Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

Lyapunov-type inequalities for higher order difference equations with anti-periodic boundary conditions

Erjing Wang ${ }^{1}$, Qiaoluan Li^{2}

${ }^{1}$ College of Math.\&Info.Sci.,Hebei Normal University,China\&wejing000555@163.com
${ }^{2}$ College of Math.\&Info.Sci.,Hebei Normal University,China\&qll71125@163.com

Abstract. In this paper, some new Lyapunov-type inequalities for higher order difference equations with anti-periodic boundary conditions are established. The obtained results are used to obtain the lower bounds for the eigenvalues of corresponding equations.

Keywords: Difference equation; Anti-periodic boundary conditions; Lyapunov-type inequalities.

1. Introduction

The standard Lyapunov-type inequality [4] is useful in many applications, including eigenvalue problems, oscillation theory, disconjugacy. Although there are many literatures on the Lyapunov-type inequality for various classes of differential equations [1,3,6,8,9], there is not much done for the difference equations.

In 1983, Cheng [2] first established the following Lyapunov-type inequality which is a discrete analogue of the classical Lyapunov-type inequality:

If the second order difference equation

$$
\left\{\begin{array}{l}
\Delta^{2} x(n)+q(n) x(n+1)=0, \tag{1.1}\\
x(a)=x(b)=0, x(n) \not \equiv 0, n \in \mathbb{Z}[a, b],
\end{array}\right.
$$

has a nonzero solution, then

$$
F(b-a) \sum_{n=a}^{b-2} q(n) \geq 4
$$

where

$$
F(m)=\left\{\begin{array}{cc}
\frac{m^{2}-1}{m}, & \text { if } m-1 \text { is even } \\
m, & \text { if } m-1 \text { is odd }
\end{array}\right.
$$

$a, b \in \mathbb{Z}$ and $\mathbb{Z}[a, b]=\{a, a+1, \cdots, b-1, b\}$. Some other related results about discrete Lyapunov-type inequalities can be found in $[5,7,10]$.

In this paper, we will consider the following difference equation

$$
\Delta\left(\left|\Delta^{m} x(n)\right|^{p-2} \Delta^{m} x(n)\right)+r(n)|x(n)|^{p-2} x(n)=0,(1.2)
$$

with the anti-periodic boundary conditions

$$
\Delta^{i} x(a)+\Delta^{i} x(b)=0, \quad i=0,1, \cdots, m,(1.3)
$$

wherex $(n) \not \equiv 0, n \in \mathbb{Z}[a, b], m \in \mathbb{N}, p>1, r(n)$ is a real-valued function defined on \mathbb{Z}.

Furthermore, we will establish a new Lyapunov-type inequality for the following equation

$$
\begin{equation*}
\left|\Delta^{m} x(n)\right|^{p-2} \Delta^{m} x(n)+r(n)|x(n)|^{p-2} x(n)=0 \tag{1.4}
\end{equation*}
$$

with the anti-periodic boundary conditions

$$
\begin{equation*}
\Delta^{i} x(a)+\Delta^{i} x(b)+\Delta^{i} x(c)=0, \quad i=0,1, \cdots, m-1 \tag{1.5}
\end{equation*}
$$

where $x(n) \not \equiv 0, n \in \mathbb{Z}[a, c], a<b<c, m \in \mathbb{N}, p>1, r(n)$ is a real-valued function defined onZ .

2. Main results

In this section, we give two main results and some corollaries.
Theorem2.1.If (1.2) has a nonzero solution $x(n)$ satisfying the anti-periodic boundary conditions (1.3), then

$$
\sum_{n=a}^{b-1}|r(n)| \geq 2\left(\frac{2}{b-a}\right)^{m(p-1)}
$$

Proof.For $x(a)+x(b)=0$, then

$$
\begin{aligned}
x(n) & =x(n)-\frac{1}{2}[x(a)+x(b)] \\
& =\frac{1}{2}[x(n)-x(a)]-\frac{1}{2}[x(b)-x(n)] \\
& =\frac{1}{2} \sum_{k=a}^{n-1} \Delta x(k)-\frac{1}{2} \sum_{k=n}^{b-1} \Delta x(k) .
\end{aligned}
$$

