_* \otimes T_*^{2n_1-1})_{2t} \oplus \oplus_{t=\ell+m+1} A_{2\ell+1} \otimes (\mathbb{Z}/2)^{\sum_{j=0}^{2n_1-2} \sum_{i=0}^{n_1-2} \binom{j}{2i+1}\binom{m-2n_1+j+i+3}{j+1}} \\ = (\mathbb{Z}/2)^{t-2n_1+1} \oplus (\mathbb{Z}/2)^{\sum_{m=n_1}^{t-1} \sum_{j=0}^{2n_1-2} \sum_{i=0}^{n_1-2} \binom{j}{2i+1}\binom{m-2n_1+j+i+3}{j+1}}.$$

In the other side of the sequence, for $t \ge n_1 + 1$, $m \ge n_1$ and k > 0, we have

$$T(bu_*(P_{2n_1}))_{2t} = \bigoplus_{t=m+k} bu_{2m}(P_{2n_1}) \otimes X_{2k-1},$$

where $X_{2k-1} = \mathbb{Z}\{u^m a_{\ell_i} : k = m + \ell_i, \text{ and } a_{\ell_i} \text{ of degree } 2\ell_i - 1\}$. Then [6, Lemma 3.4] shows that

$$T(bu_*(P_{2n_1}))_{2t} \cong \bigoplus_{t=m+k} (\mathbb{Z}/2)^{\sum_{j=0}^{2n_1-2} \sum_{i=0}^{n_1-1} {j \choose 2i} {m-2n_1+j+i+2} \atop = (\mathbb{Z}/2)^{\sum_{m=n_1}^{t-1} \sum_{j=0}^{2n_1-2} \sum_{i=0}^{n_1-1} {j \choose 2i} {m-2n_1+j+i+2} \atop = (\mathbb{Z}/2)^{\sum_{m=n_1}^{t-1} \sum_{j=0}^{2n_1-2} \sum_{i=0}^{n_1-1} {j \choose 2i} {m-2n_1+j+i+2} \atop = (\mathbb{Z}/2)^{\sum_{m=n_1}^{t-1} \sum_{j=0}^{2n_1-2} \sum_{i=0}^{n_1-1} {j \choose 2i} {m-2n_1+j+i+2} \atop = (\mathbb{Z}/2)^{\sum_{m=n_1}^{t-1} \sum_{j=0}^{2n_1-2} \sum_{i=0}^{n_1-1} {j \choose 2i} {m-2n_1+j+i+2} \atop = (\mathbb{Z}/2)^{\sum_{m=n_1}^{t-1} \sum_{j=0}^{2n_1-2} \sum_{i=0}^{n_1-1} {j \choose 2i} {m-2n_1+j+i+2} \atop = (\mathbb{Z}/2)^{\sum_{m=n_1}^{t-1} \sum_{j=0}^{2n_1-2} \sum_{i=0}^{n_1-1} {j \choose 2i} {m-2n_1+j+i+2} \atop = (\mathbb{Z}/2)^{\sum_{m=n_1}^{t-1} \sum_{j=0}^{2n_1-2} \sum_{i=0}^{n_1-1} {j \choose 2i} {m-2n_1+j+i+2} \atop = (\mathbb{Z}/2)^{\sum_{m=n_1}^{t-1} \sum_{j=0}^{2n_1-2} \sum_{i=0}^{n_1-1} {j \choose 2i} {m-2n_1+j+i+2} \atop = (\mathbb{Z}/2)^{\sum_{m=n_1}^{t-1} \sum_{j=0}^{2n_1-2} \sum_{i=0}^{n_1-1} {j \choose 2i} {m-2n_1+j+i+2} \atop = (\mathbb{Z}/2)^{\sum_{m=n_1}^{t-1} \sum_{j=0}^{2n_1-2} \sum_{i=0}^{n_1-1} {j \choose 2i} {m-2n_1+j+i+2} \atop = (\mathbb{Z}/2)^{\sum_{m=n_1}^{t-1} \sum_{j=0}^{2n_1-2} \sum_{j=0}^{n_1-1} {j \choose 2i} {m-2n_1+j+i+2} \atop = (\mathbb{Z}/2)^{\sum_{m=n_1}^{t-1} \sum_{j=0}^{2n_1-2} \sum_{j=0}^{2n_1-2} {j \choose 2i} {m-2n_1+j+i+2} \atop = (\mathbb{Z}/2)^{\sum_{m=n_1}^{t-1} \sum_{j=0}^{2n_1-2} {j \choose 2i} {m-2n_1+j+i+2} \atop = (\mathbb{Z}/2)^{\sum_{m=n_1}^{t-1} \sum_{j=0}^{2n_1-2} {j \choose 2i} {m-2n_1+j+i+2} \atop = (\mathbb{Z}/2)^{\sum_{m_1-2} {j \choose 2i} {m-2n_1+j+2} \atop = (\mathbb{Z}/2)^{\sum_{m_1-2} {j \choose 2i} {m-2n_1+j+2} \atop = (\mathbb{Z}/2)^{\sum_{m_1-2} {j \choose 2i} {m-2n_1+j+2} \atop = (\mathbb{Z}/2)^{\sum_{m_1-2} {j \choose 2i} \atop$$

