
   

Journal of Progressive Research in Mathematics(JPRM)   

ISSN: 2395-0218    

 
 Volume 13, Issue 2 available at www.scitecresearch.com/journals/index.php/jprm                                                       2246| 

 

SCITECH                                                                        Volume 13, Issue 2 

RESEARCH ORGANISATION                Published online: March 15, 2018| 

Journal of Progressive Research in Mathematics 
www.scitecresearch.com/journals 

Some Technique To Show The Boundedness Of Rational Difference 

Equations 

İnci Okumuş
1*

, Yüksel Soykan
2 

1*,2
Department of Mathematics, Faculty of Art and Science, Bülent Ecevit University, 67100, Zonguldak, Turkey 

1*
E-mail address:inci_okumus_90@hotmail.com; 

2
E-mail address: yuksel_soykan@hotmail.com 

*
Corresponding Author 

 

Abstract 

This paper deals with the boundedness character of the solutions of the rational difference equations. We 
present a few methods that are applied to determine the boundedness behavior of the solutions of 
rational difference equations which studied in the literature. 

2010 Mathematics Subject Classification: 39A10, 39A30. 

Keywordsand phrases: Difference equations; solution; boundedness; equilibrium point. 

 

1. Introduction 

We consider the difference equation of order (𝑘 + 1) is an equation of the form 

 

𝑥𝑛+1 = 𝑓 𝑥𝑛 , 𝑥𝑛−1 , … , 𝑥𝑛−𝑘    𝑛 = 0,1, … . #(1.1)  
 

Where 𝐼 is some interval of real numbers and the function 𝑓: 𝐼𝑘+1 → 𝐼is a continuously differentiable function. For 

every set of initial conditions 𝑥−𝑘 , 𝑥−(𝑘−1), … , 𝑥0 ∈ 𝐼, the difference equation(1.1) has a unique solution  𝑥𝑛 𝑛=−𝑘
∞ . 

    A solution  𝑥𝑛 𝑛=−𝑘
∞ .of Eq. (1.1) is called bounded if, for all 𝑛 ≥ −𝑘, there exist 𝑚 and 𝑀 positive numbers such 

that 

𝑚 ≤ 𝑥𝑛 ≤ 𝑀.  

For the last few years the boundedness behaviors of solutions of difference equations are being extensively 

investigated [1-9]. In the light of it, we concentrate on the boundedness behavior of solutions of rational difference 

equations. We introduce the methods that specify how the boundedness character of the solutions of rational 

difference equations which studied in the literature are established. We classify the methods used in six sections and 

give detailed examples of each method in each section. The proofs given in this paper has been taken from the given 

references. 

2. Contradiction Methods 

2.1.  The case 

𝑥𝑛+1 =
𝛼 + 𝑥𝑛−1

 1 + 𝐵𝑥𝑛 𝑥𝑛−1
,   𝑛 = 0,1,… . #(2.1)  

We take this example from [4], see page [201-202]. 

 

Theorem 2.1 Every solution of Eq. (2.1) is bounded. 

 

Proof. Suppose for the sake of contradiction that there exists a solution of Eq. (2.1) which is unbounded. There 

exists a sequence of indices  𝑛𝑖  such that 
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𝑥𝑛 𝑖+1 → ∞ 𝑎𝑛𝑑 𝑥𝑛 𝑖+1 > 𝑥𝑗  𝑓𝑜𝑟 𝑗 < 𝑛𝑖 + 1. #(2.2) 

Once 

𝑥𝑛 𝑖−1 → 0, 

Because 

𝑥𝑛 𝑖+1 =
𝛼 + 𝑥𝑛 𝑖−1

 1 + 𝐵𝑥𝑛 𝑖 𝑥𝑛 𝑖−1

. 

From this and from 

𝑥𝑛𝑖−1 =
𝛼 + 𝑥𝑛 𝑖−3

 1 + 𝐵𝑥𝑛 𝑖−2 𝑥𝑛 𝑖−3

 

and 

𝑥𝑛𝑖+1 =

𝛼 +
𝛼+𝑥𝑛𝑖−3

 1+𝐵𝑥𝑛𝑖−2 𝑥𝑛𝑖−3

 1 + 𝐵𝑥𝑛 𝑖 
𝛼+𝑥𝑛𝑖−3

 1+𝐵𝑥𝑛𝑖−2 𝑥𝑛𝑖−3

 

=

𝛼 +
𝛼+𝑥𝑛𝑖−3

 1+𝐵𝑥𝑛𝑖−2 𝑥𝑛𝑖−3

 1 + 𝐵𝑥𝑛𝑖  𝛼 + 𝑥𝑛 𝑖−3 
 1 + 𝐵𝑥𝑛 𝑖−2 𝑥𝑛 𝑖−3 

=
𝛼𝑥𝑛 𝑖−3 + 𝛼𝐵𝑥𝑛 𝑖−2𝑥𝑛 𝑖−3 + 𝛼 + 𝑥𝑛 𝑖−3

 1 + 𝐵𝑥𝑛 𝑖  𝛼 + 𝑥𝑛 𝑖−3 
 

=
𝛼𝑥𝑛 𝑖−3

 1 + 𝐵𝑥𝑛 𝑖  𝛼 + 𝑥𝑛 𝑖−3 
 1 + 𝐵𝑥𝑛 𝑖−2 +

1

1 + 𝐵𝑥𝑛𝑖
 #(2.3) 

we have 

𝑥𝑛 𝑖−2 → ∞ 𝑎𝑛𝑑 𝑥𝑛 𝑖 , 𝑥𝑛 𝑖−3 → 1. 

