TOR DECOMPOSITION OF $b u_{p *}(B \mathbb{Z} / p)^{\wedge n}$

Khairia Mohamed Mira
Department of Mathematics, Faculty of Science, Tripoli University, Libya
[J.]khairiamera@yahoo.co.uk

Abstract

We decompose $b u_{p^{*}}(B \mathbb{Z} / p)^{\wedge n}$, the connective unitary K-theory with p-adic coefficients of the n-fold smash product of the classifying space for the cyclic group of prime order p, as a direct sum of some graded groups, which include the graded groups $b u_{p^{*}}(B \mathbb{Z} / p)$ and $T o r_{\mathbb{Z}_{p}[v]}^{1}\left(b u_{p^{*}}(B \mathbb{Z} / p), b u_{p^{*}}(B \mathbb{Z} / p)\right)[-1]$. We deal with the results in $[6$, Theorem 3.8] together with the Künneth sequence for $b u_{p^{*}}(B \mathbb{Z} / p)^{\wedge n}$, to explain that there is no extension problem for this Künneth sequence, for any finite number n not just for $n=2$ and therefore the middle term of this sequence is a direct sum of the left and the right side.

Keywords: The connective unitary K-theory;a Künneth formula short exact sequence.

1. Introduction

Let $b u_{*}$ denote connective unitary K-homology on the stable homotopy category of CW spectra [1] so that if X is a space without a basepoint its unreduced $b u$-homology is $b u_{*}\left(\Sigma^{\infty} X_{+}\right)$, the homology of the suspension spectrum of the disjoint union of X with a base-point. In particular $b u_{*}\left(\Sigma^{\infty} S^{0}\right)=\mathbb{Z}[u]$ where $\operatorname{deg}(u)=2$.

For a prime number p, we have $b u_{p}$, the connective unitary K-theory with p-adic integer coefficients \mathbb{Z}_{p}, where $b u_{p} \simeq \vee_{i=1}^{p-1} \Sigma^{2 i-2} l u$, lu the Adams summand such that $b u_{p^{*}}\left(S^{0}\right) \cong$ $\bigoplus_{i=1}^{p-1} l u_{*-2 i+2}\left(S^{0}\right), l u_{*}\left(S^{0}\right) \cong \mathbb{Z}_{p}\left[u^{p-1}\right] \cong \mathbb{Z}_{p}[v]$ and $\operatorname{deg}(v)=2(p-1)$.

In $\S 2$ we deal with the results in [6, Lemma 3.4], together with the Künneth sequence for $b u_{*}(B \mathbb{Z} / 2)^{\wedge n}$, to explain that there is no extension problem for this Künneth sequence, for any finite number n not just for $n=2$ and therefore the middle term of this sequence is a direct sum of the left and the right side. From this we will decompose $b u_{*}(B \mathbb{Z} / 2)^{\wedge n}$ as a direct sum of some graded groups.

For any prime p, In $\S 3$ we use the splitting $b u_{p} \simeq \vee_{i=1}^{p-1} \Sigma^{2 i-2} l u$ and the Holzsager splitting [3] $B \mathbb{Z} / p \simeq \vee_{i=1}^{p-1} B_{i}$ to decompose $b u_{p^{*}}(B \mathbb{Z} / p)^{\wedge n}$ as a direct sum of some graded groups. This decomposition agreed with the result in [6, Theorem 3.8] and both also yield that there is no extension problems in the Künneth sequence for $b u_{p^{*}}(B \mathbb{Z} / p)^{\wedge n}$.

In this section we fix some notations that we will use for this paper and introduce some binomial coefficient identities which will support our calculation.

Notation 1.1.

- For $n \geq 1$, in $\S 2$,we write P_{n} for $(B \mathbb{Z} / 2)^{\wedge n}$, the n-fold smash product of $B \mathbb{Z} / 2$. In particular, $P_{1}=B \mathbb{Z} / 2$, whereas in $\S 3$, we write P_{n} for $(B \mathbb{Z} / p)^{\wedge n}$
- we write A_{*} for $b u_{*}\left(P_{1}\right)$.
- For a \mathbb{Z}-graded group B_{*}, we write $B_{*}[n]$ for the graded group with $B_{j}[n]=B_{j+n}$, so that $b u_{*}(X)[-1]=b u_{*-1}(X)$.

Lemma 1.2. [2]. For any $j, k, m, n \in \mathbb{N}_{0}$, we have
(i) $\binom{n}{k}=0$ if n and k both are not integers or if $n<k$,
(ii) $\sum_{0 \leq k \leq n}\binom{n}{k}=2^{n}$,
(iii) $\sum_{0 \leq k \leq n}\binom{k}{m}=\binom{n+1}{m+1}$, and
(iv) $\sum_{0 \leq k \leq n}\binom{k}{j}\binom{n-k}{m-j}=\binom{n+1}{m+1}$, where $0 \leq j \leq m \leq n$.
2. Tor decomposition of $b u_{*}(B \mathbb{Z} / 2)^{\wedge n}$
2.1. For $p=2$, in this section we will decompose $b u_{*}\left(P_{n}\right)$ as a direct sum of some graded groups, which include the graded groups $\operatorname{Tor}_{\mathbb{Z}_{2}[u]}^{1}\left(b u_{*}\left(P_{1}\right), b u_{*}\left(P_{1}\right)\right)[-1]$ and $b u_{*}\left(P_{1}\right)$.

Definition 2.2.

Let X be a graded group, and $r \geq 0$. We define $T^{r}(X)_{*}$ as

$$
T^{r}(X)_{*}=T\left(T^{r-1}(X)_{*}\right)_{*}
$$

where $T^{0}(X)_{*}=X$ and $T^{1}(X)_{*}=T(X)_{*}=\operatorname{Tor}_{\mathbb{Z}_{2}[u]}^{1}\left(A_{*}, X\right)[-1]$.
From this definition we can deduce that:
(1) $T^{r}(X)_{*}=T^{m}\left(T^{k}(X)_{*}\right)_{*}$, for $m+k=r$.
(2) We have $T^{r}\left(A_{*}\right)_{*}=\overbrace{T\left(T\left(\ldots T\left(A_{*}\right)_{*} \ldots\right)_{*}\right)_{*}}^{r \text { times }}$, where, by [7] $\S 2.7, T\left(A_{*}\right)_{*}$ is non-zero just in degrees $2 t+1 \geq 3$. Then, by applying $T\left(A_{*}\right)_{*} \otimes_{\mathbb{Z}_{2}[u]}$ - instead of $A_{*} \otimes_{\mathbb{Z}_{2}[u]}$ - to the free resolution of A_{*}, which is described in [7] Example 2.9, with shifting by (-1) and by using induction on r, we can calculate the graded group $T^{r}\left(A_{*}\right)_{*}$. This is non-zero just in degrees $2 t+1$ for $t \geq r$.

Notation 2.3. For the rest of this section, we will write:

- A_{*}^{r} for $A_{*}^{\otimes^{r}}$, the tensor of A_{*} with itself over $\mathbb{Z}_{2}[u] r$-times,
- $A_{*} \otimes B_{*}$ for $A_{*} \otimes_{\mathbb{Z}_{2}[u]} B_{*}$, for a $\mathbb{Z}_{2}[u]-$ module B_{*}, and
- $T_{*}^{j_{r}, j_{r-1}, \ldots, j_{1}}$ for $T^{j_{r}}\left(A_{*} \otimes T^{j_{r-1}}\left(A_{*} \otimes T^{j_{r-2}}\left(\ldots T^{j_{2}}\left(A_{*} \otimes T^{j_{1}}\left(A_{*}\right)_{*}\right)_{*} \ldots\right)_{*}\right)_{*}\right)_{*}$, where $j_{i} \in$ \mathbb{N}_{0}.

Definition 2.4. Let $0 \leq k \leq n-1$, we define the weight k iterated T as

$$
W_{n}^{k}=\bigoplus_{\sum j_{i}=k} T_{*}^{j_{n-k}, j_{n-k-1}, \ldots, j_{1}}
$$

where $j_{i} \in \mathbb{N}_{0}$.
We will see later, in 3.8, that $b u_{*}\left(P_{n}\right)$ decomposes as a sum over the W_{n}^{k} 's. It is easy to check that:
(i) $W_{n}^{k}=0$, for $k \geq n$,
(ii) $W_{n}^{n-1}=T_{*}^{n-1}, W_{n}^{0}=A_{*}^{n}$, and
(iii) $W_{n+1}^{k}=\left(A_{*}^{*} \otimes W_{n}^{k}\right) \oplus T\left(W_{n}^{k-1}\right)$ for $0 \leq k \leq n$.

Since W_{n}^{k} is constructed from the graded groups $T_{*}^{j_{n-k}, j_{n-k-1}, \ldots, j_{1}}$, then to calculate W_{n}^{k} as a group we need to calculate each summand as a group. Let us start with the higher 2 -torsion when $k=n-1$.

Notation 2.5. In this section to simplify the indices in some formulas, we need to change the indexing conventions in the resolution in [7] to be in the form

$$
0 \longrightarrow \oplus_{j_{i}>0} \mathbb{Z}_{2}[u]\left\langle a_{j_{i}}\right\rangle \xrightarrow{d} \oplus_{j_{i}>0} \mathbb{Z}_{2}[u]\left\langle b_{j_{i}}\right\rangle \longrightarrow A_{*} \longrightarrow 0
$$

where $a_{j_{i}}$ and $b_{j_{i}}$ are in degree $2 j_{i}-1$ and $d\left(a_{j_{i}}\right)=2 b_{j_{i}}-u b_{j_{i}-2}$.