Inductively on t and n_1 , we can see that

$$t - 2n_1 + 1 + \sum_{m=n_1}^{t-1} \sum_{j=0}^{2n_1-2} \sum_{i=0}^{n_1-2} {j \choose 2i+1} {m-2n_1+j+i+3 \choose j+1} + \sum_{m=n_1}^{t-1} \sum_{j=0}^{2n_1-2} \sum_{i=0}^{n_1-1} {j \choose 2i} {m-2n_1+j+i+2 \choose j+1} = \sum_{j=0}^{2n_1-1} \sum_{i=0}^{n_1-1} {j \choose 2i} {t-2n_1+j+i+1 \choose j+1}.$$

Therefore,

$$bu_{2t}(P_{2n_1+1}) \cong (A_* \otimes bu_*(P_{2n_1}))_{2t} \oplus T(bu_*(P_{2n_1}))_{2t}$$

Similarly, we can deduce the same result for degree 2t+1. This yields that there is no extension problem in the Künneth sequence for P_{2n_1+1} , so $bu_*(P_{2n_1+1}) \cong (A_* \otimes bu_*(P_{2n_1})) \oplus T(bu_*(P_{2n_1}))$. By 3.5, we have

$$\bigoplus_{r=0}^{2n_1} W_{2n_1+1}^r = \bigoplus_{r=0}^{2n_1} (A_* \otimes W_{2n_1}^r \oplus T(W_{2n_1}^{r-1})) = \bigoplus_{r=0}^{2n_1-1} (A_* \otimes W_{2n_1}^r \oplus T(W_{2n_1}^r))$$

where the right side is equal to $(A_* \otimes bu_*(P_{2n_1})) \oplus T(bu_*(P_{2n_1}))$. Thus $bu_*(P_{2n_1+1}) = \bigoplus_{r=0}^{2n_1} W_{2n_1+1}^r$. Similarly, if we assume the result for $n = 2n_1 + 1$, a similar calculation shows that there is no non-trivial extension in the Künneth sequence for P_{2n_1+2} , that is, $bu_*(P_{2n_1+2}) \cong (A_* \otimes$ $bu_*(P_{2n_1+1})) \oplus T(bu_*(P_{2n_1+1}))$, and again 3.5 gives the required result for $2n_1+2$. Thus

$$bu_*(P_{2n_1+2}) = \bigoplus_{r=0}^{2n_1+1} W_{2n_1+2}^r.$$

Remark 2.22. Each W_n^r has $\binom{n-1}{r}$ summands, which gives the total number of summands of $bu_*(P_n)$ to be $\sum_{r=0}^{n-1} \binom{n-1}{r} = 2^{n-1}$.

Example 2.23. For n = 5, we have $bu_*(P_5) = \bigoplus_{r=0}^4 W_5^r$, where

$$\begin{split} W_5^0 &= T_*^{0,0,0,0,0} \\ W_5^1 &= T_*^{1,0,0,0} \oplus T_*^{0,1,0,0} \oplus T_*^{0,0,1,0} \oplus T_*^{0,0,0,1} \\ W_5^2 &= T_*^{2,0,0} \oplus T_*^{0,2,0} \oplus T_*^{0,0,2} \oplus T_*^{1,1,0} \oplus T_*^{1,0,1} \oplus T_*^{0,1,1} \\ W_5^3 &= T_*^{3,0} \oplus T_*^{2,1} \oplus T_*^{1,2} \oplus T_*^{0,3}, \text{ and} \\ W_5^4 &= T_*^4. \end{split}$$