But then, (2.3) implies that, eventually, 

𝑥𝑛 𝑖+1 < 𝑥𝑛 𝑖−2 

Which contradicts (2.2) and completes the proof. 

2.2. The case 

𝒙𝒏+𝟏 =
𝜶+ 𝜷𝒙𝒏𝒙𝒏−𝟏 + 𝒙𝒏−𝟏

𝒙𝒏−𝟏
,   𝒏 = 𝟎, 𝟏, … . #(𝟐. 𝟒) 

The main result for Eq.  2.4  is the following. See ([4],  pp.215-216). 

 

Theorem 2.2 

a) Assume that 𝛽 ≥ 1. Then every solution of Eq. (2.4) increases to ∞. 
b) Assume that 𝛽 < 1. Then every solution of Eq. (2.4) converges to the positive equailibrium. 

 

Proof. 

a) Obviously 
𝑥𝑛+1 > 𝛽𝑥𝑛 ≥ 𝑥𝑛  

from which the result follows. 

b) The change of variables 

𝑥𝑛 =
1

𝑦𝑛
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transforms 

𝑦𝑛+1 =
𝑦𝑛

𝛽 + 𝑦𝑛 + 𝛼𝑦𝑛𝑦𝑛−1
,   𝑛 = 0,1, … . #(2.5) 

Clearly, 

𝑦𝑛 < 1 𝑓𝑜𝑟 𝑛 ≥ 1. 
We also claim that every positive solution of Eq. (2.5) is bounded from below by a positive constant. To see this, 

suppose for the sake of contradiction that there exists a sequence of indices  𝑛𝑖  such that 

𝑦𝑛 𝑖+1 → 0 𝑎𝑛𝑑 𝑦𝑛 𝑖+1 < 𝑦𝑗  𝑓𝑜𝑟 𝑗 < 𝑛𝑖 + 1. 

From Eq. (2.5) we have 

𝑦𝑛 𝑖 , 𝑦𝑛 𝑖−1 → 0. 

Then eventually 

𝑦𝑛 𝑖+1 =
𝑦𝑛 𝑖

𝛽 + 𝑦𝑛 𝑖 + 𝛼𝑦𝑛 𝑖𝑦𝑛 𝑖−1
> 𝑦𝑛 𝑖  

And this contardiction proves our assertion. 

Define 

𝐼 = lim
𝑛→∞

inf𝑦𝑛 𝑎𝑛𝑑 𝑆 = lim
𝑛→∞

sup𝑦𝑛  . 

Obviously, 

𝑆 ≤  
𝑆

𝛽 + 𝑆 + 𝛼𝑆𝐼
 𝑎𝑛𝑑 𝐼 ≥  

𝐼

𝛽 + 𝐼 + 𝛼𝑆𝐼
 

from which it follows that 

𝛽 + 𝑆 + 𝛼𝑆𝐼 ≤ 1 ≤ 𝛽 + 𝐼 + 𝛼𝑆𝐼 
andso 

𝑆 = 𝐼. 
This completes the proof. 

2.3.  The case 

𝒙𝒏+𝟏 = 𝜷 +
𝒙𝒏−𝟐
𝒙𝒏

,   𝒏 = 𝟎, 𝟏, … . #(𝟐. 𝟔)  

We consider the difference equation  2.6  with the parameter 𝛽 positive and with arbitrary positive initial 

conditions 𝑥−2, 𝑥−1, 𝑥0.  See ([5], pp.46-48). 

 

Theorem 2.3 Every solution of Eq  2.6  is bounded. 

Proof. First of all, we make the following useful general observations about the solutions of Eq. 2.6 : 

𝑥𝑛+1 = 𝛽 for 𝑛 ≥ 0. #(2.7) 

𝑥𝑛+1 < 𝛽 +
1

𝛽
𝑥𝑛−2 , for 𝑛 ≥ 1. #(2.8) 

𝑥𝑛+1 < 𝛽 +
1

𝛽
 𝛽 +

𝑥𝑛−5

𝑥𝑛−3
 < 𝛽 + 1 +

1

𝛽2
𝑥𝑛−5, for 𝑛 ≥ 4. #(2.9) 

𝑥𝑛 𝑖+1 → ∞ ⟹ 𝑥𝑛 𝑖−2 → ∞.  #(2.10) 

𝑥𝑛 𝑖+1 → 𝛽 ⟹  𝑥𝑛 𝑖 → ∞.  #(2.11) 

Now suppose for the sake of contradiction that Eq.  2.6  has an unbounded solution  𝑥𝑛 . Then there exists a 

sequence of indices  𝑛𝑖  such that 

𝑥𝑛 𝑖+1 → ∞ #(2.12) 

And for every i, 

𝑥𝑛 𝑖+1 > 𝑥𝑗  𝑓𝑜𝑟 𝑗 < 𝑛𝑖 + 1. #(2.13) 

