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On Approximation Properties of Multivariate Class of
Nonlinear Singular Integral Operators
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Abstract. In the present paper, we study the pointwise approximation of nonlinear multivariate
singular integral operators having convolution type kernels of the form:

T,(f;x) = f Ky(t —x, f(t))dt,xeD ,AeA,
D

where D = ﬁl {a;,b;) is open, semi-open or closed multidimensional arbitrary bounded box in R"
or D =R" and A is non-empty the set of non-negative indices, at a p-generalized Lebesgue point of

f € Lp(D). Also, we investigate the corresponding rates of convergences at this point.
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1. Introduction

In [15], Taberski handled the problem of pointwise approximation of functions f € Li{—m, ) and their derivatives by
harnessing the family of convolution type linear singular integral operators depending on two parameters of the form:

(1.1) L,(f;x) = fnf(t)K,l(t —x)dt,x e(—m, ), AeQ C Ry,

where the symbol (—7t, ) stands for closed, semi-closed or open interval and K, (t) is the kernel enriched with
special properties. The pointwise convergence of the operators of type (1.1) was later examined by Gadjiev [5] and
Rydzewska [11] at generalized Lebesgue points and u — generalized Lebesgue points of functions which belong to
L.(—1t, 1) respectively. Then, in [8], Karsli and Ibikli extended the findings of [15, 5] and [11] by studying the
convergence of the operators of type (1.1) in the space L{(a, b). For some further studies of linear singular operators in
many different settings, the reader may see also, e.g., [12]-[17] and [4].

Approximately four decades ago, Musielak [9] dealt with finding the conditions under which the following
nonlinear integral operators of the form:

(1.2) Tofly) = /I{w(x —vy, flz))dz, y e G, w e A,

G

where G is a locally compact Abelian group with Haar measure and A # () is an index set with some topology, became
convergent. He replaced the linearity property of the operators by an assumption of Lipschitz condition for K,, with
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respect to second variable. Later on, Swiderski and Wachnicki [14] investigated
the pointwise convergence of the operators of type (1.2) at Lebesgue points of the
functions on different Abelian groups. For further reading, we refer the reader to
1,2, 7.

As a continuation and generalization of [17], this work presents some pointwise
approximation theorems for nonlinear multivariate singular integral operators at a
p-generalized Lebesgue point of the functions f € L,(D) (see also, [5]) and the rate
of pointwise convergence of these operators in the following form:

(1.3) T,\(f_:x):/K,\ (t—z f(t))dt, x€D, A€ A,

D

where D = H (@i, b;) is open, semi-open or closed arbitrary bounded box in R or

D =R", \ # (0 is the set of non-negative indices with accumulation point g or
)\0 = 0

The paper is organized as follows: In Section 2, we introduce the fundamental
definitions. In Section 3. we present two theorems concerning the pointwise con-
vergence of 15 (f;x) whenever z is a u-generalized Lebesgue point of the function
f € Lp(D). In Section 4, we establish the rate of pointwise convergence of operators

of type (1.3). In Section 5, we give conclusion.

2. Preliminaries

Definition 2.1. [6, 12] Denoting unit sphere by S*~! = {z € R" : |z| = 1}, the
polar coordinates transformation on R™ is given by & : R™ — R™, G(r, #y,...,0,,_1) =
(z1,.., 1), where

(2.1) 21 =rcosfly, a9 =rsinfcosfy, 33 =rsinflysinfycosts. ...,

rp = rsinf...sinf,_q costy.....r, =rsinfq...sinf,_osinf,_q.

Here, k =2,..n—1,0<0, <7, 0< 0,1 <21, r=[2| £0,2" = L ¢ S™=1 and
the Jacobian of the transformation is J = ™ (sin ;)" 2(sinfz)™ >...(sin f,,_s).
Definition 2.2. [3] A function ® € L, (R™). is said to be radial, if there exists a
function W (|¢|), defined on 0 < || < oo such that ® (#) = ¥ (|¢|) almost everywhere.
Definition 2.3.(Class A) Let us suppose that the function Ky : R® xR — R is
integrable with respect to second variable with Ky (.,0) = 0 ¥t € R™ and satisfies
the following assumptions:

a) Let Ly(|t|) be a radial integrable function on R™ as a function of ¢ for each
A € A such that the following inequality holds:

| K\ (t,u) — Kx(t,v)| < La([t]) |lu —v|, ¥t € R®,Vu,v € R and for each A € A.

b) [[Lalp,@mny < M <00, VAE A, where M is positive real number.

¢) lim /I{A(t._u)dt —u|,VueR.

A—Ap
En

d) lim sup Ly (|t])| =0, V&> 0.