Proposition 2.6. For $n \geq 0, t \geq n$,

$$
T_{2 t+1}^{n} \cong \mathbb{Z} / 2^{t+1-n}\left\langle\sum_{i+\sum_{k=1}^{n} j_{k}=t} v_{2 i+1} a_{j_{1}} a_{j_{2}} \ldots a_{j_{n}}\right\rangle,
$$

where we have the short exact sequence

$$
0 \longrightarrow \oplus_{j_{i}>0} \mathbb{Z}_{2}[u]\left\langle a_{j_{i}}\right\rangle \xrightarrow{d} \oplus_{j_{i}>0} \mathbb{Z}_{2}[u]\left\langle b_{j_{i}}\right\rangle \longrightarrow A_{*} \longrightarrow 0
$$

as in 2.5, and $v_{2 i+1} a_{j_{1}} a_{j_{2}} \ldots a_{j_{n}}$ refers to
$v_{2 i+1} \otimes a_{j_{1}} \otimes a_{j_{2}} \cdots \otimes a_{j_{n}} \in A_{*} \otimes\left(\oplus_{j_{1}>0} \mathbb{Z}_{2}[u]\left\langle a_{j_{1}}\right\rangle\right) \otimes\left(\oplus_{j_{2}>0} \mathbb{Z}_{2}[u]\left\langle a_{j_{2}}\right\rangle\right) \cdots \otimes\left(\oplus_{j_{n}>0} \mathbb{Z}_{2}[u]\left\langle a_{j_{n}}\right\rangle\right)$.

Proof The proof is by induction on n, where the case $n=1$ is described in [7] and agrees with the above statement. For $n=2$, let us consider the same free resolution of A_{*} after applying $\left(T_{*} \otimes-\right)$ and shifting by (-1). We have $T_{*}^{2} \subset T_{*} \otimes\left(\oplus_{j_{2}>0} \mathbb{Z}_{2}[u]\left\langle a_{j_{2}}\right\rangle\right)$, where $T_{2 \ell+1} \cong$ $\mathbb{Z} / 2^{\ell}\left\langle\sum_{i+j_{1}=\ell} v_{2 i+1} a_{j_{1}}\right\rangle$ for $\ell \geq 1$. Then by the same calculation as for T_{*}, see [7], we can calculate that, for $t \geq 2, T_{2 t+1}^{2}$ is a group with generator $\sum_{i+j_{1}=\ell} v_{2 i+1} a_{j_{1}} a_{j_{2}}$, where $\ell+j_{2}=t$. This generator can be written as $\sum_{i+j_{1}+j_{2}=t} v_{2 i+1} a_{j_{1}} a_{j_{2}}$, which contains a summand $v_{2(t-2)+1} a_{j_{1}} a_{j_{2}}$, with $j_{1}=j_{2}=1$ and $v_{2(t-2)+1} \in A_{2(t-2)+1} \cong \mathbb{Z} / 2^{t-1}$, see [7] for $p=2$. Therefore $T_{2 t+1}^{2} \cong$ $\mathbb{Z} / 2^{t-1}\left\langle\sum_{i+j_{1}+j_{2}=t} v_{2 i+1} a_{j_{1}} a_{j_{2}}\right\rangle$. Now assume that the statement is true for n. Again using the same free resolution of A_{*}, and applying ($T_{*}^{n} \otimes-$) with shifting by (-1), we have, $T_{*}^{n+1} \subset$ $T_{*}^{n} \otimes \oplus_{j_{n+1}>0} \mathbb{Z}_{2}[u]\left\langle a_{j_{n+1}}\right\rangle$, where $T_{2 \ell+1}^{n} \cong \mathbb{Z} / 2^{\ell+1-n}\left\langle\sum_{i+\sum_{k=1}^{n} j_{k}=\ell} v_{2 i+1} a_{j_{1}} a_{j_{2}} \ldots a_{j_{n}}\right\rangle$ for $\ell \geq n$. Similarly to the case $n=2$ above, where $T_{*}^{n+1}=T\left(T_{*}^{n}\right)$, we can calculate the generator of the group $T_{2 t+1}^{n+1}$, for $t \geq n+1$, to be $\sum_{i+\sum_{k=1}^{n} j_{k}=\ell} v_{2 i+1} a_{j_{1}} a_{j_{2}} \ldots a_{j_{n}} a_{j_{n+1}}$, where $\ell+j_{n+1}=t$. This generator can be written as $\sum_{i+\sum_{k=1}^{n+1} j_{k}=t} v_{2 i+1} a_{j_{1}} a_{j_{2}} \ldots a_{j_{n}} a_{j_{n+1}}$ where, for $j_{k}=1, k=$ $1,2, \ldots, n+1$, this sum has a summand of the form $v_{2(t-n-1)+1} a_{j_{1}} a_{j_{2}} \ldots a_{j_{n+1}}$. Again [7], for $p=2$, implies that $T_{2 t+1}^{n+1} \cong \mathbb{Z} / 2^{t-n}\left\langle\sum_{i+\sum_{k=1}^{n+1} j_{k}=t} v_{2 i+1} a_{j_{1}} a_{j_{2}} \ldots a_{j_{n+1}}\right\rangle$.

Lemma 2.7.

Let X_{*} be a $\mathbb{Z}_{2}[u]$-module such that u acts trivially on $A_{*} \otimes X_{*}$. Then u also acts trivially on $T\left(A_{*} \otimes X_{*}\right)_{*}$.

Proof From 2.6, we have an inclusion of $\mathbb{Z}_{2}[u]$-modules, $T\left(A_{*} \otimes X_{*}\right)_{*} \subset A_{*} \otimes X_{*} \otimes\left(\oplus_{j>0}\right.$ $\left.\mathbb{Z}_{2}[u]\left\langle a_{j_{1}}\right\rangle\right)$, where the right hand side is a graded group generated by $\left\{v \otimes x \otimes a_{j_{1}}\right\}$, for $v \otimes x \in$ $A_{*} \otimes X_{*}$. By the action of u on $A_{*} \otimes X_{*}$, we deduce that u also acts trivially on $A_{*} \otimes X_{*} \otimes$ $\left(\oplus_{j>0} \mathbb{Z}_{2}[u]\left\langle a_{j_{1}}\right\rangle\right)$.
Lemma 2.8. Let $0 \leq k \leq n-1$. With the exceptions of A_{*} and T_{*}^{n}, each summand of W_{n}^{k} is a graded \mathbb{F}_{2}-vector space, on which u acts trivially.

Proof By 2.6 and $[7]$, we know that A_{*} and T_{*}^{n} consist of higher $2-$ torsion groups with nontrivial action of u, where $u v_{2 i-1}=2 v_{2 i+1}$ and $v_{2 i+1} \in A_{*}$ of degree $2 i+1$. Now let us consider the summand $T_{*}^{0, n}$ of W_{n}^{k}. By 2.7, the results for the other summands are analogous.

By 2.6, any $x \in T_{2 t}^{0, n}=\oplus_{t=\ell+s+1} A_{2 \ell+1} \otimes T_{2 s+1}^{n}$ can be written as a linear combination of

$$
v_{2 \ell+1} \otimes \sum_{i+\sum_{k=1}^{n} j_{k}=s} v_{2 i+1} a_{j_{1}} a_{j_{2}} \ldots a_{j_{n}}=\sum_{i+\ell+\sum_{k=1}^{n} j_{k}=t-1} v_{2 \ell+1} \otimes v_{2 i+1} a_{j_{1}} a_{j_{2}} \ldots a_{j_{n}}
$$

And by [7], we have

$$
2 v_{2 \ell+1} \otimes v_{2 i+1}=u v_{2 \ell-1} \otimes v_{2 i+1}=2 v_{2 \ell-1} \otimes v_{2 i+3}=\cdots=2 v_{1} \otimes v_{2 i+2 \ell+1}=0
$$

and

$$
u v_{2 \ell+1} \otimes v_{2 i+1}=2 v_{2 \ell+3} \otimes v_{2 i+1}=u v_{2 \ell+3} \otimes v_{2 i-1}=\cdots=2 v_{2 \ell+2 i+3} \otimes v_{1}=0 .
$$

This shows that $T_{*}^{0, n}$ is an \mathbb{F}_{2}-vector space with a trivial action of u.
From the definition of W_{n}^{k}, we can recognise that any element of the summands of W_{n}^{k} can be written as a linear combination of a product of $(n-k) v_{i}$'s with some $a_{j_{i}}$'s. Therefore, by the action of u on A_{*}, we can prove the required result for the other summands of W_{n}^{k} in exactly the same way.

Notation 2.9. For the rest of our calculations we will write $(\mathbb{Z} / 2)^{a}$ for a-times the direct sum of $\mathbb{Z} / 2$ with itself.

By 2.6 and 2.8, we can deduce the following result.
Corollary 2.10. Let $n \geq 0$ and $s \geq 2 n+2$. Then

$$
T_{s}^{0, n} \cong \begin{cases}(\mathbb{Z} / 2)^{t-n}, & \text { when } s=2 t, \\ 0, & \text { otherwise } .\end{cases}
$$

Proof $T_{2 t}^{0, n}$ is an \mathbb{F}_{2}-vector space with basis $\left\{v_{2 i+1} \otimes x_{2(t-i-1)+1}: i=0,1, \ldots, t-n-1\right\}$, where $x_{2(t-i-1)+1}=\sum_{\ell+\sum_{k=1}^{n} j_{k}=t-i-1} v_{2 \ell+1} a_{j_{1}} a_{j_{2}} \ldots a_{j_{n}} \in T_{2(t-i-1)+1}^{n}$. The number of summands $t-n$ comes from the dimension of this basis.

By 2.8 , for $n>1$, we know that the only summand of W_{n}^{k} with higher 2 -torsion is calculated in 2.6. Now by using some binomial identities given in 1.2 we are going to calculate the rest of the summands, where all of them are graded \mathbb{F}_{2}-vector spaces.