From  2.12  and (2.10) it follows that 

𝑥𝑛 𝑖−2 → ∞, 𝑥𝑛𝑖−5 → ∞,𝑎𝑛𝑑 𝑥𝑛 𝑖−8 → ∞.  #(2.14) 

Now we claim that the subsequence 𝑥𝑛 𝑖−4  is bounded. Otherwise, there would exist a subsequence of  𝑛𝑖  which 

we still denote by  𝑛𝑖 , such that 
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𝑥𝑛 𝑖−4 → ∞,𝑥𝑛 𝑖−7 → ∞, 𝑎𝑛𝑑 𝑥𝑛 𝑖−10 → ∞.  #(2.15) 

Note that, for every i, 

𝑥𝑛 𝑖−4 = 𝛽 +
𝑥𝑛𝑖−7

𝑥𝑛𝑖−5
 

and 

𝑥𝑛𝑖−7 = 𝛽 +
𝑥𝑛 𝑖−10

𝑥𝑛𝑖−8
. 

 

So, as a result of  2.14  and (2.15), we have eventually 

𝑥𝑛 𝑖−7 > 𝑥𝑛 𝑖−5and𝑥𝑛 𝑖−10 > 𝑥𝑛 𝑖−8.  #(2.16) 

and 
𝑥𝑛 𝑖−7

𝑥𝑛 𝑖−5
→ ∞ and

𝑥𝑛 𝑖−10

𝑥𝑛 𝑖−8
→ ∞. 

Hence, from  2.16  and (2.9), we note that eventually 

𝑥𝑛 𝑖+1 < 𝛽 + 1 +
1

𝛽2
𝑥𝑛𝑖−7 

= 𝛽 + 1 +
1

𝛽2
 𝛽 +

𝑥𝑛 𝑖−10

𝑥𝑛𝑖−8
  

= 𝛽 + 1 +
1

𝛽
+

1

𝛽2
 
𝑥𝑛 𝑖−10

𝑥𝑛𝑖−8
 . 

Because of (2.15), it follows that the right-hand side of the above inequality is eventually less than 𝑥𝑛 𝑖−10 , which 

contradicts (2.13), and proves our claim that  𝑥𝑛 𝑖−4  is bounded. From this and (2.14), we see 

𝑥𝑛𝑖−1 = 𝛽 +
𝑥𝑛 𝑖−4

𝑥𝑛 𝑖−2
→ ∞. 

Furthermore, 

lim
𝑖→∞

inf𝑥𝑛 𝑖−3 > 𝛽. 

Otherwise, a subsequence of  𝑥𝑛 𝑖−4  would converge to 𝛽 and therefore from (2.11),  𝑥𝑛𝑖−4  would be unbounded, 

which is not true. 

Thus, eventually, 

𝑥𝑛 𝑖 = 𝛽 +
𝑥𝑛𝑖−3

𝑥𝑛𝑖−1
> 𝛽 + 1 

And hence, for i sufficiently large, 

𝑥𝑛 𝑖+1 = 𝛽 +
𝑥𝑛 𝑖−2

𝑥𝑛 𝑖
< 𝛽 +

𝑥𝑛 𝑖−2

𝛽 + 1
< 𝑥𝑛𝑖−2, 

Which contradicts (2.13). This completes the proof. 

3. Invariant Interval Methods 

3.1  The case 

𝑥𝑛+1 =
𝛾𝑥𝑛−1

1 + 𝑥𝑛𝑥𝑛−1
,   𝑛 = 0,1, … . #(3.1) 

We consider the difference equation  3.1 . We take this example from [3], see page [15-17]. 

Theorem 3.1 Every positive solution of Eq. (3.1) is bounded. 

Proof. When 

𝛾 ≤ 1, 
we have 

𝑥𝑛+1 =
𝛾𝑥𝑛−1

1 + 𝑥𝑛𝑥𝑛−1
≤ 𝑥𝑛−1 

and thus the solutions of Eq. (3.1) are bounded. Now suppose that 

𝛾 > 1 

And assume that  𝑥𝑛  𝑛=−1
∞  be a positive solution of Eq.  3.1 . Choose a positive number m such that 

𝑥−1, 𝑥0 ∈  𝑚,
𝛾 − 1

𝑚
 . 

Define 



   

Journal of Progressive Research in Mathematics(JPRM)   

ISSN: 2395-0218    

 
 Volume 13, Issue 2 available at www.scitecresearch.com/journals/index.php/jprm                                                       2250| 

 

𝑓 𝑥, 𝑦 =
𝛾𝑦

1 + 𝑥𝑦
. 

𝑓 𝑥, 𝑦 is decreasing in 𝑥. In fact, 

𝑓𝑥 =
0 − 𝛾𝑦. 𝑦

 1 + 𝑥𝑦 2
=

−𝛾𝑦2

 1 + 𝑥𝑦 2
 

and thus 𝑓 is decreasing due to 𝛾 > 1. 

𝑓 𝑥, 𝑦  is increasing in 𝑦. In fact, 

𝑓𝑦 =
𝛾 1 + 𝑥𝑦 − 𝛾𝑦. 𝑥

 1 + 𝑥𝑦 2
=

𝛾

 1 + 𝑥𝑦 2
 

and so 𝑓 is increasing because of  𝛾 > 1. 