Hence $bu_*(P_5)$ has $2^4 = 16$ summands. In degree 2t, we have $W_5^0 = W_5^2 = W_5^4 = 0$, whereas

$$W_5^1 = T_{2t}^{1,0,0,0} \oplus T_{2t}^{0,1,0,0} \oplus T_{2t}^{0,0,1,0} \oplus T_{2t}^{0,0,0,1} \cong (\mathbb{Z}/2)^{3\binom{t+1}{4} + \binom{t}{3}} \text{ and } W_5^3 \cong (\mathbb{Z}/2)^{\binom{t}{4} + \binom{t-1}{3} + \binom{t-2}{2} + \binom{t-3}{1}},$$

so $bu_{2t}(P_5) \cong (\mathbb{Z}/2)^{\sum_{j=0}^3 \sum_{i=0}^1 {j \choose 2i} {t+j+i-3 \choose j+1}}$ and this result agrees with the result in [6, Lemma 3.4]. Similarly, in degree 2t+1 we have $W_5^1 = W_5^3 = 0$ whereas

$$\begin{split} W_5^0 &= T_{2t+1}^{0,0,0,0,0} \cong (\mathbb{Z})^{\binom{t+2}{4}} \\ W_5^2 &= T_{2t+1}^{2,0,0} \oplus T_{2t+1}^{0,2,0} \oplus T_{2t+1}^{0,0,2} \oplus T_{2t+1}^{1,1,0} \oplus T_{2t+1}^{1,0,1} \oplus T_{2t+1}^{0,1,1} \cong (\mathbb{Z}/2)^{3\binom{t+1}{4} + \binom{t-1}{2} + 2\binom{t}{3}} \text{ and } \\ W_5^4 &= T_{2t+1}^4 \cong \mathbb{Z}/2^{t-3}. \end{split}$$

Thus $bu_{2t+1}(P_5) \cong \mathbb{Z}/2^{t-3} \oplus (\mathbb{Z}/2)^{\sum_{j=0}^3 \sum_{i=0}^1 {j \choose 2i+1} {i+j+i-2 \choose j+1}}$ and this result also agrees with the result in [6, Lemma 3.4].

3. Tor decomposition of $bu_{p^*}(B\mathbb{Z}/p)^{\wedge n}$

3.1. In 1972, Holzsager [3] split the space $\Sigma B\mathbb{Z}/p$ with *p*-adic coefficients into the wedge of p-1 spaces B_i , where B_i has homology only in dimensions 2k(p-1) + 2i, for all natural numbers k. So the spectrum $\Sigma^{\infty} B\mathbb{Z}/p$ splits as $\Sigma^{\infty} B\mathbb{Z}/p \simeq \bigvee_{i=1}^{p-1} \Sigma^{\infty} B_i$, see also [4]. Here the spectrum B_i has stable cells in dimension $2k(p-1) + 2i - \epsilon$, for $\epsilon = 0, 1$ such that $2k(p-1) + 2i - \epsilon \ge 0$. The splitting of $B\mathbb{Z}/p$ as a spectrum is also written as $B\mathbb{Z}/p \simeq \bigvee_{i=1}^{p-1} B_i$. By [5], for the case E = lu the Adams summand and $X = B\mathbb{Z}/p$, we have the Thom iso-

By [5], for the case E = lu the Adams summand and $X = B\mathbb{Z}/p$, we have the Thom isomorphism $lu_{q+2}(T(\xi)) \cong lu_q(B\mathbb{Z}/p)$, that is, $lu_*(T(\xi)) \cong lu_*(\Sigma^2 B\mathbb{Z}/p)$. This isomorphism is induced by a homotopy equivalence $lu \wedge T(\xi) \simeq lu \wedge \Sigma^2 B\mathbb{Z}/p$. By applying the splitting of $B\mathbb{Z}/p$ and substituting $T(\xi) = \frac{B\mathbb{Z}/p}{B^1}$ in this homotopy equivalence we get

$$lu \wedge (B_1 \vee B_2 \vee \cdots \vee B_{p-1})/(B^1) \simeq lu \wedge \Sigma^2(B_1 \vee B_2 \vee \cdots \vee B_{p-1}).$$

Both sides of the last equivalence are wedges of p-1 pieces, and by comparing the dimensions of bottom cells we deduce the following homotopy equivalence $lu \wedge \Sigma^2 B_i \simeq lu \wedge B_{i+1}$ for $1 \leq i < p-1$. Inductively on *i*, we get $lu \wedge \Sigma^{2(i-1)} B_1 \simeq lu \wedge B_i$.