Proposition 2.11. Let $s \geq 2 j_{1}+2 j_{2}+2$, we have

$$
T_{s}^{j_{2}, j_{1}} \cong \begin{cases}(\mathbb{Z} / 2)^{\binom{\left(-j_{1}\right.}{j_{2}+1}}, & \text { when } s=2 t \\ 0, & \text { otherwise }\end{cases}
$$

Proof The proof is by induction on j_{2}, where the case $j_{2}=0$ is considered in 2.10. Let assume that the statement is true for $j_{2}-1$, where $T_{*}^{j_{2}, j_{1}}=T\left(T_{*}^{j_{2}-1, j_{1}}\right)$. Now 2.8 shows that $T_{*}^{j_{2}-1, j_{1}}$ is an \mathbb{F}_{2}-vector space with a trivial action of u. Then

$$
T_{*}^{j_{2}, j_{1}}=\operatorname{ker}(I \otimes d)=T_{*}^{j_{2}-1, j_{1}} \otimes\left(\oplus_{j_{k}>0} \mathbb{Z}_{2}[u]\left\langle a_{j_{k}}\right\rangle\right)[-1],
$$

where $I=i d_{T_{*}^{j_{2}-1, j_{1}}}$ and $d: \oplus_{j_{k}>0} \mathbb{Z}_{2}[u]\left\langle a_{j_{k}}\right\rangle \rightarrow \oplus_{j_{k}>0} \mathbb{Z}_{2}[u]\left\langle b_{j_{k}}\right\rangle$ is described in 2.5. Therefore, for $t \geq j_{1}+j_{2}+1, i \geq j_{1}+j_{2}$ and $j>0$, and by the binomial identity in $1.2(i i)$, we have

$$
T_{2 t}^{j_{2}, j_{1}}=\oplus_{t=i+j_{k}} T_{2 i}^{j_{2}-1, j_{1}} \otimes_{\mathbb{Z}} \mathbb{Z}\left\{a_{j_{k}}\right\} \cong \oplus_{t=i+j_{k}}(\mathbb{Z} / 2)^{\binom{i-j_{1}}{j_{2}}}=(\mathbb{Z} / 2)^{\binom{\left(t j_{1}\right.}{j_{2}+1}} .
$$

From 2.10, we know that $T_{*}^{0, j_{1}}$ is non-zero only in even degrees and also we know that $T_{*}^{j_{2}, j_{1}}=$ $T^{j_{2}}\left(T_{*}^{0, j_{1}}\right)$. Therefore $T_{2 t+1}^{j_{2}, j_{1}}=0$.

After we have calculated W_{n}^{k} for $k=n-1, n-2$, let us now consider the cases for W_{n}^{k} when $k=0,1$.

Proposition 2.12. Let $t, \ell>0, t \geq \ell$. Then

$$
A_{s}^{r} \cong \begin{cases}(\mathbb{Z} / 2)^{\binom{t+\ell}{2 \ell}}, & \text { when } r=2 \ell+1, s=2 t+1, \\ (\mathbb{Z} / 2)^{\binom{t+\ell-1}{2 \ell-1}}, & \text { when } r=2 \ell, s=2 t, \text { and } \\ 0, & \text { otherwise. }\end{cases}
$$

Proof The proof is by induction on r, where the case $r=2$ is described in [7]. That is, $A_{2 t}^{2}$ is the \mathbb{F}_{2}-vector space with basis $\left\{v_{1} \otimes v_{2 t-1}, v_{3} \otimes v_{2 t-3}, v_{5} \otimes v_{2 t-5}, \ldots, v_{2 t-1} \otimes v_{1}\right\}$. Therefore $A_{2 t}^{2} \cong(\mathbb{Z} / 2)^{t} \cong(\mathbb{Z} / 2)^{\binom{t}{1}}$, and $A_{2 t+1}^{2}=0$. Now let us assume that the statement is true for $r=2 \ell$, that is, $A_{2 j}^{2 \ell} \cong(\mathbb{Z} / 2)^{\binom{j \ell \ell-1}{2 \ell-1}}$ for $j \leq t$. Since $A_{*}^{2 \ell+1} \cong A_{*} \otimes A_{*}^{2 \ell}$ is an \mathbb{F}_{2}-vector space with trivial action of u, then, for $i \geq 0$ and $j \geq \ell$, we have
$A_{2 t+1}^{2 \ell+1} \cong \oplus_{i+j=t} A_{2 i+1} \otimes_{\mathbb{Z}} A_{2 j}^{2 \ell} \cong \oplus_{i+j=t} \mathbb{Z} / 2^{i+1} \otimes_{\mathbb{Z}}(\mathbb{Z} / 2)^{\binom{(+\ell-1}{2 \ell-1}}=(\mathbb{Z} / 2)^{\sum_{j=\ell}^{t}\binom{j+\ell-1}{2 \ell-1}} \cong(\mathbb{Z} / 2)^{\binom{+\ell}{2 \ell}}$.
Similarly, for the case $r=2 \ell+1$, we have $A_{2 j+1}^{2 \ell+1} \cong(\mathbb{Z} / 2)^{\binom{j+\ell}{2 \ell}}$ for $\ell \leq j \leq t$. So , for $i \geq 0$ and $j \geq \ell$, we have

$$
A_{2 t+2}^{2 \ell+2} \cong \oplus_{i+j=t} A_{2 i+1} \otimes_{\mathbb{Z}} A_{2 j+1}^{2 \ell+1} \cong \oplus_{i+j=t}(\mathbb{Z} / 2)^{\binom{j+\ell}{2 \ell}}=(\mathbb{Z} / 2)^{\sum_{j=\ell}^{t}\binom{5+\ell}{2 \ell}} \cong(\mathbb{Z} / 2)^{\binom{t+++1}{2 \ell+1}} .
$$

Finally, let us consider the case when r is odd and s is even or conversely. Since $A_{*}^{r}=$
$\overbrace{A_{*} \otimes A_{*} \otimes \cdots \otimes A_{*}}^{r}$, for $s \geq r$, we have $A_{s}^{r}=\bigoplus_{s=2 \sum_{k=1}^{r} i_{k}+r} A_{2 i_{1}+1} \otimes_{\mathbb{Z}} A_{2 i_{2}+1} \otimes_{\mathbb{Z}} \cdots \otimes_{\mathbb{Z}} A_{2 i_{r}+1}$. This asserts that r is associated with s, in the sense that both should be odd or even, and otherwise $A_{s}^{r}=0$.

Lemma 2.13. Let $t, \ell>0, t \geq \ell+1$. Then

$$
T\left(A_{*}^{r}\right)_{s} \cong\left\{\begin{array}{ll}
(\mathbb{Z} / 2)^{\binom{t+\ell}{2 \ell+1}}, & \text { when } r=2 \ell+1, s=2 t+1, \\
(\mathbb{Z} / 2)^{(t+\ell-1} 2 \ell \\
2 \ell
\end{array}, \quad \text { when } r=2 \ell, s=2 t, \text { and }, ~ \text { otherwise. } . ~ l\right.
$$

(Note that $T\left(A_{*}^{r}\right)_{*}=T_{*}^{j_{r}, j_{r-1}, \ldots, j_{1}}$, where $j_{i}=1$ for $i=r$ and other j_{k} are zero).
Proof We will calculate $T\left(A_{*}^{2 \ell}\right)_{2 t}$. The other cases are similar. Let us start from the free resolution of A_{*}, which is described in 2.5 , then applying $\left(A_{*}^{2 \ell} \otimes-\right)$ and shifting by (-1) allows us to calculate $T\left(A_{*}^{2 \ell}\right)_{*}$. Since $A_{*}^{2 \ell}$ is an \mathbb{F}_{2}-vector space with trivial action of u, see 2.8 , then

$$
T\left(A_{*}^{2 \ell}\right)_{*}=\operatorname{ker}(I \otimes d)=A_{*}^{2 \ell} \otimes \oplus_{j_{i}>0} \mathbb{Z}_{2}[u]\left\langle a_{j_{k}}\right\rangle
$$

where $I=i d_{A_{*}^{2 e}}$ and $d: \oplus_{j_{k}>0} \mathbb{Z}_{2}[u]\left\langle a_{j_{k}}\right\rangle \rightarrow \oplus_{j_{k}>0} \mathbb{Z}_{2}[u]\left\langle b_{j_{k}}\right\rangle$ is described in 2.5. Therefore, by 2.12 for $i \geq \ell$ and by $1.2(i i)$, we have

$$
T\left(A_{*}^{2 \ell}\right)_{2 t}=\oplus_{t=i+j_{k}} A_{2 i}^{2 \ell} \otimes_{\mathbb{Z}} \mathbb{Z}\left\{a_{j_{k}}\right\}=(\mathbb{Z} / 2)^{\sum_{i=\ell}^{t-1}\binom{i+\ell-1}{2 \ell-1}}=(\mathbb{Z} / 2)^{\binom{t+\ell-1}{2 \ell}} .
$$

By 2.12 and 2.13 , we can check that $A_{*}^{2 \ell}[-1] \cong T\left(A_{*}^{2 \ell-1}\right)$ and $A_{*}^{2 \ell+1}[-1] \cong T\left(A_{*}^{2 \ell}\right)$.
Corollary 2.14. Let $t, \ell>0$, and $s \geq r+3$. Then

$$
\left(A_{*}^{r} \otimes T_{*}^{1}\right)_{s} \cong \begin{cases}\left.(\mathbb{Z} / 2)^{\left({ }^{(+\ell-1}\right)}{ }_{r}\right), & \text { when } r=2 \ell+1, s=2 t \\ 0, & \text { or } r=2 \ell, s=2 t+1, \text { and } \\ 0, & \text { otherwise }\end{cases}
$$

(Note that $A_{*}^{r} \otimes T_{*}^{1}=T_{*}^{j_{r+1}, j_{r}, \ldots, j_{1}}$, where $j_{i}=1$ for $i=1$ and other j_{k} are zero).