Therefore, by using the increasing character of 𝑓we find that 

𝑚 =
𝛾𝑚

1 +
𝛾−1

𝑚
𝑚

< 𝑥1 =
𝛾𝑥−1

1 + 𝑥0𝑥−1
<

𝛾
𝛾−1

𝑚

1 + 𝑚
𝛾−1

𝑚

=
𝛾 − 1

𝑚
 

and hence by induction 

𝑥𝑛 ∈  𝑚,
𝛾 − 1

𝑚
 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ −1. 

Consequently,  𝑥𝑛  𝑛=−1
∞  is bounded. 

 

3.2  The case 

𝑥𝑛+1 = 𝛽𝑥𝑛 +
1

𝑥𝑛−1
,   𝑛 = 0,1,… . #(3.2) 

We consider the difference equation  3.2 . See ([3], p.22). 

Theorem 3.1 Eq.(3.2) has bounded solutions, if and only if 

𝛽 < 1. #(3.3) 

Proof. We see 

𝑥𝑛+1 > 𝛽𝑥𝑛  

From which it follows that Eq.  3.2  has unbounded solutions for 

𝛽 ≥ 1. 

On the other hand when (3.3) holds, we claim that every positive solution of Eq.  3.2  is bounded. Infact, if 
 𝑥𝑛  𝑛=−1

∞  is a positive solution of Eq.  3.2  and if we choose positive numbers m and M such that 

𝑥−1, 𝑥0 ∈  𝑚,𝑀  𝑎𝑛𝑑 𝑚𝑀 =
1

1 − 𝛽
, 

then 

𝑚 =
1

 1 − 𝛽 𝑀
= 𝛽𝑚 +

1

𝑀
≤ 𝑥1 = 𝛽𝑥0 +

1

𝑥−1
≤ 𝛽𝑀 +

1

𝑚
=

1

 1 − 𝛽 𝑚
= 𝑀 

and inductively, 

𝑥𝑛 ∈  𝑚,𝑀 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ −1 

which proves our claim. 

4. Min-Max Methods 

4.1.  The case 

𝑥𝑛+1 =
𝛼 + 𝛽𝑥𝑛𝑥𝑛−1 + 𝑥𝑛−1

𝐴 + 𝑥𝑛𝑥𝑛−1
,   𝑛 = 0,1,… . #(4.1) 
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We consider the difference equation  4.1 . See ([4], pp.217-218). 

For Eq. 4.1  it can be seen that, for 𝑛 ≥ 1, every positive solution is bounded from below and from above by 

positive constants. Infact, 

𝑥𝑛+1 ≥
𝛼 + 𝛽𝑥𝑛𝑥𝑛−1

𝐴+ 𝑥𝑛𝑥𝑛−1
≥
𝑚𝑖𝑛 𝛼, 𝛽 

𝑚𝑎𝑥 𝐴, 1 
 

which shows that every solution of Eq.  4.1  is bounded from below, for 𝑛 ≥ 1, by the positive number 

𝑚 =
𝑚𝑖𝑛 𝛼, 𝛽 

𝑚𝑎𝑥 𝐴, 1 
. 

So, 

𝑥𝑛+1 <
𝛼 + 𝛽𝑥𝑛𝑥𝑛−1 + 𝑥𝑛−1

𝑥𝑛𝑥𝑛−1
=  

𝛼

𝑥𝑛𝑥𝑛−1
+  𝛽 +

1

𝑥𝑛
≤  

𝛼

𝑚2
+ 𝛽 +

1

𝑚
 

and thus every solution of Eq.  4.1  is also bounded from above, for 𝑛 ≥ 2, by the positive number 

𝑀 =
𝛼

𝑚2
+ 𝛽 +

1

𝑚
. 

4.2.  The case 

𝑥𝑛+1 =
𝛼 + 𝛽𝑥𝑛 + 𝛾𝑥𝑛−1 + 𝛿𝑥𝑛−2

𝐶𝑥𝑛−1 + 𝐷𝑥𝑛−2
,   𝑛 = 0,1,… . #(4.2) 

We consider the difference equation  4.2 . See ([5], pp.41-42). 

Theorem 4.1 Assume that 𝛼, 𝛽 ∈  0,∞  and 𝛾, 𝛿, 𝐶, 𝐷 ∈  0,∞ . Then every positive solution of Eq.(4.2) is 

bounded from above and from below by positive numbers. 

Proof. We see that 

𝑥𝑛+1 ≥
𝛾𝑥𝑛−1 + 𝛿𝑥𝑛−2

𝐶𝑥𝑛−1 +𝐷𝑥𝑛−2
≥
𝑚𝑖𝑛 𝛾, 𝛿 

𝑚𝑎𝑥 𝐶, 𝐷 
 

and then  𝑥𝑛  is bounded from below by the positive number 

𝑚 =
𝑚𝑖𝑛 𝛾, 𝛿 

𝑚𝑎𝑥 𝐶,𝐷 
  . 