Moreover, we have

$$
|x(n)| \leq \frac{1}{2} \sum_{k=a}^{n-1}|\Delta x(k)|+\frac{1}{2} \sum_{k=n}^{b-1}|\Delta x(k)|=\frac{1}{2} \sum_{k=a}^{b-1}|\Delta x(k)|
$$

then

$$
\begin{equation*}
|x(n)| \leq \frac{1}{2}(b-a)^{\frac{1}{q}}\left(\sum_{k=a}^{b-1}|\Delta x(k)|^{p}\right)^{\frac{1}{p}} \tag{2.1}
\end{equation*}
$$

by Hölder's inequality, where $\frac{1}{p}+\frac{1}{q}=1$.
Using the boundary conditions (1.3), we obtain

$$
\begin{gather*}
\left|\Delta^{i} x(n)\right| \leq \frac{1}{2}(b-a)^{\frac{1}{a}}\left(\sum_{k=a}^{b-1}\left|\Delta^{i+1} x(k)\right|^{p}\right)^{\frac{1}{p}}, \tag{2.2}\\
\left|\Delta^{i} x(n)\right|^{p} \leq\left(\frac{1}{2}\right)^{p}(b-a)^{\frac{p}{q}} \sum_{k=a}^{b-1}\left|\Delta^{i+1} x(k)\right|^{p}, \\
\quad \sum_{n=a}^{b-1}\left|\Delta^{i} x(n)\right|^{p} \leq\left(\frac{1}{2}\right)^{p}(b-a)^{p} \sum_{k=a}^{b-1}\left|\Delta^{i+1} x(k)\right|^{p}, \\
\quad\left(\sum_{n=a}^{b-1}\left|\Delta^{i} x(n)\right|^{p}\right)^{\frac{1}{p}} \leq \frac{1}{2}(b-a)\left(\sum_{k=a}^{b-1}\left|\Delta^{i+1} x(k)\right|^{p}\right)^{\frac{1}{p}} . \tag{2.3}
\end{gather*}
$$

Combining inequalities (2.1) and (2.3), we have

$$
\begin{aligned}
|x(n)| & \leq \frac{1}{2}(b-a)^{\frac{1}{q}}\left(\sum_{k=a}^{b-1}|\Delta x(k)|^{p}\right)^{\frac{1}{p}} \\
& \leq \frac{1}{2}(b-a)^{\frac{1}{q}}\left(\frac{b-a}{2}\right)^{m-1}\left(\sum_{k=a}^{b-1}\left|\Delta^{m} x(k)\right|^{p}\right)^{\frac{1}{p}} \\
= & \left(\frac{1}{2}\right)^{m}(b-a)^{m-\frac{1}{p}}\left(\sum_{k=a}^{b-1}\left|\Delta^{m} x(k)\right|^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

therefore

$$
\begin{equation*}
|x(n)|^{p-1} \leq\left(\frac{1}{2}\right)^{m(p-1)}(b-a)^{\left(m-\frac{1}{p}\right)(p-1)}\left(\sum_{k=a}^{b-1}\left|\Delta^{m} x(k)\right|^{p}\right)^{\frac{p-1}{p}} \tag{2.4}
\end{equation*}
$$

Moreover, by the boundary conditions (1.3), we have the following equality

$$
\sum_{k=a}^{b-1}\left|\Delta^{m} x(k)\right|^{p}=\sum_{k=a}^{b-1}\left|\Delta^{m} x(k+1)\right|^{p}
$$

Combining inequalities (2.2) and (2.4),

$$
\begin{aligned}
|x(n)|^{p-1}\left|\Delta^{m-1} x(n+1)\right| \leq & \left(\frac{1}{2}\right)^{m(p-1)}(b-a)^{\left(m-\frac{1}{p}\right)(p-1)}\left(\sum_{k=a}^{b-1}\left|\Delta^{m} x(k+1)\right|^{p}\right)^{\frac{p-1}{p}} \\
& \cdot \frac{1}{2}(b-a)^{\frac{1}{q}}\left(\sum_{k=a}^{b-1}\left|\Delta^{m} x(k+1)\right|^{p}\right)^{\frac{1}{p}} \\
= & \mathrm{C} \sum_{k=a}^{b-1}\left|\Delta^{m} x(k+1)\right|^{p}
\end{aligned}
$$