Proof We will consider the case $r=2 \ell+1$ and $s=2 t$. The other cases are similar. Fror 2.6, 2.12 and $1.2(i i)$, for $i \geq \ell$ and $j \geq 1$ we have
$\left(A_{*}^{r} \otimes T_{*}^{1}\right)_{2 t}=\oplus_{t=i+j+1}\left(A_{2 i+1}^{2 \ell+1} \otimes_{\mathbb{Z}} T_{2 j+1}^{1}\right) \cong \oplus_{t=i+j+1}(\mathbb{Z} / 2)^{\binom{i+\ell}{2 \ell}} \cong(\mathbb{Z} / 2)^{\sum_{i=\ell}^{t-2}\binom{i+\ell}{2 \ell}}=(\mathbb{Z} / 2)^{\binom{t+\ell-1}{2 \ell+1}}$

By 2.12 and 2.14, for $r>0$, we can check the following.
Corollary 2.15. Let $r>0$, then

$$
A_{*}^{r} \otimes T_{*}^{1} \cong A_{*}^{r+1}[-2] .
$$

Definition 2.16. Given $j_{i} \in \mathbb{N}_{0}$ for $i \geq 1$, we define $\beta_{i, n}=\sum_{k=i}^{n} j_{k}$. (of course, $\beta_{i, n}$ depend on j_{i}, \ldots, j_{n}, but the sequence will be clear from the context.)
Corollary 2.17. Let $n>1$, then

$$
T^{j_{n}, j_{n-1}, \ldots, j_{1}}=T^{0, j_{n-1}, \ldots, j_{1}} \otimes X_{*}^{\beta_{n, n}}\left[-\beta_{n, n}\right]
$$

where $X_{*}=\oplus_{j_{k}>0} \mathbb{Z}_{2}[u]\left\langle a_{j_{k}}\right\rangle$, that is, $X_{2 s-1}=\mathbb{Z}_{2}\left\{u^{m} a_{j_{k}}: s=m+j_{k}\right\}$.
Proof The proof follows from $T_{*}^{j_{n}, j_{n-1}, \ldots, j_{1}}=\overbrace{T(T \ldots T}^{j_{n}-\ldots \text { times }}\left(T_{*}^{0, j_{n-1}, \ldots, j_{1}}\right)_{*} \ldots)_{*}$, and the fact tha $T_{*}^{0, j_{n-1}, \ldots, j_{1}}$ is an \mathbb{F}_{2}-vector space with trivial action of u. So $T_{*}^{1, j_{n-1}, \ldots, j_{1}}=T\left(T_{*}^{0, j_{n-1}, \ldots, j_{1}}\right)_{*}=$ $T_{*}^{0, j_{n-1}, \ldots, j_{1}} \otimes X_{*}[-1]$ and $T_{*}^{2, j_{n-1}, \ldots, j_{1}}=T\left(T_{*}^{1, j_{n-1}, \ldots, j_{1}}\right)=T_{*}^{0, j_{n-1}, \ldots, j_{1}} \otimes X_{*}^{2}[-2]$. Therefort inductively on n we get the required result.

Proposition 2.18. Let $r_{1} \geq 0, r_{2}>1$ and $s \geq r_{1}+r_{2}+2$. Then

$$
\left(A_{*}^{r_{1}} \otimes T\left(A_{*}^{r_{2}}\right)_{*}\right)_{s} \cong\left\{\begin{array}{ll}
(\mathbb{Z} / 2)^{\binom{(t+k}{r_{1}+r_{2}}}, & \text { when } s=2 t+1, r_{1}+r_{2}=2 k+1, \\
\left.(\mathbb{Z} / 2)^{(t+k-1} r_{1}+r_{2}\right)
\end{array}, \quad \text { when } s=2 t, r_{1}+r_{2}=2 k, \text { and }, ~ \begin{array}{ll}
0, & \text { otherwise. }
\end{array}\right.
$$

(Note that $A_{*}^{r_{1}} \otimes T\left(A_{*}^{r_{2}}\right)_{*}=T_{*}^{j_{r_{2}+r_{1}}, \ldots, j_{r_{2}}, \ldots, j_{1}}$ where $j_{i}=1$ for $i=r_{2}$ and other j_{k} are zero.)
Proof Let us consider the above graded group in degree $s=2 t$. The other cases are similas By 2.12 and 2.13 , for $i \geq \ell_{1}$ and $j \geq \ell_{2}+1$, we have

$$
\begin{aligned}
\left(A_{*}^{r_{1}} \otimes T\left(A_{*}^{r_{2}}\right)_{*}\right)_{2 t} & = \begin{cases}\oplus_{t=i+j} A_{2 i}^{2 \ell_{1}} \otimes_{\mathbb{Z}} T\left(A_{*}^{2 \ell_{2}}\right)_{2 j}, & \text { when } r_{1}=2 \ell_{1}, r_{2}=2 \ell_{2}, \\
\oplus_{t=i+j+1} A_{2 i+1}^{2 \ell_{1}+1} \otimes_{\mathbb{Z}} T\left(A_{*}^{2 \ell_{2}+1}\right)_{2 j+1}, & \text { when } r_{1}=2 \ell_{1}+1, r_{2}=2 \ell_{2}+1 .\end{cases} \\
& \cong \begin{cases}\oplus_{t=i+j}(\mathbb{Z} / 2)^{\binom{i+\ell_{1}-1}{2 \ell_{1}-1}\binom{j+\ell_{2}-1}{2 \ell_{2}-1}}, & \text { when } r_{1}=2 \ell_{1}, r_{2}=2 \ell_{2}, \\
\oplus_{t=i+j+1}(\mathbb{Z} / 2)^{\binom{i+\ell_{1}}{2 \ell_{1}}\binom{j+\ell_{2}+1}{2 \ell_{2}+1}}, & \text { when } r_{1}=2 \ell_{1}+1, r_{2}=2 \ell_{2}+1 .\end{cases}
\end{aligned}
$$

Then, for $r_{1}=2 \ell_{1}$ and $r_{2}=2 \ell_{2}, 1.2($ iii $)$ shows that

$$
\sum_{t=i+j}\binom{i+\ell_{1}-1}{2 \ell_{1}-1}\binom{j+\ell_{2}-1}{2 \ell_{2}}=\sum_{m=2 \ell_{1}-1}^{t+\ell_{1}+\ell_{2}-2}\binom{m}{2 \ell_{1}-1}\binom{t+\ell_{1}+\ell_{2}-2-m}{2 \ell_{2}}=\binom{t+k-1}{r_{1}+r_{2}}
$$

where $2 k=r_{1}+r_{2}$. And similarly, for $r_{1}=2 \ell_{1}+1, r_{2}=2 \ell_{2}+1$ and $2 k=r_{1}+r_{2}$

$$
\sum_{t=i+j+1}\binom{i+\ell_{1}}{2 \ell_{1}}\binom{j+\ell_{2}}{2 \ell_{2}+1}=\binom{t+\ell_{1}+\ell_{2}}{2 \ell_{1}+2 \ell_{2}+2}=\binom{t+k-1}{r_{1}+r_{2}} .
$$

Examples 2.19. For $r_{1}+r_{2}=5$, and $t \geq 3$, we can calculate that

$$
T\left(A_{*}^{5}\right)_{2 t+1}=\left(A_{*} \otimes T\left(A_{*}^{4}\right)_{*}\right)_{2 t+1}=\left(A_{*}^{2} \otimes T\left(A_{*}^{3}\right)_{*}\right)_{2 t+1}=\left(A_{*}^{3} \otimes T\left(A_{*}^{2}\right)_{*}\right)_{2 t+1} \cong(\mathbb{Z} / 2)^{\binom{t+2}{5}}
$$

And for $r_{1}+r_{2}=6$, and $t \geq 4$, we can calculate that

$$
\begin{aligned}
T\left(A_{*}^{6}\right)_{2 t} & =\left(A_{*} \otimes T\left(A_{*}^{5}\right)_{*}\right)_{2 t}=\left(A_{*}^{2} \otimes T\left(A_{*}^{4}\right)_{*}\right)_{2 t}=\left(A_{*}^{3} \otimes T\left(A_{*}^{3}\right)_{*}\right)_{2 t}=\left(A_{*}^{4} \otimes T\left(A_{*}^{2}\right)_{*}\right)_{2 t} \\
& \cong(\mathbb{Z} / 2)^{\binom{t+2}{6}} .
\end{aligned}
$$

By 2.6 we know that $T_{*}^{j_{1}}$ is concentrated in odd degrees $s \geq 2 j_{1}+1$, whereas 2.11 shows that $T_{*}^{j_{2}, j_{1}}$ is concentrated in even degrees $s \geq 2 j_{1}+2 j_{2}+2$. Similarly to these two cases we can see that $T_{*}^{j_{n}, j_{n-1}, \ldots, j_{1}}$ is concentrated in odd degrees $s \geq 2 \beta_{1, n}+n$ if n is odd, and in even degrees if n is even. This means $T_{*}^{j_{n}, j_{n-1}, \ldots, j_{1}}$ is non-zero just in degrees $s \geq 2 \beta_{1, n}+n$ where s and n both are odd or both are even.

By all the previous calculations, we can deduce the next proposition, which is about the calculation of $T_{*}^{j_{n}, j_{n-1}, \ldots, j_{1}}$ as a graded group, for any $n>0$, and using this we can calculate W_{n}^{r} for any $0 \leq r \leq n-1$.