Ao [ e<ft|<oo
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e) lim f Ly (|t])dt] =0, V&> 0.

A—Ap
£<]t|<o0
f) Lx(|t]) is non-increasing function with respect to |t| on [0, c0).
In this definition the Lipschitz condition idea presented in [9] is used. Through-
out this paper, we suppose that K belongs to Class A.

3. Convergence at Characteristic Points

In Theorem 3.1, we prove the pointwise convergence of the operators of type (1.3)
n
for the case D = _Hl (a;, b;) , where D is open, semi open or closed multidimensional
1=
arbitrary bounded box in R”.
Theorem 3.1. Let x € D be a u—generalized Lebesgue point of the function
J € Ly(D) (1 <p< o0)such that the following equality holds:
1
h P
1
lim | —— (rt’ +x) — flx)|"r"tat'dr | =0, 1<p< oo,
tim (= [ [ 1967 )= si@) 1<p<e
0 gn—-1

where p([t]) is defined, increasing, absolutely continuous on [0, ] as a function of
|t| for the finite real number b and p(0) = 0. Then, one has

Jim |T3(f:2) = f(=)] =0,

on any set Z on which the function

5
/p’(r)L;,(r)d-r. 0<d<b
0

1s bounded as A tends to Ag.

Proof. Set
@, te D,
(1) = { 0. teR™D.

At this stage, there are two cases: p=1 and 1 < p < o0.
Now, let p = 1. Besides, suppose that © € D is a fixed u—generalized Lebesgue
point of f € L1(D). Using condition (¢) of class A, we have the following equality:

[T5\(f;2) — flz)| = ./-K)\(t —x, f(t)dt — f(z)

D

= fK;,(t —x,g(t))dt — fK,\{t —xz, f(z))dt

R" r™

+ /I{A(t—x.f(x))dt—f(x} .

BR"
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Now, using condition (a) we obtain

ITa(f:2) — f(2)] < f £ (t) = F(@)| Ia(t)dt

+ fKA(t —x, flz))dt — f(x)

En

T f 19 (t) = F(2)| La(lt — 2]yt
RA\D
=L+ 15L+1;

Our aim is to show that J{ — 0. [s — 0 and I3 — 0 as A — Ag.
Let Bs = {t: |(t — 2| < ¢} and Bs C D. In view of (2.1), we have the following
equality for Iy:

L= [u 2)| L (|t — z)dt + f £ (&) — £(@)| La(lt — z)dt

D\B;

- [ f £ (rt +2) — F(2)| La(r)r™~dt'dr + ] 1 (8) = F(2)| La(ft — 2])dt

0 gn-1 D\ Bs
=In + L.

Let us show that I;; — 0 as A — Ag. If x € D is a u—generalized Lebesgue point
of the function f € Ly()) then for every £ > 0 there exists dg > 0 such that the
following inequality is satisfied

/f|j:r’t + ) — flx)|r™ tdt'dr < zpu(d),

where 0 < 0 < 4.
It is easy to see that the following inequality holds for I47 :

5

I < /[va'r Ly(s)+ Ly(8)| i/ (r)dr
0
5

Ly(r)p'(r)d

o\

Since the following expression

)

[msmar

0

stays bounded as A — Mg and = > 0 is arbitrarily small, I;; — 0 as A — Ag.
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Let us show that I15 — 0 as A — Ag. Since the following inequality holds:

d<r<oo

ha< swp L) (Iflo + 1)l fa
D

and in view of condition (d) of class A, I — 0 as A — Ao and by condition (¢) of
class A. I — 0 as A — Ap. Finally, since

I; < |j(r)|f f Ly(r)yr™tat'dr,

§ gn—-1

by condition (€) of class A, I3 — 0 as A — Ag. Thus the proof is completed for the
case p = 1.

Now, let 1 < p < oo. Further, assume that » € D is a fixed p—generalized
Lebesgue point (for one dimensional analogue, see [5]) of f € L,(D). Using condi-
tion (¢) of class A, we have the following equality:

ITa(f:2) — f(z)] = / K\ (t— 2., f(8)dt — f(z)

D

— /KA(t —x,g(t))dt — /I\fA(f —z, f(z))dt

R™ i

+ ffx’}(t— x, flz))dt — f(z)].