whereC $=\frac{1}{2} \cdot\left(\frac{b-a}{2}\right)^{m(p-1)}$.
Multiplying (1.2) by $\Delta^{m-1} x(n+1)$ and summing the obtained equation from a to $b-1$, then

$$
\begin{aligned}
\sum_{n=a}^{b-1}\left|\Delta^{m} x(n+1)\right|^{p} & =\sum_{n=a}^{b-1} r(n)|x(n)|^{p-2} x(n) \Delta^{m-1} x(n+1) \\
& \leq \sum_{n=a}^{b-1}|r(n)||x(n)|^{p-1}\left|\Delta^{m-1} x(n+1)\right| \\
& \leq \mathrm{C}\left(\sum_{n=a}^{b-1}\left|\Delta^{m} x(n+1)\right|^{p}\right) \sum_{n=a}^{b-1}|r(n)|
\end{aligned}
$$

Noting that $\Delta^{m} x(a)+\Delta^{m} x(b)=0$ and $x(n) \not \equiv 0, n \in \mathbb{Z}[a, b]$, we have

$$
\sum_{n=a}^{b-1}\left|\Delta^{m} x(n+1)\right|^{p}>0
$$

therefore,

$$
\sum_{n=a}^{b-1}|r(n)| \geq 2\left(\frac{2}{b-a}\right)^{m(p-1)}
$$

The proof is complete. \square
Theorem 2.2. If (1.4) has a nonzero solution $x(n)$ satisfying the anti-periodic boundary conditions (1.5), then

$$
\sum_{n=a}^{c-1}|r(n)|^{q} \geq \frac{3^{m p}}{2^{m p}(c-a)^{m p-1}}
$$

where $\frac{1}{p}+\frac{1}{q}=1$.
Proof. Since $x(a)+x(b)+x(c)=0$, we have

$$
x(n)=x(n)-\frac{1}{3}[x(a)+x(b)+x(c)] .
$$

Case $n \in \mathbb{Z}[a, b]$, we have

$$
\begin{aligned}
x(n)= & \frac{1}{3}[x(n)-x(a)]-\frac{1}{3}[x(b)-x(n)]-\frac{1}{3}[x(c)-x(n)] \\
& =\frac{1}{3} \sum_{k=a}^{n-1} \Delta x(k)-\frac{1}{3} \sum_{k=n}^{b-1} \Delta x(k)-\frac{1}{3} \sum_{k=n}^{c-1} \Delta x(k) \\
= & \frac{1}{3} \sum_{k=a}^{n-1} \Delta x(k)-\frac{1}{3} \sum_{k=n}^{b-1} \Delta x(k)-\frac{1}{3} \sum_{k=n}^{b-1} \Delta x(k)-\frac{1}{3} \sum_{k=b}^{c-1} \Delta x(k) .
\end{aligned}
$$

Then,

$$
\begin{aligned}
|x(n)| & \leq \frac{1}{3} \sum_{k=a}^{c-1}|\Delta x(k)|+\frac{1}{3} \sum_{k=n}^{b-1}|\Delta x(k)| \\
& \leq \frac{2}{3} \sum_{k=a}^{c-1}|\Delta x(k)|
\end{aligned}
$$

Casen $\in \mathbb{Z}[b, c]$, we have

$$
\begin{aligned}
x(n)= & \frac{1}{3}[x(n)-x(a)]+\frac{1}{3}[x(n)-x(b)]-\frac{1}{3}[x(c)-x(n)] \\
& =\frac{1}{3} \sum_{k=a}^{n-1} \Delta x(k)+\frac{1}{3} \sum_{k=b}^{n-1} \Delta x(k)-\frac{1}{3} \sum_{k=n}^{c-1} \Delta x(k) \\
= & \frac{1}{3} \sum_{k=a}^{b-1} \Delta x(k)+\frac{1}{3} \sum_{k=b}^{n-1} \Delta x(k)+\frac{1}{3} \sum_{k=b}^{n-1} \Delta x(k)-\frac{1}{3} \sum_{k=n}^{c-1} \Delta x(k) .
\end{aligned}
$$