Proposition 2.20. Let $n>1$. Then, using the notation of 2.16,

$$
\left.T_{s}^{j_{n}, j_{n-1}, \ldots, j_{1}} \cong(\mathbb{Z} / 2)^{\frac{(s+n-2}{\beta_{2}, j_{n}+n-1}-j_{1}}\right),
$$

for $s \geq 2 \beta_{1, n}+n$.
Proof If $j_{k}=0$, for all $k \geq 1$, then the left hand side is A_{*}^{n}, which is considered in 2.12 and agrees with the above result. And if there is only one k such that $j_{k} \neq 0$, then the left hand side has the form $A_{*}^{n-k} \otimes T^{j_{k}}\left(A_{*}^{k}\right)_{*}$, which can be calculated by 2.6, 2.12 and 2.18. Now, if there are at least k_{1}, k_{2} such that $j_{k_{1}}$ and $j_{k_{2}}$ are not zero, then in this case we need to use induction on n to calculate the above graded group, where the case $n=2$ is considered in 2.11. Let us assume that the statement is true for n where $T_{*}^{j_{n}, j_{n-1}, \ldots, j_{1}}$ is concentrated in odd degrees. Since

$$
T_{*}^{j_{n+1}, j_{n}, \ldots, j_{1}}=T_{*}^{0, j_{n}, \ldots, j_{1}} \otimes X_{*}^{\beta_{n+1, n+1}}\left[-\beta_{n+1, n+1}\right],
$$

see 2.17, where $X_{*}=\oplus_{j_{i}>0} \mathbb{Z}_{2}[u]\left\langle a_{j_{i}}\right\rangle$ and

$$
\left.T_{2 t}^{0, j_{n}, \ldots, j_{1}}=\oplus_{t=k+s+1} A_{2 k+1} \otimes_{\mathbb{Z}} T_{2 s+1}^{j_{n}, j_{n-1}, \ldots, j_{1}} \cong \oplus_{t=k+s+1}(\mathbb{Z} / 2)^{\left(\frac{2 s+1+n-2}{\beta_{2, n}+j_{1}}{ }^{2}+1\right.}\right)
$$

for $k \geq 0$ and $s \geq \beta_{1, n}+\frac{n-1}{2}$. That is, by $1.2(i i)$,

$$
\left.T_{2 t}^{0, j_{n}, \ldots, j_{1}} \cong(\mathbb{Z} / 2)^{\Sigma_{s=\beta_{1, n}+\frac{n-1}{2}}^{2}\left(\frac{2 s+n-1}{\beta_{2, n}+j_{1}}{ }^{2}+-1\right.}\right)=(\mathbb{Z} / 2)^{\left.\frac{\left(\frac{2 t+n-1}{\beta_{2, n}^{2}+n}-j_{1}\right.}{\beta_{2}^{2}}\right)} .
$$

Then, for $2 t \geq 2 \beta_{1, n+1}+n+1, i_{r} \geq \beta_{1, n}+\frac{n+1}{2}+r-1$ and $m_{r}>0$ where $1 \leq r \leq j_{n+1}$, we get $T_{2 t}^{j_{n+1}, j_{n}, \ldots, j_{1}}$
$=\left(\oplus_{t=i_{j_{n+1}}+m_{j_{n+1}}}\left(\ldots\left(\oplus_{i_{3}=i_{2}+m_{2}}\left(\oplus_{i_{2}=i_{1}+m_{1}} T_{2 i_{1}}^{0, j_{n}, \ldots, j_{1}} \otimes X_{2 m_{1}-1}\right)_{2 i_{2}} \otimes X_{2 m_{2}-1}\right)_{2 i_{3}} \ldots\right)_{2 i_{j_{n+1}}} \otimes X_{2 m_{j_{n+1}-1}}\right)_{2 t}$ where the right hand side isomorphic to

$$
\oplus_{t=i_{j_{n+1}}+m_{j_{n+1}}} \cdots \oplus_{i_{3}=i_{2}+m_{2}} \oplus_{i_{2}=i_{1}+m_{1}}(\mathbb{Z} / 2)^{\left.\frac{\left(\frac{2 i_{1}+n-1}{\beta_{2, n}+n}-j_{1}\right.}{\beta_{1}^{2}}\right)}=(\mathbb{Z} / 2)^{D}
$$

and

$$
D=\sum_{i_{j_{n+1}}=\beta_{1, n}+\frac{n+1}{2}+j_{n+1}-1}^{t-1} \ldots \sum_{i_{2}=\beta_{1, n}+\frac{n+1}{2}+1}^{i_{3}-1} \sum_{i_{1}=\beta_{1, n}+\frac{n+1}{2}}^{i_{2}-1}\binom{\frac{2 i_{1}+n-1}{2}-j_{1}}{\beta_{2, n}+n}
$$

By $1.2(i i)$, we have

$$
\sum_{i_{1}=\beta_{1, n}+\frac{n+1}{2}}^{i_{2}-1}\binom{\frac{2 i_{1}+n-1}{2}-j_{1}}{\beta_{2, n}+n}=\binom{\frac{2 i_{2}+n-1}{2}-j_{1}}{\beta_{2, n}+1+n}
$$

and

$$
\sum_{i_{2}=\beta_{1, n}+\frac{n+1}{2}+1}^{i_{3}-1}\left(\frac{2 i_{2}+n-1}{2}-j_{1},\binom{\frac{2 i_{3}+n-1}{2}-j_{1}}{\beta_{2, n}+2+n} .\right.
$$

Therefore we can deduce that

$$
D=\sum_{i_{j_{n+1}}=\beta_{1, n}+\frac{n+1}{2}+j_{n+1}-1}^{t-1}\binom{\frac{2 i_{j_{n+1}+n-1}}{2}-j_{1}}{\beta_{2, n}+j_{n+1}-1+n}=\binom{\frac{2 t+n-1}{2}-j_{1}}{\beta_{2, n+1}+n}=\binom{\frac{s+(n+1)-2}{2}-j_{1}}{\beta_{2, n+1}+n}
$$

where $s=2 t \geq 2 \beta_{1, n+1}+n+1$.

Now we have calculated the summands of W_{n}^{r} as groups. In the next theorem we will deal with the results in [6, Lemma 3.4], together with the Künneth sequence for P_{n}, to explain that there is no extension problem for this Künneth sequence, for any finite number n not just for $n=2$ and therefore the middle term of this sequence is a direct sum of the left and the right side. From this we will decompose $b u_{*}\left(P_{n}\right)$ as a direct sum of W_{n}^{r}, for $0 \leq r \leq n-1$.
Theorem 2.21. Let $n \geq 1$. Then

$$
b u_{*}\left(P_{n}\right)=\bigoplus_{r=0}^{n-1} W_{n}^{r}
$$

Proof The proof is by induction on n. Let us start from the Künneth short exact sequence for P_{n},

$$
0 \rightarrow A_{*} \otimes b u_{*}\left(P_{n-1}\right) \rightarrow b u_{*}\left(P_{n}\right) \rightarrow T\left(b u_{*}\left(P_{n-1}\right)\right) \rightarrow 0
$$

and consider the case $n=3$. The case $n=2$ was already considered in [7] and there is no extension problem for the Künneth sequence when $n=2$ because the left hand side is non-zero only in even degrees, whereas the right side is non-zero only in odd degrees. Therefore

$$
b u_{*}\left(P_{2}\right) \cong A_{*}^{2} \oplus T\left(A_{*}\right)=T_{*}^{0,0} \oplus T_{*}^{1}=W_{2}^{0} \oplus W_{2}^{1} .
$$

For $n=3$, the analogous Künneth sequence has the form

$$
0 \rightarrow T_{*}^{0,0,0} \oplus T_{*}^{0,1} \rightarrow b u_{*}\left(P_{3}\right) \rightarrow T_{*}^{1,0} \oplus T_{*}^{2} \rightarrow 0
$$

Now 2.12 and 2.14 show that

$$
\left(T_{*}^{0,0,0} \oplus T_{*}^{0,1}\right)_{s} \cong \begin{cases}\left.(\mathbb{Z} / 2)^{(t-1} \begin{array}{c}
1 \\
1
\end{array}\right), & \text { when } s=2 t, t \geq 2, \\
\left.(\mathbb{Z} / 2)^{(++1} \begin{array}{c}
2
\end{array}\right), & \text { when } s=2 t+1, t \geq 1, \text { and } \\
0 & \text { otherwise. }\end{cases}
$$

Whereas 2.13 and 2.6 show that

$$
\left(T_{*}^{1,0} \oplus T_{*}^{2}\right)_{s} \cong \begin{cases}(\mathbb{Z} / 2)^{\binom{t}{2}}, & \text { when } s=2 t, t \geq 2, \\ \mathbb{Z} / 2^{t-1}, & \text { when } s=2 t+1, t \geq 2, \text { and } \\ 0 & \text { otherwise. }\end{cases}
$$

Therefore $b u_{i}\left(P_{3}\right)=0$ for $i<3, b u_{3}\left(P_{3}\right) \cong \mathbb{Z} / 2$ and for $t \geq 2$, we have exact sequences

$$
0 \rightarrow(\mathbb{Z} / 2)^{\binom{t-1}{1}} \rightarrow b u_{2 t}\left(P_{3}\right) \rightarrow(\mathbb{Z} / 2)^{\binom{t}{2}} \rightarrow 0,
$$

and

$$
0 \rightarrow(\mathbb{Z} / 2)^{\binom{t+1}{2}} \rightarrow b u_{2 t+1}\left(P_{3}\right) \rightarrow \mathbb{Z} / 2^{t-1} \rightarrow 0
$$