R™

Now, using condition (a) we obtain

ITa(fi2) — f2)] < f £ () — f(2)] La(lt — ])dt
D

+ fK,\(t —z, f(z))dt — f(z)

Rn

4 f l9.() — F(@)] Ia(lt — al)de
R™\D
=L +L+1;

Since
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by condition (e) of class A, I3 — 0 as A — Ag. Next, using Hélder’s inequality [10]
tfor the integral I; we have the following:

o=

1
P

L+l < [u D La(t —z)dt | fmtndt

D

- /K,\{t —zx, f(x)dt — f(z)].
]Rn
Since for positive numbers m., n the inequality: (m + n)? < 2P(m? + nP) holds
[10], by taking the p—th power of both sides we have:

By ]

(h=ny < 2 [|7@+n) - @ Ll x | [ I

Bn
P

+2? /K;\(tj:.f ))dt — f(x)
]:R_ﬂ
= 2PI"IT" +2P]IT".
By conditions (b) and (¢) of class A, IT* < M% < 00 and ITT* — 0 as A — Ao,
respectively.
Suppose that By = {t : |(t — 2| < ¢} and Bs C D. In view of (2.1) and (2.2) we
have the following equality for I*

/f (t) = F(@)[P La(lt — zl)dt + / 1 (8) = F(@)P Ia(jt — 2])dt

D\B;

— / f \f (1t + @) — F(2)P La(r)r"—'dt'dr + ] F(8) = F@)P Ta(|t — 2))dt
0 gn—1 D\ B;
= I + L.

Let us show that Iy; — 0 as A — Ag. If # € D is a u—generalized Lebesgue point
of the function f € L,(D) then, for every £ > 0 there exists d¢9 > 0 such that the
following inequality holds:

5
/ f |f(rt’ +x) — f(z)|Pr™tdt'dr < P u(o),

where 0 < § < dg.
It is easy to see that the following inequality holds for I11 :

I < :»:pf [ var Ly(s)+ Lx(8)| ¢ (r)dr

r<<s<d
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Since the following expression
)
Jrwisear
0

remains bounded as A — Ap and = > 0 is arbitrarily small, [11 — 0 as A — Ag.
Let us show that I15 — 0 as A — Ay. Since the following inequality holds:

Bal <2 swp L) | IFlE,0) + 1@ [t

d<r<oo
D

and in view of condition (c¢) of class A, I1s — 0 as A — Ag. Thus the proof is
completed for 1 < p < oo.
In Theorem 3.2 , we prove the pointwise convergence of the operators of type
(1.3) for the case D = R".
Theorem 3.2. Suppose that the hyphothesis of Theorem 3.1 is satisfied. Then,
one has
lim |[T\(f:2) — f(z)| =0,
A—Ao
whenever x € R™ is a u—generalized Lebesgue point of the tunction f € L,(R").
Proof. Following the proof technic used in Theorem 3.1, we have

T (F52) = F@)F <27 @) 17y + F@P [ [ Earirtavar
)

gn—1
P

5
X /LA(|t|)dt + 2P=:P/u’(r}L-),(r}dr X fL,\(tht
0

BR"

P
q

Rn
P

+ 2P ./K)\Ut —z|, f(z))dt — f(z)
Rn
Since K\ belongs to class A, the remaining part of the proot is clear.

4. Rate of Convergence

Theorem 4.1. Suppose that the hypotheses of Theorem 3.2 are satisfied. Let
é
A(NG) = /p’(r)LA(r)d-r.
0
where 0 < 0 < dp, and the following assumptions are satisfied:
(1) A(AN,0) — 0 as A — Ag for some 0 > 0.
(ii) For every & > 0,
LA(§) = o(A(A,9))
as A — Ag.
(7i7) For every £ > 0,

e o]

//L.A(r)-rn_1dt’d-r—O(A(A.d))

E gn—1
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as A — Ag.

(iv)
fﬁ)\ it —z|, f(z))dt — f(z)| = o(A(N,J)).

Rﬂ
Then, at each u—generalized Lebesgue point of L,(R™) we have

L
ITs (f:2) — f(z)] = o(A(N,6)7)
as A — Ag.
Proof. Using Theorem 3.2., we may write

T (Fr0) = £ @) <222 La(0) | £I%,amy + 1£(2) Ip//L(r Lt dr
§ gn—1

.FZ
) q
X /L,\(|t|)dt P/,u (r)Ly(r)dr x /L,\(|t|)dt
Rn 0 Rn

2| [Kale=al sle)at = sia)
an
From (i) — (7v) and using class A conditions the desired result is easily obtained.
that is )
T (f32) — £ (2)] = o(A(A, 6)F).

Thus the proof is completed.

Remark 1. Note that the similar result can be obtained for the case D is arbitrary
bounded box in R™ by using Theorem 3.1.

5. CONCLUSION

In this paper, the pointwise convergence of the convolution type nonlinear mul-
tidimensional singular integral operators 1s investigated. For this aim, we defined
a special class of kernel functions. Therefore, the main results are presented as
Theorem 3.1 and Theorem 3.2. Also, by using main results, the rates of pointwise
convergences of the indicated type operators are discussed.
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