It would be more interesting if we can carrying on for any prime p using the splitting $bu_p \simeq \bigvee_{i=1}^{p-1} \Sigma^{2i-2} lu$ and the Holzsager splitting $B\mathbb{Z}/p \simeq \bigvee_{i=1}^{p-1} B_i$ to decompose $bu_{p^*} (B\mathbb{Z}/p)^{\wedge n}$ as a direct sum of some graded groups. This decomposition agreed with the result in [6, Theorem 3.8] and both yield that there is no extension problems in the Künneth sequence for $bu_{p^*} (B\mathbb{Z}/p)^{\wedge n}$.

The purpose of this section is the composition of $lu_*(B_1)^n$ first and using the above splitting to deduce the composition of $bu_{p^*}(B\mathbb{Z}/p)^{\wedge n}$.

Notation 3.2.

- In order to exploit certain splittings of spectra and at the same time to simplify the writing, we will write bu for bu_p , the connective unitary K-theory with *p*-adic integer coefficients \mathbb{Z}_p , where $bu_p \simeq \bigvee_{i=1}^{p-1} \Sigma^{2i-2} lu$.
- Here we write A_* for $lu_*(B_1)$.

By the Atiyah-Hirzebruch spectral sequence, see [1], for $X = B_1$ and E = lu we have $lu_j(B_1) = \mathbb{Z}/p^{k+1}$ when j = 2k(p-1) + 1 and it is zero otherwise.

Example 3.3. As in [7, 2.9], for $X = B_1$, the Künneth sequence has the form

$$0 \to lu_*(B_1) \otimes_{\mathbb{Z}_p[v]} lu_*(B_1) \to lu_*(B_1 \land B_1) \to \operatorname{Tor}^1_{\mathbb{Z}_p[v]}(lu_*(B_1), lu_*(B_1))[-1] \to 0$$

So, in degree 2k(p-1) + 2, the left-hand side is the graded \mathbb{F}_p -vector space spanned by

$$\{v_1 \otimes v_{2k(p-1)+1}, v_{2(p-1)+1} \otimes v_{2(k-1)(p-1)+1}, \dots, v_{2k(p-1)+1} \otimes v_1\}$$

which is concentrated in even degrees.

To calculate the graded group $\operatorname{Tor}_{\mathbb{Z}_p[v]}^1(lu_*(B_1), lu_*(B_1))[-1]$, we can consider the following free $\mathbb{Z}_p[v]$ -resolution of $lu_{2(p-1)*+1}(B_1)$

 $0 \longrightarrow \bigoplus_{j \ge 0} \mathbb{Z}_p[v] \langle a_{2j(p-1)+1} \rangle \xrightarrow{d} \bigoplus_{j \ge 0} \mathbb{Z}_p[v] \langle b_{2j(p-1)+1} \rangle \xrightarrow{\varepsilon} lu_{2(p-1)*+1}(B_1) \longrightarrow 0$ where $\varepsilon(b_{2j(p-1)+1}) = v_{2j(p-1)+1}$ for all $j \ge 0$ and $d(a_{2j(p-1)+1}) = pb_{2j(p-1)+1} - vb_{2(j-1)(p-1)+1}$ for $j \ge 0$.

After applying $(lu_{2(p-1)*+1}(B_1) \otimes_{\mathbb{Z}_p[v]} -)$ to the above resolution, we can calculate

 $\ker(I \otimes d) = \ker(\bigoplus_{j \ge 0} lu_{2(p-1)*+1}(B_1) \langle a_{2j(p-1)+1} \rangle \to \bigoplus_{j \ge 0} lu_{2(p-1)*+1}(B_1) \langle b_{2j(p-1)+1} \rangle).$ In degree 2k(p-1) + 2, this graded group has a generator of the form

$$v_1 \otimes a_{2k(p-1)+1} + v_{2(p-1)+1} \otimes a_{2(k-1)(p-1)+1} + \dots + v_{2k(p-1)+1} \otimes a_1.$$

Since this generator has a summand $v_{2k(p-1)+1}$, so in degree 2k(p-1)+2, the group