By [6, Lemma 3.4], we have

$$
b u_{2 t}\left(P_{3}\right) \cong(\mathbb{Z} / 2)^{\sum_{j=0}^{1}\binom{j}{0}\binom{t+j-1}{j+1}}=(\mathbb{Z} / 2)^{\binom{t-1}{1}+\binom{t}{2}}
$$

and

$$
b u_{2 t+1}\left(P_{3}\right) \cong \mathbb{Z} / 2^{t-1} \oplus(\mathbb{Z} / 2)^{\sum_{j=0}^{1}\binom{j}{1}\binom{t+j}{j+1}}=\mathbb{Z} / 2^{t-1} \oplus(\mathbb{Z} / 2)^{\binom{t+1}{2}} .
$$

Thus the above calculations tell us that there are no extension problems in the Künneth sequence. Therefore

$$
b u_{*}\left(P_{3}\right) \cong T_{*}^{0,0,0} \oplus T_{*}^{0,1} \oplus T_{*}^{1,0} \oplus T_{*}^{2}=\bigoplus_{r=0}^{2} W_{3}^{r},
$$

where

$$
\begin{aligned}
& W_{3}^{0}=A_{*}^{3}=T_{*}^{0,0,0}, \\
& W_{3}^{1}=\left(A_{*} \otimes T\left(A_{*}\right)_{*}\right) \oplus T\left(A_{*}^{2}\right)_{*}=T_{*}^{0,1} \oplus T_{*}^{1,0}, \text { and } \\
& W_{3}^{2}=T^{2}\left(A_{*}\right)_{*}=T_{*}^{2} .
\end{aligned}
$$

Now, let us assume that there is no extension problem for the above Künneth sequence for $n=2 n_{1}$, and the statement is true in this case. And let us start again from the Künneth sequence,

$$
0 \rightarrow A_{*} \otimes b u_{*}\left(P_{2 n_{1}}\right) \rightarrow b u_{*}\left(P_{2 n_{1}+1}\right) \rightarrow T\left(b u_{*}\left(P_{2 n_{1}}\right)\right) \rightarrow 0
$$

where

$$
b u_{2 t}\left(P_{2 n_{1}+1}\right)=(\mathbb{Z} / 2)^{\sum_{j=0}^{2 n_{1}-1} \sum_{i=0}^{n_{1}-1}\binom{j i}{2 i}\binom{t-2 n_{1}+j+i+1}{j+1}},
$$

for $t \geq n_{1}+1$.
By $2.8, A_{*} \otimes b u_{*}\left(P_{2 n_{1}}\right)$ is an \mathbb{F}_{2}-vector space with trivial action of u, where, by $[6$, Lemma 3.4], we have

$$
b u_{2 t+1}\left(P_{2 n_{1}}\right)=\mathbb{Z} / 2^{t-2 n_{1}+2} \oplus(\mathbb{Z} / 2)^{\sum_{j=0}^{2 n_{1}-2} \sum_{i=0}^{n_{1}-2}\left(2 \begin{array}{l}
j+1
\end{array}\right)\binom{t-2 n_{1}+j+i+3}{j+1}}
$$

and $\mathbb{Z} / 2^{t-2 n_{1}+2}$ comes from the only summand $T_{2 t+1}^{2 n_{1}-1}$ of $b u_{*}\left(P_{2 n_{1}}\right)_{2 t}$ which consists of a higher 2 -torsion group with non-trivial action of u. Then, by 2.10 for $m \geq n_{1}$ and $\ell \geq 0$, we have

$$
\begin{aligned}
\left(A_{*} \otimes b u_{*}\left(P_{2 n_{1}}\right)\right)_{2 t} & \cong\left(A_{*} \otimes T_{*}^{2 n_{1}-1}\right)_{2 t} \oplus \oplus_{t=\ell+m+1} A_{2 \ell+1} \otimes(\mathbb{Z} / 2)^{\sum_{j=0}^{2 n_{1}-2} \sum_{i=0}^{n_{1}-2}\binom{j}{j i+1}\binom{m-2 n_{1}+j+i+3}{j+1}} \\
& =(\mathbb{Z} / 2)^{t-2 n_{1}+1} \oplus(\mathbb{Z} / 2)^{\sum_{m=n_{1}}^{t-1} \sum_{j=0}^{2 n_{1}-2} \sum_{i=0}^{n_{1}-2}\left({ }_{2 i+1}^{j}\right)\binom{m-2 n_{1}+++i+3}{j+1}} .
\end{aligned}
$$

In the other side of the sequence, for $t \geq n_{1}+1, m \geq n_{1}$ and $k>0$, we have

$$
T\left(b u_{*}\left(P_{2 n_{1}}\right)\right)_{2 t}=\oplus_{t=m+k} b u_{2 m}\left(P_{2 n_{1}}\right) \otimes X_{2 k-1},
$$

where $X_{2 k-1}=\mathbb{Z}\left\{u^{m} a_{\ell_{i}}: k=m+\ell_{i}\right.$, and $a_{\ell_{i}}$ of degree $\left.2 \ell_{i}-1\right\}$. Then [6, Lemma 3.4] shows that

$$
\begin{aligned}
& T\left(b u_{*}\left(P_{2 n_{1}}\right)\right)_{2 t} \cong \oplus_{t=m+k}(\mathbb{Z} / 2)^{\sum_{j=0}^{2 n_{1}-2} \sum_{i=0}^{n_{1}-1}\left(\begin{array}{c}
j i
\end{array}\right)\binom{m-2 n_{1}+j+i+2}{j+1}} \\
&=(\mathbb{Z} / 2)^{\sum_{m=n_{1}}^{t-1} \sum_{j=0}^{2 n_{1}-2} \sum_{i=0}^{n_{1}-1}\binom{j}{2 i}\binom{m-2 n_{1}+j+i+2}{j+1}} .
\end{aligned}
$$

Inductively on t and n_{1}, we can see that

$$
\begin{aligned}
t- & 2 n_{1}+1+\sum_{m=n_{1}}^{t-1} \sum_{j=0}^{2 n_{1}-2} \sum_{i=0}^{n_{1}-2}\binom{j}{2 i+1}\binom{m-2 n_{1}+j+i+3}{j+1} \\
& +\sum_{m=n_{1}}^{t-1} \sum_{j=0}^{2 n_{1}-2} \sum_{i=0}^{n_{1}-1}\binom{j}{2 i}\binom{m-2 n_{1}+j+i+2}{j+1}=\sum_{j=0}^{2 n_{1}-1} \sum_{i=0}^{n_{1}-1}\binom{j}{2 i}\binom{t-2 n_{1}+j+i+1}{j+1} .
\end{aligned}
$$

Therefore,

$$
b u_{2 t}\left(P_{2 n_{1}+1}\right) \cong\left(A_{*} \otimes b u_{*}\left(P_{2 n_{1}}\right)\right)_{2 t} \oplus T\left(b u_{*}\left(P_{2 n_{1}}\right)\right)_{2 t} .
$$

Similarly, we can deduce the same result for degree $2 t+1$. This yields that there is no extension problem in the Künneth sequence for $P_{2 n_{1}+1}$, so $b u_{*}\left(P_{2 n_{1}+1}\right) \cong\left(A_{*} \otimes b u_{*}\left(P_{2 n_{1}}\right)\right) \oplus T\left(b u_{*}\left(P_{2 n_{1}}\right)\right)$. By 3.5, we have

$$
\bigoplus_{r=0}^{2 n_{1}} W_{2 n_{1}+1}^{r}=\bigoplus_{r=0}^{2 n_{1}}\left(A_{*} \otimes W_{2 n_{1}}^{r} \oplus T\left(W_{2 n_{1}}^{r-1}\right)\right)=\bigoplus_{r=0}^{2 n_{1}-1}\left(A_{*} \otimes W_{2 n_{1}}^{r} \oplus T\left(W_{2 n_{1}}^{r}\right)\right)
$$

where the right side is equal to $\left(A_{*} \otimes b u_{*}\left(P_{2 n_{1}}\right)\right) \oplus T\left(b u_{*}\left(P_{2 n_{1}}\right)\right)$. Thus $b u_{*}\left(P_{2 n_{1}+1}\right)=\bigoplus_{r=0}^{2 n_{1}} W_{2 n_{1}+1}^{r}$.
Similarly, if we assume the result for $n=2 n_{1}+1$, a similar calculation shows that there is no non-trivial extension in the Künneth sequence for $P_{2 n_{1}+2}$, that is, $b u_{*}\left(P_{2 n_{1}+2}\right) \cong\left(A_{*} \otimes\right.$ $\left.b u_{*}\left(P_{2 n_{1}+1}\right)\right) \oplus T\left(b u_{*}\left(P_{2 n_{1}+1}\right)\right)$, and again 3.5 gives the required result for $2 n_{1}+2$. Thus

$$
b u_{*}\left(P_{2 n_{1}+2}\right)=\bigoplus_{r=0}^{2 n_{1}+1} W_{2 n_{1}+2}^{r}
$$

Remark 2.22. Each W_{n}^{r} has $\binom{n-1}{r}$ summands, which gives the total number of summands of $b u_{*}\left(P_{n}\right)$ to be $\sum_{r=0}^{n-1}\binom{n-1}{r}=2^{n-1}$.