Moreover, for 𝑛 ≥ 1 

𝑥𝑛+2 =
𝛼 + 𝛽𝑥𝑛+1 + 𝛾𝑥𝑛 + 𝛿𝑥𝑛−1

𝐶𝑥𝑛 +𝐷𝑥𝑛−1
 

 

=
𝛼

𝐶𝑥𝑛 +𝐷𝑥𝑛−1
+
𝛾𝑥𝑛 + 𝛿𝑥𝑛−1

𝐶𝑥𝑛 +𝐷𝑥𝑛−1
+

𝛽

𝐶𝑥𝑛 +𝐷𝑥𝑛−1

𝛼 + 𝛽𝑥𝑛 + 𝛾𝑥𝑛−1 + 𝛿𝑥𝑛−2

𝐶𝑥𝑛−1 +𝐷𝑥𝑛−2
 

≤
𝛼

 𝐶 + 𝐷 𝑚
+
𝛾𝑥𝑛 + 𝛿𝑥𝑛−1

𝐶𝑥𝑛 +𝐷𝑥𝑛−1
+

𝛽

𝐶𝑥𝑛 +𝐷𝑥𝑛−1

𝛼 + 𝛽𝑥𝑛 + 𝛾𝑥𝑛−1 + 𝛿𝑥𝑛−2

𝐶𝑥𝑛−1 +𝐷𝑥𝑛−2
 

=
𝛼

 𝐶 + 𝐷 𝑚
+
𝛾𝑥𝑛 + 𝛿𝑥𝑛−1

𝐶𝑥𝑛 +𝐷𝑥𝑛−1
+

𝛽𝛼

 𝐶𝑥𝑛 + 𝐷𝑥𝑛−1  𝐶𝑥𝑛−1 + 𝐷𝑥𝑛−2 
 

+
𝛽

𝐶𝑥𝑛 +𝐷𝑥𝑛−1

𝛾𝑥𝑛−1 + 𝛿𝑥𝑛−2

𝐶𝑥𝑛−1 + 𝐷𝑥𝑛−2
+

𝛽2𝑥𝑛
 𝐶𝑥𝑛 + 𝐷𝑥𝑛−1  𝐶𝑥𝑛−1 + 𝐷𝑥𝑛−2 

 

≤
𝛼

 𝐶 + 𝐷 𝑚
+
𝑚𝑎𝑥 𝛾, 𝛿 

𝑚𝑖𝑛 𝐶, 𝐷 
+

𝛽𝛼

 𝐶 + 𝐷 2𝑚2
+

𝛽

 𝐶 + 𝐷 𝑚

𝑚𝑎𝑥 𝛾, 𝛿 

𝑚𝑖𝑛 𝐶, 𝐷 
+

𝛽2

𝐶𝐷𝑚
 

and therefore the solution is also bounded from above. 
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4.3.  The case 

𝑥𝑛+1 =
𝛼 + 𝛽𝑥𝑛𝑥𝑛−1 + 𝑥𝑛−1

𝐵𝑥𝑛𝑥𝑛−1 + 𝑥𝑛−1
,   𝑛 = 0,1,… . #(4.3) 

We consider the difference equation  4.3 . See ([4], p.419). 

Eq.  4.3  is bounded from below and from above by positive constants. In fact for 𝑛 ≥ 1, 

𝑥𝑛+1 ≥
𝛽𝑥𝑛𝑥𝑛−1 + 𝑥𝑛−1

𝐵𝑥𝑛𝑥𝑛−1 + 𝑥𝑛−1
=  
𝛽𝑥𝑛 + 1

𝐵𝑥𝑛 + 1
≥
𝑚𝑖𝑛 𝛽, 1 

𝑚𝑎𝑥 𝐵, 1 
. 

Hence, for 𝑛 ≥ 1, every positive solution is bounded from below by 

𝑚 =
𝑚𝑖𝑛 𝛽, 1 

𝑚𝑎𝑥 𝐵, 1 
. 

So, for 𝑛 ≥ 2, 

𝑥𝑛+1 =
𝛼

𝐵𝑥𝑛𝑥𝑛−1 + 𝑥𝑛−1
+
𝛽𝑥𝑛 + 1

𝐵𝑥𝑛 + 1
 

≤
𝛼

𝐵𝑚2 + 𝑚
+
𝑚𝑖𝑛 𝛽, 1 

𝑚𝑎𝑥 𝐵, 1 
 

Which establishes our claim. 

4.4.  The case 

𝑥𝑛+1 =
𝛼 + 𝑥𝑛𝑥𝑛−1

𝐴 + 𝑥𝑛𝑥𝑛−1
,   𝑛 = 0,1,… . #(4.4) 

We consider the difference equation  4.4 . See ([3], p.26). 

Every solution of Eq. 4.4  is bounded from above and from below by positive constants. In fact for all 𝑛 ≥ 0, 

𝑚𝑖𝑛 𝛼, 1 

𝑚𝑎𝑥 𝐴, 1 
< 𝑥𝑛+1 =

𝛼 + 𝑥𝑛𝑥𝑛−1

𝐴 + 𝑥𝑛𝑥𝑛−1
<
𝑚𝑎𝑥 𝛼, 1 

𝑚𝑖𝑛 𝐴, 1 
. 

The following case is an example both min-max method and invariant interval methods. 

4.5.  The case 

𝑥𝑛+1 =
𝛼 +  𝛽𝑖𝑥𝑛−𝑖

𝑘
𝑖=0

𝐴 +  𝐵𝑖𝑥𝑛−𝑖
𝑘
𝑖=0

,   𝑛 = 0,1,… . #(4.5) 

We consider the difference equation  4.5 . See ([5], pp.34-37). 