 $\operatorname{Tor}^{1}_{\mathbb{Z}_{p}[v]}(lu_{2*+1}(B_{1}), lu_{2*+1}(B_{1}))$ is

$$\mathbb{Z}/p^k \langle v_1 \otimes a_{2k(p-1)+1} + v_{2(p-1)+1} \otimes a_{2(k-1)(p-1)+1} + \dots + v_{2k(p-1)+1} \otimes a_1 \rangle.$$

So $\operatorname{Tor}_{\mathbb{Z}_p[v]}^1(lu_{2*+1}(B_1), lu_{2*+1}(B_1))[-1]$, in degree 2k(p-1)+3, is the finite cyclic group of order p^k . this group is concentrated in odd degrees. So the middle group $lu_*(B_1 \wedge B_1)$ in any given degree is isomorphic to the one on the left or the one on the right side.

By applying $T(A_*)_* \otimes_{\mathbb{Z}_p[v]} -$ instead of $A_* \otimes_{\mathbb{Z}_p[v]} -$ to the previous free resolution of A_* with shifting by (-1) and by using induction on n, we can calculate the graded group T_*^n . This is non-zero just in degrees 2t(p-1) + 2n + 1.

Proposition 3.4. For $n, t \ge 0$,

$$T_{2t(p-1)+2n+1}^{n} \cong \mathbb{Z}/p^{t+1} \langle \sum_{i+\sum_{k=1}^{n} j_{k}=t} v_{2i(p-1)+1} a_{j_{1}} a_{j_{2}} \dots a_{j_{n}} \rangle,$$

where a_{j_k} is in degree $2j_k(p-1) + 1$.

Definition 3.5. Let $0 \le k \le n-1$, we define the weight k iterated T as

$$W_n^k = \bigoplus_{\sum j_i = k} T_*^{j_{n-k}, j_{n-k-1}, \dots, j_1}$$

where $j_i \in \mathbb{N}_0$, and $T^{j_{n-k}, j_{n-k-1}, \dots, j_1}$ as in 2.3.

Lemma 3.6. Let $0 \le k \le n-1$. With the exceptions of A_* and T_*^n , each summand of W_n^k is a graded \mathbb{F}_p -vector space, on which v acts trivially.

By all the previous calculations, we can deduce the next result, which is about the calculation of $T_*^{j_n,j_{n-1},\ldots,j_1}$ as a graded group, which is non-zero just in degrees $2t(p-1) + 2\beta_{1,n} + n$ for $t \ge 0$, and again using this to calculate W_n^r for any $0 \le r \le n-1$.

Proposition 3.7. Let n > 1. Then, using the notation of 2.16,

$$T_{2t(p-1)+2\beta_{1,n}+n}^{j_n,j_{n-1},\dots,j_1} \cong (\mathbb{Z}/p)^{\binom{t+\beta_{2,n}+n-1}{\beta_{2,n}+n-1}}.$$

For p = 2, we can get the same result in 2.20. By 3.7, if $j_k = 0$ for all k = 1, 2, ..., n, we can calculate the graded group A_*^n which is non-zero just in degrees 2t(p-1) + n

$$A_{2t(p-1)+n}^{n} = T_{2t(p-1)+n}^{\underbrace{n \ times}{0, 0, \dots, 0}} \cong (\mathbb{Z}/p)^{\binom{t+n-1}{n-1}}.$$

This result also agree with 2.12 when p = 2.

By the splitting $bu \simeq \bigvee_{i=1}^{p-1} \Sigma^{2i-2} lu$, the Holzsager splitting $B\mathbb{Z}/p \simeq \bigvee_{i=1}^{p-1} B_i$ and $lu \wedge \Sigma^{2(i-1)} B_1 \simeq lu \wedge B_i$ we have

$$bu \wedge \overbrace{B\mathbb{Z}/p \wedge B\mathbb{Z}/p \wedge \cdots \wedge B\mathbb{Z}/p}^{n \ times} \simeq \bigvee_{i_1, i_2, \dots, i_{n+1}=0}^{p-2} \sum_{k=1}^{2\sum_{k=1}^{n+1} i_k} lu \wedge \overbrace{B_1 \wedge B_1 \wedge \cdots \wedge B_1}^{n \ times}.$$

Applying the homotopy group π_* we get that

$$bu_*(B\mathbb{Z}/p)^{\wedge n} \cong \bigoplus_{i_1,i_2,\dots,i_{n+1}=0}^{p-2} lu_{*-2\sum_{k=1}^{n+1}i_k}(B_1)^{\wedge n}.$$

Again we have calculated the summands of W_n^r for $lu_*(B_1)$ as graded groups. In the next theorem we will deal with the results in [6, 3.8], together with the Künneth sequence for $lu_*(B_1)$ and using the above discutient to explain that there is no extension problem for this Künneth sequence for $bu_*(B\mathbb{Z}/p)^{\wedge n}$, for any finite number n, and decompose $bu_*(B\mathbb{Z}/p)^{\wedge n}$ as a direct sum of some graded groups. The proof is similar to 3.8, so it is enough to consider some spacial cases as examples.