Then,

$$
|x(n)| \leq \frac{1}{3} \sum_{k=a}^{c-1}|\Delta x(k)|+\frac{1}{3} \sum_{k=b}^{n-1}|\Delta x(k)| \leq \frac{2}{3} \sum_{k=a}^{c-1}|\Delta x(k)|
$$

Thus, we have

$$
|x(n)| \leq \frac{2}{3} \sum_{k=a}^{c-1}|\Delta x(k)| \leq \frac{2}{3}(c-a)^{\frac{1}{q}}\left(\sum_{k=a}^{c-1}|\Delta x(k)|^{p}\right)^{\frac{1}{p}}
$$

for $n \in \mathbb{Z}[a, c]$. The rest of the proof is similar to the Theorem 2.1, we omit it.ם
Corollary 2.3. Consider the following eigenvalue problem

$$
\left\{\begin{array}{l}
\Delta\left(\left|\Delta^{m} x(n)\right|^{p-2} \Delta^{m} x(n)\right)+\lambda r(n)|x(n)|^{p-2} x(n)=0 \\
\Delta^{i} x(a)+\Delta^{i} x(b)=0, \\
i=0,1, \cdots, m
\end{array}\right.
$$

where $x(n) \not \equiv 0, n \in \mathbb{Z}[a, b], m \in \mathbb{N}, p>1, r(n)$ is a real-valued function defined on \mathbb{Z}, then we have

$$
|\lambda| \geq 2\left(\frac{2}{b-a}\right)^{m(p-1)}\left(\sum_{n=a}^{b-1}|r(n)|\right)^{-1}
$$

Corollary 2.4. Consider the following eigenvalue problem

$$
\left\{\begin{array}{l}
\left|\Delta^{m} x(n)\right|^{p-2} \Delta^{m} x(n)+\eta r(n)|x(n)|^{p-2} x(n)=0 \\
\Delta^{i} x(a)+\Delta^{i} x(b)+\Delta^{i} x(c)=0, \quad i=0,1, \cdots, m-1
\end{array}\right.
$$

where $x(n) \not \equiv 0, n \in \mathbb{Z}[a, c], a<b<c, m \in \mathbb{N}, r(n)$ is a real-valued function defined on $\mathbb{Z}, p>1, \frac{1}{p}+\frac{1}{q}=1$, then we have

$$
|\eta| \geq \frac{3^{m(p-1)}}{2^{m(p-1)}(c-a)^{\left(m-\frac{1}{p}\right)(p-1)}\left(\sum_{n=a}^{c-1}|r(n)|^{q}\right)^{\frac{1}{q}}}
$$

Acknowledgements

This research is partiallysupported by NNSF of China(11571090).

References

[1] D. Cakmak, Lyapunov-type integral inequalities for certain higher order differential equations, Appl. Math. Comput. 216 (2010) 368-373.
[2] S. S. Cheng, A discrete analogue of the inequality of Lyapunov, Hokkaido Math. J. 12 (1983) 105-112.
[3] X. He, X. H. Tang, Lyapunov-typeinequalities for even order differential equations, Commun Pure Appl. Anal. 11 (2) (2012) 465-473.
[4] A. M. Liapunov, Problèmegénéral de la stabilité du mouvement, Ann. Fac. Sci. Univ. Toulouse, 2 (1907) 203-407.
[5] X. G. Liu, M. L. Tang, Lyapunov- type inequality for higher order difference equations, Appl. Math. Comput. 232 (2014) 666-669.
[6] Y. Y. Wang, Lyapunov-type inequalities for certain higher order differential equations with anti-periodic boundary conditions, Appl. Math. Lett. 25 (2012) 2375-2380.
[7] Y. Wang, Y. M. Shi, Eigenvalues of second-order difference equations with periodic and antiperiodic boundary conditions, J. Math. Anal. Appl. 309 (2005) 56-69.
[8] X. Yang, On Lyapunov-type inequality for certain higher-order differential equations, Appl. Math. Comput. 134 (2003) 307-317.
[9] X. Yang, K. Lo, Lyapunov-type inequality for a class of even-order differential equations, Appl. Math. Comput. 215 (2010) 3884-3890.
[10] Q. M. Zhang, X. H. Tang, Lyapunov-type inequalities for even order difference equations, Appl. Math. Lett. 25 (2012) 1830-1834.