Theorem 4.2  Consider the  𝑘 + 1 𝑠𝑡 -order rational difference equation  4.5  with non-negative parameters 

𝛼,𝐴, 𝛽0, … , 𝛽𝑘 , 𝐵0, … , 𝐵𝑘 

and with arbitrary non-negative initial conditions 𝑥−𝑘 , … , 𝑥0 such that the denominator is always positive. Suppose 

that for every 𝑖 ∈  0,1, … , 𝑘  for which the parameter 𝛽𝑖 in the numerator is positive, the corresponding parameter 𝐵𝑖  

in the denominator is also positive. Then every solution of Eq.  4.5  is bounded. 

Proof. We denote by 𝐼 and 𝐼0 the following subsets of  0,1,… , 𝑘 : 

𝐼 =  𝑖 ∈  0,1,… , 𝑘 : 𝛽𝑖 > 0 and𝐵𝑖 > 0  

and 

𝐼0 =  𝑖 ∈  0,1,… , 𝑘 : 𝛽𝑖 = 0 and𝐵𝑖 > 0 . 
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Hence 

𝐼 ∪ 𝐼0 ⊂  0,1,… , 𝑘  

and Eq.  4.5  is equivalent to 

𝑥𝑛+1 =
𝛼 +  𝛽𝑖𝑥𝑛−𝑖𝑖∈𝐼

𝐴 +  𝐵𝑖𝑥𝑛−𝑖𝑖∈𝐼 +  𝐵𝑖𝑥𝑛−𝑖𝑖∈𝐼0

, 𝑛 = 0,1,… . #(4.6)  

with 𝛽𝑖 , 𝐵𝑖 ∈  0,∞  for every 𝑖 ∈ 𝐼 and with 𝐵𝑖 > 0 for every 𝑖 ∈ 𝐼0. Of course, 𝐼 or 𝐼0, or both, may be empty sets. 

First of all, we show that when 

𝐴 > 0 𝑜𝑟 𝛼 = 0, 

every solution of Eq.  4.5  is bounded. In fact, when𝐴 > 0 

𝑥𝑛+1 ≤
max
𝑖∈𝐼

 𝛼, 𝛽𝑖  1 +  𝑥𝑛−𝑖𝑖∈𝐼  

min
𝑖∈𝐼
 𝐴, 𝐵𝑖  1 +  𝑥𝑛−𝑖𝑖∈𝐼  

≤
max
𝑖∈𝐼

 𝛼, 𝛽𝑖 

min
𝑖∈𝐼
 𝐴, 𝐵𝑖 

 

and thus every solution of Eq.  4.5  is bounded. 

    In the above inequality by max𝑖∈𝐼 𝛼, 𝛽𝑖 , we mean 𝛼 if 𝐼 = ∅ and the maximum of 𝛼 and max𝑖∈𝐼 𝛽𝑖  otherwise. 

Similarly for the minimum. Moreover, if 𝐼 = ∅ we define 

 𝑥𝑛−𝑖
𝑖∈𝐼

= 0 

Next suppose that 𝛼 = 0. Hence the set 𝐼 must be nonempty and 

𝑥𝑛+1 ≤
 𝛽𝑖𝑥𝑛−𝑖𝑖∈𝐼

 𝐵𝑖𝑥𝑛−𝑖𝑖∈𝐼
≤

max
𝑖∈𝐼

𝛽𝑖  𝑥𝑛−𝑖𝑖∈𝐼

min
𝑖∈𝐼

𝐵𝑖  𝑥𝑛−𝑖𝑖∈𝐼
=

max
𝑖∈𝐼

𝛽𝑖

min
𝑖∈𝐼

𝐵𝑖
 

and every solution is bounded. 

In the remaining part of the proof we suppose that 

𝐴 = 0 𝑎𝑛𝑑 𝛼 > 0 

Now the proof depends on whether 𝐼 or 𝐼0 is empty. 

Case 1: 𝐼0 = ∅. So, because 𝐴 = 0, 𝐼 ≠ ∅ and 

𝑥𝑛+1 =
𝛼 +  𝛽𝑖𝑥𝑛−𝑖𝑖∈𝐼

 𝐵𝑖𝑥𝑛−𝑖𝑖∈𝐼
>

min
𝑖∈𝐼

𝛽𝑖

max
𝑖∈𝐼

𝐵𝑖
, 𝑓𝑜𝑟 𝑛 ≥ 0. 

Hence if we set 

𝐿 =
min
𝑖∈𝐼

𝛽𝑖

max
𝑖∈𝐼

𝐵𝑖
, 

note that for 𝑛 ≥ 𝑘, 

𝑥𝑛+1 ≤
𝛼

𝐿 𝐵𝑖𝑖∈𝐼
+

max
𝑖∈𝐼

𝛽𝑖

min
𝑖∈𝐼

𝐵𝑖
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and every solution of Eq.  4.5  is bounded from below and from above. Indeed in this case the equation is 

permanent. 

Case 2: 𝐼 = ∅. Then 𝐼0 ≠ ∅. In this case the Eq.  4.5  reduces to 

𝑥𝑛+1 =
𝛼

 𝐵𝑖𝑥𝑛−𝑖𝑖∈𝐼0

  𝑛 = 0,1,… . #(4.7)  

with 

 𝐵𝑖
𝑖∈𝐼0

> 0. 