Example 2.23. For $n=5$, we have $b u_{*}\left(P_{5}\right)=\bigoplus_{r=0}^{4} W_{5}^{r}$, where

$$
\begin{aligned}
& W_{5}^{0}=T_{*}^{0,0,0,0,0} \\
& W_{5}^{1}=T_{*}^{1,0,0,0} \oplus T_{*}^{0,1,0,0} \oplus T_{*}^{0,0,1,0} \oplus T_{*}^{0,0,0,1} \\
& W_{5}^{2}=T_{*}^{2,0,0} \oplus T_{*}^{0,2,0} \oplus T_{*}^{0,0,2} \oplus T_{*}^{1,1,0} \oplus T_{*}^{1,0,1} \oplus T_{*}^{0,1,1} \\
& W_{5}^{3}=T_{*}^{3,0} \oplus T_{*}^{2,1} \oplus T_{*}^{1,2} \oplus T_{*}^{0,3}, \text { and } \\
& W_{5}^{4}=T_{*}^{4} .
\end{aligned}
$$

Hence $b u_{*}\left(P_{5}\right)$ has $2^{4}=16$ summands. In degree $2 t$, we have $W_{5}^{0}=W_{5}^{2}=W_{5}^{4}=0$, whereas

$$
\begin{aligned}
& W_{5}^{1}=T_{2 t}^{1,0,0,0} \oplus T_{2 t}^{0,1,0,0} \oplus T_{2 t}^{0,0,1,0} \oplus T_{2 t}^{0,0,0,1} \cong(\mathbb{Z} / 2)^{3\binom{t+1}{4}+\binom{t}{3}} \text { and } \\
& W_{5}^{3} \cong(\mathbb{Z} / 2){ }_{\binom{t}{4}+\binom{t-1}{3}+\binom{t-2}{2}+\binom{t-3}{1},}
\end{aligned}
$$

so $b u_{2 t}\left(P_{5}\right) \cong(\mathbb{Z} / 2)^{\sum_{j=0}^{3} \sum_{i=0}^{1}\binom{j}{2 i}\binom{t+j+i-3}{j+1}}$ and this result agrees with the result in $[6$, Lemma 3.4]. Similarly, in degree $2 t+1$ we have $W_{5}^{1}=W_{5}^{3}=0$ whereas

$$
\begin{aligned}
& W_{5}^{0}=T_{2 t+1}^{0,0,0,0,0} \cong(\mathbb{Z})^{\binom{t+2}{4}} \\
& W_{5}^{2}=T_{2 t+1}^{2,0,0} \oplus T_{2 t+1}^{0,2,0} \oplus T_{2 t+1}^{0,0,2} \oplus T_{2 t+1}^{1,1,0} \oplus T_{2 t+1}^{1,0,1} \oplus T_{2 t+1}^{0,1,1} \cong(\mathbb{Z} / 2)^{3\binom{(t+1}{4}+\binom{t-1}{2}+2\binom{t}{3}} \text { and } \\
& W_{5}^{4}=T_{2 t+1}^{4} \cong \mathbb{Z} / 2^{t-3} .
\end{aligned}
$$

Thus $b u_{2 t+1}\left(P_{5}\right) \cong \mathbb{Z} / 2^{t-3} \oplus(\mathbb{Z} / 2)^{\sum_{j=0}^{3} \sum_{i=0}^{1}\binom{j}{2 i+1}\binom{t+j+i-2}{j+1}}$ and this result also agrees with the result in [6, Lemma 3.4].

3. Tor decomposition of $b u_{p^{*}}(B \mathbb{Z} / p)^{\wedge n}$

3.1. In 1972, Holzsager [3] split the space $\Sigma B \mathbb{Z} / p$ with p-adic coefficients into the wedge of $p-1$ spaces B_{i}, where B_{i} has homology only in dimensions $2 k(p-1)+2 i$, for all natural numbers k. So the spectrum $\Sigma^{\infty} B \mathbb{Z} / p$ splits as $\Sigma^{\infty} B \mathbb{Z} / p \simeq \vee_{i=1}^{p-1} \Sigma^{\infty} B_{i}$, see also [4]. Here the spectrum B_{i} has stable cells in dimension $2 k(p-1)+2 i-\epsilon$, for $\epsilon=0,1$ such that $2 k(p-1)+2 i-\epsilon \geq 0$. The splitting of $B \mathbb{Z} / p$ as a spectrum is also written as $B \mathbb{Z} / p \simeq \vee_{i=1}^{p-1} B_{i}$.

By [5], for the case $E=l u$ the Adams summand and $X=B \mathbb{Z} / p$, we have the Thom isomorphism $l u_{q+2}(T(\xi)) \cong l u_{q}(B \mathbb{Z} / p)$, that is, $l u_{*}(T(\xi)) \cong l u_{*}\left(\Sigma^{2} B \mathbb{Z} / p\right)$. This isomorphism is induced by a homotopy equivalence $l u \wedge T(\xi) \simeq l u \wedge \Sigma^{2} B \mathbb{Z} / p$. By applying the splitting of $B \mathbb{Z} / p$ and substituting $T(\xi)=\frac{B \mathbb{Z} / p}{B^{1}}$ in this homotopy equivalence we get

$$
l u \wedge\left(B_{1} \vee B_{2} \vee \cdots \vee B_{p-1}\right) /\left(B^{1}\right) \simeq l u \wedge \Sigma^{2}\left(B_{1} \vee B_{2} \vee \cdots \vee B_{p-1}\right)
$$

Both sides of the last equivalence are wedges of $p-1$ pieces, and by comparing the dimensions of bottom cells we deduce the following homotopy equivalence $l u \wedge \Sigma^{2} B_{i} \simeq l u \wedge B_{i+1}$ for $1 \leq i<p-1$. Inductively on i, we get $l u \wedge \Sigma^{2(i-1)} B_{1} \simeq l u \wedge B_{i}$.

It would be more interesting if we can carrying on for any prime p using the splitting $b u_{p} \simeq$ $\vee_{i=1}^{p-1} \Sigma^{2 i-2} l u$ and the Holzsager splitting $B \mathbb{Z} / p \simeq \vee_{i=1}^{p-1} B_{i}$ to decompose $b u_{p^{*}}(B \mathbb{Z} / p)^{\wedge n}$ as a direct sum of some graded groups. This decomposition agreed with the result in [6, Theorem 3.8] and both yield that there is no extension problems in the Künneth sequence for $b u_{p^{*}}(B \mathbb{Z} / p)^{\wedge n}$.

The purpose of this section is the composition of $l u_{*}\left(B_{1}\right)^{n}$ first and using the above splitting to deduce the composition of $b u_{p^{*}}(B \mathbb{Z} / p)^{\wedge n}$.

Notation 3.2.

- In order to exploit certain splittings of spectra and at the same time to simplify the writing, we will write $b u$ for $b u_{p}$, the connective unitary K-theory with p-adic integer coefficients \mathbb{Z}_{p}, where $b u_{p} \simeq \vee_{i=1}^{p-1} \Sigma^{2 i-2} l u$.
- Here we write A_{*} for $l u_{*}\left(B_{1}\right)$.

By the Atiyah-Hirzebruch spectral sequence, see [1], for $X=B_{1}$ and $E=l u$ we have $l u_{j}\left(B_{1}\right)=$ \mathbb{Z} / p^{k+1} when $j=2 k(p-1)+1$ and it is zero otherwise.

Example 3.3. As in [7, 2.9], for $X=B_{1}$, the Künneth sequence has the form

$$
0 \rightarrow l u_{*}\left(B_{1}\right) \otimes_{\mathbb{Z}_{p}[v]} l u_{*}\left(B_{1}\right) \rightarrow l u_{*}\left(B_{1} \wedge B_{1}\right) \rightarrow \operatorname{Tor}_{\mathbb{Z}_{p}[v]}^{1}\left(l u_{*}\left(B_{1}\right), l u_{*}\left(B_{1}\right)\right)[-1] \rightarrow 0
$$

So, in degree $2 k(p-1)+2$, the left-hand side is the graded \mathbb{F}_{p}-vector space spanned by

$$
\left\{v_{1} \otimes v_{2 k(p-1)+1}, v_{2(p-1)+1} \otimes v_{2(k-1)(p-1)+1}, \ldots, v_{2 k(p-1)+1} \otimes v_{1}\right\}
$$

which is concentrated in even degrees.
To calculate the graded group $\operatorname{Tor}_{\mathbb{Z}_{p}[v]}^{1}\left(l u_{*}\left(B_{1}\right), l u_{*}\left(B_{1}\right)\right)[-1]$, we can consider the following free $\mathbb{Z}_{p}[v]$-resolution of $l u_{2(p-1) *+1}\left(B_{1}\right)$
$0 \longrightarrow \oplus_{j \geq 0} \mathbb{Z}_{p}[v]\left\langle a_{2 j(p-1)+1}\right\rangle \xrightarrow{d} \oplus_{j \geq 0} \mathbb{Z}_{p}[v]\left\langle b_{2 j(p-1)+1}\right\rangle \xrightarrow{\varepsilon} l u_{2(p-1) *+1}\left(B_{1}\right) \longrightarrow 0$
where $\varepsilon\left(b_{2 j(p-1)+1}\right)=v_{2 j(p-1)+1}$ for all $j \geq 0$ and $d\left(a_{2 j(p-1)+1}\right)=p b_{2 j(p-1)+1}-v b_{2(j-1)(p-1)+1}$ for $j \geq 0$.