Theorem 3.8. Let $n \ge 1$. Then

$$bu_*(B\mathbb{Z}/p)^{\wedge n} = \bigoplus_{i_1,i_2,\dots,i_{n+1}=0}^{p-2} \bigoplus_{r=0}^{n-1} W_n^r$$

where $W_n^r = \bigoplus_{\sum j_i = r} T_{*-2\sum_{k=1}^{n+1} i_k}^{j_{n-r}, j_{n-r-1}, \dots, j_1}$.

Example 3.9. For n = p = 3, $bu_9 (B\mathbb{Z}/3)^{\wedge 3} = \bigoplus_{i_1, i_2, i_3, i_4=0}^1 \bigoplus_{r=0}^2 W_3^r$ where $W_3^r = \bigoplus_{\Sigma j_i = r} T_{9-2\Sigma_{k=1}^4 i_k}^{j_3 - r, j_2 - r, ..., j_1}$. By 3.4 and 3.7 we have $bu_9 (B\mathbb{Z}/3)^{\wedge 3} = T_9^2 \oplus (T_7^{0,0,0})^4 \oplus (T_5^2)^6 \oplus (T_3^{0,0,0})^4 = \mathbb{Z}/3^2 \oplus (\mathbb{Z}/3)^{22}$. And by [6, 3.8], we have $bu_9 (B\mathbb{Z}/3)^{\wedge 3} = \Gamma(k, 4) \oplus (\mathbb{Z}/3)^{\sum_{j=0}^1 \sum_{\lambda_1, \lambda_2, ..., \lambda_{2-j}=0}^1 \binom{j}{1} \binom{4+j-\sum_{a=1}^{2-j} \lambda_a}{j+1}} = \mathbb{Z}/3^2 \oplus (\mathbb{Z}/3)^{22}$, where $\Gamma(k, 4) = \mathbb{Z}/3^2 \oplus (\mathbb{Z}/3)^6$ and $(\mathbb{Z}/3)^{\sum_{j=0}^1 \sum_{\lambda_1, \lambda_2, ..., \lambda_{2-j}=0}^1 \binom{j}{1} \binom{4+j-\sum_{a=1}^{2-j} \lambda_a}{j+1}} = (\mathbb{Z}/3)^{16}$.

References

- [1] J.F. Adams: Stable Homotopy and Generalised Homology; University of Chicago Press (1974).
- [2] L. Graham, E.Knuth and O. Patashnik: Concrete mathematics; Addison-Wesley Publishing Company (1994).
- [3] Holzsager, Richard: Stable splitting of K(G, 1); Proc. Amer. Math. Soc. Proceedings of the American Mathematical Society. vol 31 (1972) 305–306.
- [4] E.Ossa: Connective K-theory of elementary abelian groups; Transformation groups (Osaka, 1987). Lecture Notes in Math. vol 1375, 269–275. Springer, Berlin (1987).
- R. Switzer: Algebraic topology—homotopy and homology; Classics in Mathematics, (note: Reprint of the 1975 original [Springer, New York; MR0385836 (52 #6695)]). Springer-Verlag, Berlin (2002) xiv+526.
- [6] Mira, Khairia M: bu_{*}(BZ/p)ⁿ as a Graded Group; Journal of Progressive Research in Mathematics(JRM) ISSN: 2395-0218, SCITECH RESEARCH ORGANISATION, , 1981-1988, Volume 12, Issue 3 available at www.scitecresearch.com/journals/index.php/jprm.
- [7] Bruner, Robert R. and Mira, Khairia M. and Stanley, Laura A. and Snaith, Victor P: Ossa's theorem via the Künneth formula; Mathematics and Statistics 3(3): 58-64, 2015, DOI: 10.13189/ms.2015.030302, http://www.hrpub.org/download/20150620/MS2-13403792.pdf