We will show that every solution of Eq. (4.7) is bounded. To this end, let  𝑥𝑛  be a solution of Eq. (4.7) and 

suppose, without loss of generality, that the solution is positive for all 𝑛 ≥ −𝑘. Let 𝐿, 𝑈 be chosen in such a way 

that 

𝑥−𝑘 , … , 𝑥0 ∈  𝐿, 𝑈  

and 

𝐿𝑈 =
𝛼

 𝐵𝑖𝑖∈𝐼0

. 

Hence 

𝐿 =
𝛼

𝑈 𝐵𝑖𝑖∈𝐼0

< 𝑥1 =
𝛼

 𝐵𝑖𝑥−𝑖𝑖∈𝐼0

<
𝛼

𝐿 𝐵𝑖𝑖∈𝐼0

= 𝑈. 

Then, 

𝑥1 ∈  𝐿, 𝑈  

and by induction 

𝑥𝑛 ∈  𝐿, 𝑈 , 𝑓𝑜𝑟 𝑛 ≥ −𝑘. 

Case 3: Both 𝐼 and 𝐼0 are nonempty sets. In this case, as in case 2, we will suppose, without loss of generality, that 

a solution  𝑥𝑛  is positive and show that there exist an interval  𝐿, 𝑈  that contains the entire solution. 

 To see how the interval is found note that 

𝑥1 ∈  𝐿, 𝑈  

if and only if 

𝐿 <
𝛼 +  𝛽𝑖𝑥−𝑖𝑖∈𝐼

 𝐵𝑖𝑥−𝑖𝑖∈𝐼 + 𝐵𝑖𝑥−𝑖𝑖∈𝐼0

< 𝑈 

if and only if 

  𝐿𝐵𝑖 − 𝛽𝑖 𝑥−𝑖
𝑖∈𝐼

+  𝐿 𝐵𝑖𝑥−𝑖
𝑖∈𝐼0

− 𝛼 < 0 

and 
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  𝑈𝐵𝑖 − 𝛽𝑖 𝑥−𝑖
𝑖∈𝐼

+  𝑈 𝐵𝑖𝑥−𝑖
𝑖∈𝐼0

− 𝛼 > 0 

if 

𝐿 <
𝛽𝑖
𝐵𝑖

< 𝑈 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝐼 

and 

𝛼

𝑈
<  𝐵𝑖𝑥−𝑖

𝑖∈𝐼0

<
𝛼

𝐿
. 

𝐿 𝐵𝑖
𝑖∈𝐼0

<  𝐵𝑖𝑥−𝑖
𝑖∈𝐼0

< 𝑈 𝐵𝑖
𝑖∈𝐼0

 

and hence it suffices to choose 𝐿 and 𝑈 such that 

𝑥−𝑘 , … , 𝑥0 ∈  𝐿, 𝑈 , 

𝐿 < min
𝑖∈𝐼

 
𝛽𝑖
𝐵𝑖

,
𝐵𝑖
𝛽𝑖

,
𝛼

 𝐵𝑗𝑗 ∈𝐼0

 , 

and 

𝐿𝑈 =
𝛼

 𝐵𝑗𝑗 ∈𝐼0

. 

With the above choice of  𝐿, 𝑈 , it is now easy to prove that 

𝑥1 ∈  𝐿, 𝑈  

and then by induction 

𝑥𝑛 ∈  𝐿, 𝑈 , 𝑓𝑜𝑟 𝑛 ≥ −𝑘. 

This completes the proof. 

5. Invariant Product Methods 

5.1.  The case 

𝑥𝑛+1 =
𝛼 + 𝛽𝑥𝑛
𝐶𝑥𝑛−1

,   𝑛 = 0,1,… . #(5.1) 

We consider the difference equation  5.1 . See ([8], pp.70-71). 

This equation is called Lyness' Equation. By the change of variables, Eq. (5.1) reduces to the equation 

𝑦𝑛+1 =
𝑝 + 𝑦𝑛
𝑦𝑛−1

,   𝑛 = 0,1, … . #(5.2)  

where𝑝 =
𝛼𝐶

𝛽2. 

The special case of Eq. (5.2) where 

𝑝 = 1 

was discovered by Lyness in 1942 while he was working on a problem in Number Theory. In this special case, the 

equation becomes 
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𝑦𝑛+1 =
1 + 𝑦𝑛
𝑦𝑛−1

,   𝑛 = 0,1,… . #(5.3)  

Every solution of which is periodic with period five. Actually the solution of Eq. (5.3) with initial conditions 𝑦−1 

and 𝑦0 is the five-cycle: 

𝑦−1, 𝑦0,
1 + 𝑦0

𝑦−1
,
1 + 𝑦−1 + 𝑦0

𝑦−1𝑦0
,
1 + 𝑦−1

𝑦0
, ….  

Eq. (5.2)  possesses the invariant 

 

𝐼𝑛 =  𝑝 + 𝑦𝑛−1 + 𝑦𝑛  1 +
1

𝑦𝑛−1
  1 +

1

𝑦𝑛
 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡   #(5.4) 

from which it follows that every solution of Eq. (5.2) is bounded from above and from below by positive constants. 