After applying $\left(l u_{2(p-1) *+1}\left(B_{1}\right) \otimes_{\mathbb{Z}_{p}[v]}-\right)$ to the above resolution, we can calculate

$$
\operatorname{ker}(I \otimes d)=\operatorname{ker}\left(\oplus_{j \geq 0} l u_{2(p-1) *+1}\left(B_{1}\right)\left\langle a_{2 j(p-1)+1}\right\rangle \rightarrow \oplus_{j \geq 0} l u_{2(p-1) *+1}\left(B_{1}\right)\left\langle b_{2 j(p-1)+1}\right\rangle\right) .
$$

In degree $2 k(p-1)+2$, this graded group has a generator of the form

$$
v_{1} \otimes a_{2 k(p-1)+1}+v_{2(p-1)+1} \otimes a_{2(k-1)(p-1)+1}+\cdots+v_{2 k(p-1)+1} \otimes a_{1} .
$$

Since this generator has a summand $v_{2 k(p-1)+1}$, so in degree $2 k(p-1)+2$, the group

$$
\begin{aligned}
& \operatorname{Tor}_{\mathbb{Z}_{p}[v]}^{1}\left(l u_{2 *+1}\left(B_{1}\right), l u_{2 *+1}\left(B_{1}\right)\right) \text { is } \\
& \quad \mathbb{Z} / p^{k}\left\langle v_{1} \otimes a_{2 k(p-1)+1}+v_{2(p-1)+1} \otimes a_{2(k-1)(p-1)+1}+\cdots+v_{2 k(p-1)+1} \otimes a_{1}\right\rangle
\end{aligned}
$$

So $\operatorname{Tor}_{\mathbb{Z}_{p}[v]}^{1}\left(l u_{2 *+1}\left(B_{1}\right), l u_{2 *+1}\left(B_{1}\right)\right)[-1]$, in degree $2 k(p-1)+3$, is the finite cyclic group of order p^{k}. this group is concentrated in odd degrees. So the middle group $l u_{*}\left(B_{1} \wedge B_{1}\right)$ in any given degree is isomorphic to the one on the left or the one on the right side.

By applying $T\left(A_{*}\right)_{*} \otimes_{\mathbb{Z}_{p}[v]}$ - instead of $A_{*} \otimes_{\mathbb{Z}_{p}[v]}$ - to the previous free resolution of A_{*} with shifting by (-1) and by using induction on n, we can calculate the graded group T_{*}^{n}. This is non-zero just in degrees $2 t(p-1)+2 n+1$.
Proposition 3.4. For $n, t \geq 0$,

$$
T_{2 t(p-1)+2 n+1}^{n} \cong \mathbb{Z} / p^{t+1}\left\langle\sum_{i+\sum_{k=1}^{n} j_{k}=t} v_{2 i(p-1)+1} a_{j_{1}} a_{j_{2}} \ldots a_{j_{n}}\right\rangle,
$$

where $a_{j_{k}}$ is in degree $2 j_{k}(p-1)+1$.
Definition 3.5. Let $0 \leq k \leq n-1$, we define the weight k iterated T as

$$
W_{n}^{k}=\bigoplus_{\sum j_{i}=k} T_{*}^{j_{n-k}, j_{n-k-1}, \ldots, j_{1}}
$$

where $j_{i} \in \mathbb{N}_{0}$, and $T^{j_{n-k}, j_{n-k-1}, \ldots, j_{1}}$ as in 2.3.
Lemma 3.6. Let $0 \leq k \leq n-1$. With the exceptions of A_{*} and T_{*}^{n}, each summand of W_{n}^{k} is a graded \mathbb{F}_{p}-vector space, on which v acts trivially.

By all the previous calculations, we can deduce the next result, which is about the calculation of $T_{*}^{j_{n}, j_{n-1}, \ldots, j_{1}}$ as a graded group, which is non-zero just in degrees $2 t(p-1)+2 \beta_{1, n}+n$ for $t \geq 0$, and again using this to calculate W_{n}^{r} for any $0 \leq r \leq n-1$.
Proposition 3.7. Let $n>1$. Then, using the notation of 2.16 ,

$$
T_{2 t(p-1)+2 \beta_{1, n}+n}^{j_{n}, j_{n-1}, \ldots, j_{1}} \cong(\mathbb{Z} / p)^{\binom{t+\beta_{2, n}+n+1}{\beta_{2, n}+n-1}} .
$$

For $p=2$, we can get the same result in 2.20 . By 3.7 , if $j_{k}=0$ for all $k=1,2, \ldots n$, we can calculate the graded group A_{*}^{n} which is non-zero just in degrees $2 t(p-1)+n$

This result also agree with 2.12 when $p=2$.
By the splitting $b u \simeq \vee_{i=1}^{p-1} \Sigma^{2 i-2} l u$, the Holzsager splitting $B \mathbb{Z} / p \simeq \vee_{i=1}^{p-1} B_{i}$ and $l u \wedge \Sigma^{2(i-1)} B_{1} \simeq$ $l u \wedge B_{i}$ we have

$$
b u \wedge \overbrace{B \mathbb{Z} / p \wedge B \mathbb{Z} / p \wedge \cdots \wedge B \mathbb{Z} / p}^{n \text { times }} \simeq \bigvee_{i_{1}, i_{2}, \ldots, i_{n+1}=0}^{p-2} \sum_{k=1}^{2 \Sigma_{k=1}^{n+1} i_{k}} l u \wedge \overbrace{B_{1} \wedge B_{1} \wedge \cdots \wedge B_{1}}^{n \text { times }} .
$$

Applying the homotopy group π_{*} we get that

$$
b u_{*}(B \mathbb{Z} / p)^{\wedge n} \cong \bigoplus_{i_{1}, i_{2}, \ldots, i_{n+1}=0}^{p-2} l u_{*-2 \Sigma_{k=1}^{n+1} i_{k}}\left(B_{1}\right)^{\wedge n}
$$

Again we have calculated the summands of W_{n}^{r} for $l u_{*}\left(B_{1}\right)$ as graded groups. In the next theorem we will deal with the results in [6, 3.8], together with the Künneth sequence for $l u_{*}\left(B_{1}\right)$ and using the above discutient to explain that there is no extension problem for this Künneth sequence for $b u_{*}(B \mathbb{Z} / p)^{\wedge n}$, for any finite number n, and decompose $b u_{*}(B \mathbb{Z} / p)^{\wedge n}$ as a direct sum of some graded groups. The proof is similar to 3.8 , so it is enough to consider some spacial cases as examples.
Theorem 3.8. Let $n \geq 1$. Then

$$
b u_{*}(B \mathbb{Z} / p)^{\wedge n}=\bigoplus_{i_{1}, i_{2}, \ldots, i_{n+1}=0}^{p-2} \bigoplus_{r=0}^{n-1} W_{n}^{r}
$$

where $W_{n}^{r}=\bigoplus_{\Sigma j_{i}=r} T_{*-2 \Sigma_{k=1}^{n+1} i_{k}}^{j_{n-r}, j_{n-r}, \ldots, j_{1}}$.
Example 3.9. For $n=p=3, b u_{9}(B \mathbb{Z} / 3)^{\wedge 3}=\bigoplus_{i_{1}, i_{2}, i_{3}, i_{4}=0}^{1} \bigoplus_{r=0}^{2} W_{3}^{r}$ where $W_{3}^{r}=\bigoplus_{\Sigma j_{i}=r} T_{9-2 \Sigma_{k=1}^{4} i_{k}}^{j_{3-r}, j_{2}, \ldots, j_{1}}$.
By 3.4 and 3.7 we have $b u_{9}(B \mathbb{Z} / 3)^{\wedge 3}=T_{9}^{2} \oplus\left(T_{7}^{0,0,0}\right)^{4} \oplus\left(T_{5}^{2}\right)^{6} \oplus\left(T_{3}^{0,0,0}\right)^{4}=\mathbb{Z} / 3^{2} \oplus(\mathbb{Z} / 3)^{22}$. And by $[6,3.8]$, we have $b u_{9}(B \mathbb{Z} / 3)^{\wedge 3}=\Gamma(k, 4) \oplus(\mathbb{Z} / 3)^{\sum_{j=0}^{1} \sum_{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{2-j}=0}^{1}\binom{j}{1}\left(\begin{array}{c}4+j-\Sigma_{a}^{2-j} j+1 \\ j+1 \\ j-1\end{array}\right)}=\mathbb{Z} / 3^{2} \oplus$ $(\mathbb{Z} / 3)^{22}$, where $\Gamma(k, 4)=\mathbb{Z} / 3^{2} \oplus(\mathbb{Z} / 3)^{6}$ and $(\mathbb{Z} / 3)^{\sum_{j=0}^{1} \sum_{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{2-j}=0}^{1}\binom{j}{1}\binom{4+j-\sum_{a=1}^{2-j} \lambda_{a}}{j+1}}=(\mathbb{Z} / 3)^{16}$.

References

[1] J.F. Adams: Stable Homotopy and Generalised Homology; University of Chicago Press (1974).
[2] L. Graham, E.Knuth and O. Patashnik: Concrete mathematics; Addison-Wesley Publishing Company (1994).
[3] Holzsager,Richard: Stable splitting of $K(G, 1)$; Proc. Amer. Math. Soc. Proceedings of the American Mathematical Society. vol 31 (1972) 305-306.
[4] E.Ossa: Connective K-theory of elementary abelian groups; Transformation groups (Osaka, 1987). Lecture Notes in Math. vol 1375, 269-275. Springer,Berlin (1987).
[5] R. Switzer: Algebraic topology - homotopy and homology; Classics in Mathematics, (note: Reprint of the 1975 original [Springer, New York; MR0385836 (52 \#6695)]). Springer-Verlag, Berlin (2002) xiv+526.
[6] Mira, Khairia M: $b u_{*}(B \mathbb{Z} / p)^{n}$ as a Graded Group; Journal of Progressive Research in Mathematics(JRM) ISSN: 2395-0218, SCITECH RESEARCH ORGANISATION, , 1981-1988, Volume 12, Issue 3 available at www.scitecresearch.com/journals/index.php/jprm.
[7] Bruner, Robert R. and Mira, Khairia M. and Stanley, Laura A. and Snaith, Victor P: Ossa's theorem via the Künneth formula; Mathematics and Statistics 3(3): 58-64, 2015, DOI: $10.13189 / \mathrm{ms} .2015 .030302$, http://www.hrpub.org/download/20150620/MS2-13403792.pdf