In fact for 𝑛 ≥ 0 

 𝑝 + 𝑦𝑛 + 𝑦𝑛+1  1 +
1

𝑦𝑛
  1 +

1

𝑦𝑛+1
 =  𝑝 + 𝑦𝑛 +

𝑝 + 𝑦𝑛
𝑦𝑛−1

  1 +
1

𝑦𝑛
  1 +

𝑦𝑛−1

𝑝 + 𝑦𝑛
  

=  
𝑝 + 𝑦𝑛
𝑝 + 𝑦𝑛

+
1

𝑦𝑛−1
  1 +

1

𝑦𝑛
  𝑝 + 𝑦𝑛 + 𝑦𝑛−1  

=  𝑝 + 𝑦𝑛−1 + 𝑦𝑛  1 +
1

𝑦𝑛−1
  1 +

1

𝑦𝑛
 . 

The proof follows by induction. 

5.2. The case 

𝑥𝑛+1 =
𝛼

 1 + 𝑥𝑛 𝑥𝑛−1
,   𝑛 = 0,1,… . #(5.5) 

We consider the difference equation  5.5 . See ([3], p.8). 

This equation has some similarities with Lyness's Equation, 

𝑥𝑛+1 =
𝛼 + 𝑥𝑛
𝑥𝑛−1

,   𝑛 = 0,1,… . #(5.6)  

which is gifted with the invariant (see(5.4)): 

 𝛼 + 𝑥𝑛−1 + 𝑥𝑛  1 +
1

𝑥𝑛−1
  1 +

1

𝑥𝑛
 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, ∀𝑛 ≥ 0. 

In fact, as for Eq. (5.6), Eq.(5.5) possesses an invariant, namely, 

𝑥𝑛−1 + 𝑥𝑛 + 𝑥𝑛−1𝑥𝑛 + 𝛼  
1

𝑥𝑛−1
+

1

𝑥𝑛
 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, ∀𝑛 ≥ 0. #(5.7)  

By using (5.7) we see that every positive solution of Eq. (5.7) is bounded from above and from below by positive 

constants. In fact for 𝑛 ≥ 0 

𝑥𝑛 + 𝑥𝑛+1 + 𝑥𝑛𝑥𝑛+1 + 𝛼  
1

𝑥𝑛
+

1

𝑥𝑛+1
 = 𝑥𝑛 +

𝛼

 1 + 𝑥𝑛 𝑥𝑛−1
+ 𝑥𝑛

𝛼

 1 + 𝑥𝑛 𝑥𝑛−1
 

+𝛼  
1

𝑥𝑛
+ 

 1 + 𝑥𝑛 𝑥𝑛−1

𝛼
 

= 𝑥𝑛 +
𝛼 1 + 𝑥𝑛 

 1 + 𝑥𝑛 𝑥𝑛−1
+
𝛼

𝑥𝑛
+ 𝑥𝑛−1 + 𝑥𝑛𝑥𝑛−1 

= 𝑥𝑛−1 + 𝑥𝑛 + 𝑥𝑛−1𝑥𝑛 + 𝛼  
1

𝑥𝑛−1
+

1

𝑥𝑛
 . 
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The proof follows by induction. 

6. Initial Conditions Methods 

6.1.  The case 

𝑥𝑛+1 =
𝛾𝑥𝑛−1

1 + 𝑥𝑛𝑥𝑛−1
,   𝑛 = 0,1, … . #(6.1) 

We consider the difference equation (6.1). See ([3], pp.15-16). 

When one of the initial conditions of a solution of Eq. (6.1) is zero, Eq. (6.1) reduces to the linear equation 

𝑥𝑛+1 = 𝛾𝑥𝑛−1 

with one initial condition equal to zero. If the other initial condition of a solution 𝜑 is , then the solution of the 

equation is 

⋯ ,0,𝜑, 0, 𝛾𝜑, 0, 𝛾2𝜑,⋯. 

Therefore the solution converges to zero when 

𝛾 < 1. 

When 

𝛾 = 1, 

the solution is the period-two sequence: 

⋯ ,0,𝜑, 0, 𝜑, 0, 𝜑,⋯ 

and  when 

𝛾 > 1 and 𝜑 > 0, 

the solution is unbounded. 

6.2. The case 

𝑥𝑛+1 =
 1 + 𝛽𝑥𝑛 𝑥𝑛−1

𝐴 + 𝑥𝑛𝑥𝑛−1
,   𝑛 = 0,1,… . #(6.2) 

We consider the difference equation (6.2). See ([4], pp.202-204). 

When one of the initial conditions of a solution of Eq. (6.2) is zero, Eq. (6.2)reduces to the linear equation 

𝑥𝑛+1 =
1

𝐴
𝑥𝑛−1 

with one initial condition equal to zero. If the other initial condition of a solution is 𝜑, then the solution of the 

equation is 

⋯ ,0,𝜑, 0,
1

𝐴
𝜑, 0,

1

𝐴2
𝜑,⋯. 

So the solution converges to zero when 

𝐴 > 1. 

When 
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𝐴 = 1, 

the solution is the (not necessarily prime) period-two sequence: 

⋯ ,0,𝜑, 0, 𝜑,⋯ 

and  when 

𝐴 < 1 and 𝜑 > 0, 

the solution is unbounded. 
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