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Abstract. We continue the work done in [2],[3] which investigates the problem of finding Weingarten hypersurfaces
of constant curvature satisfying (1), (2) below in hyperbolic space H™* with a prescribed asymptotic boundary at

infinity. In [2], the focus is on the case of finding complete hypersurfaces with positive hyperbolic principal
curvatures everywhere; in [3], the focus is on finding graphs over a domain with nonnegative mean curvature. In [2]
and [3], some restriction is imposed on & to assure us of the existence. The main aim of this article is to remove
these restrictions. The results stated in the manuscript, as well as more general ones have been proved in [4] and [5]
with a less elementary approach.

In this paper, we continue the work done in [2],[3] which investigates Weingarten hypersurfaces of constant
curvature in hyperbolic space H**! with a prescribed asymptotic boundary at infinity. More precisely, given
a disjoint collection T' = {T'y,--- .T',} of closed embedded (n — 1)-dimensional submanifolds of 9, H**! at
infinity, the ideal boundary of H™*! at infinity, and a smooth function f of n variables, we seck a complete
hypersurface ¥ in HP*! satisfying

(1) fRIE) =0

where r[X] = {1, -+, fn} denotes the hyperbolic principal curvature of ¥ and o is a constant, with the
asymptotic boundary

(2) ax =T.
Letting K’ € R™ is an open symmetric convex cone such that
KV = {A € R": each component \; > 0} C K,

the function f is a concave function in K which satisfies the fundamental structural conditions:

) )
(3) fi(A) = (gf\)\) >0, 1<i<n, f>0inK, f=0 ondkK.
In addition, we shall assume that f is homogeneous of degree one, normalized f(1,---,1) =1 and
lm, o F(A1 - A1 Ay + 1) < 142, uniformly in Bj, (1) for some fixed £ > 0 and &y > 0, where B; (1)
is the ball of radius dg centered at 1 = (1,---,1) € R™. All these assumptions are satisfied by [ = H ;/ g
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and (Hy/Hg)V/ =8 (0 < ¢ < k < n, defined in K, where Hj, is the normalized k-th elemenrary symmetric
polynomial (Hp = 1) and K = {A € R™ : H;(\) > 0, V1 < j <k}
We will use the half-space model H**! = {(2y.2,41) € R" 1 22,01 > 0} equipped with the hyperbolic
n+1 2 . N )
metric ds? = E;Qi Thus doH™ ! is naturally identified with R® = R™ x {0} < R**! and (2) may
n+1
be understood in the Euclidean case. For convenience we say % has compact asymptotic boundary if

IY C "1 is compact with respect to the Euclidean metric in R™.

In [2], the focus is on the case of finding complete hypersurfaces satisfying (1)-(2) with positive hyperbolic
principal enrvatures everywhere; for convenience we call such hypersurfaces (hyperbolically) locally strictly
convex. In [3], the focus is on graphs over a domain with nonnegative mean curvature. In [2] and [3], some
restriction is imposed on o to assure us of the relevant existence. The main aim of this article is to remove
this restriction. The results stated in the manuscript, as well as more general ones have been proved in [4]
and [5] with a less elementary approach.

Part I. Strictly convex hypersurfaces.

According to Theorem 1.1 in [2], a complete locally strictly convex (2 hypersurface ¥ in H**! with compact
asymptotic boundary at infinity must be the (vertical) graph of a function v € C%(Q) N C%(Q), u > 0in
and u = 0 on d€2, for some domain Q C R™: ¥ = {(2, u(x)) € RT'I :a € 0} such that

(4) {8ij + wiu; +vug;p >0 in Q.

That is, the function u? + |x|? is strictly convex.
Therefore, problem (1)-(2) for complete locally strictly convex hypersurfaces reduces to the Dirichlet
problem for a nonlinear second order equation which we shall write in the form

(5) G(D*u, Du,u) = g. w>0 in QCR"
U

with the boundary condition
(6) u=0 on d.

In particular, the asymptotic boundary I' must be the boundary of some bounded domain €2 in R™. The
exact form of G is given as (2.9) of [2].
Following the literature we define the class of admissible functions

A={ucC*Q: ku € K}.
Thus in [1] we call solutions of (5) satistying (4) admissible with K’ = IK;F. By [1] condition (3) implies that
(5) is elliptic for admissible solutions.

Our goal in Part Tis to show that the Dirichlet problem (5)-(6) admits simooth solutions for all 0 < o < 1,
removing the restriction o2 > % imposed on [2]. Namely, we shall establish the following:

Theorem 1. Let ' = d02x {0} C R™2, where () is a bounded smooth domain in R™. Suppose that @ € (0,1)
and K = Kb Under conditions (3), there exists a complete locally strictly conver hypersurface ¥ in H"
satisfying (1)-(2) with uniformly bounded principal curvatures

[k[X]| < C onX.
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Moreover, Y. is the graph of an admissible solution uw € C™(Q) 1 CY(Q) of the Dirichlet problem (5)-(6).
Furthermore, u?> € C>(Q) N CYY(Q) and

V14 |Dul?2 <
1 .
V14 |[Dul2 == on df.
o

To remove the restriction imposed on o in [2], we examine closely the proof of Theorem 1.1 in [2] with
this restriction on . First recall that (5) is singular where u = (), and therefore in [2] we approximate the
boundary condition (6) by

u|D*u| < C in Q.

Qe

(7) w==c>0 ondf.

It is shown in [2] that for any ¢ > 0 sufficiently small, there exists an admissible solution u® € C'*(Q) of
the Dirichlet problem (5)-(7). Because the linearized operator of G at w is not necessarily invertible, this
existence result is not proved in [2] by the continuity method directly. Instead an iterative procedure is
carried out in Section 6 of [2]. Namely, we construct a monotone sequence {ug} of admissible functions
satisfying (2) in €2, starting from ug = =. To show that {uz} converges to a solution of (5), we need second
derivative estimates which is independent of k. These estimates are obtained in Section 6 of [2] by means of
Theorem 5.1 of [2], without any restriction on .

To finish the proof of Theorem 1, we need to establish for o € (0, 1), an estimate for supgq fmax which is
independent of £ as £ tends to zero. It is here that in [2] we impose the restriction on ¢ to be o2 > %, which
we shall remove below. Namely, we consider

My = max K ()
xeQy I — O

where 1 = e- v, 1 is the upward (Euclidean) unit normal to ¥, and a is a constant such that infn > a. It M,
is achieved on 982, then a uniform bound is obtained from Theorem 4.2 of [2]. Otherwise, My is attained at
an interior point 2y € Q and we let Xy = (29, u(xp)). After a horizontal translation of the origin in R™*1!,
we may write ¥ locally near Xy as a radial graph

X ="z, zeSEH C R
with X, = ev(@olz,, zo € S%, such that v(Xo) = zo. Let the hyperbolic principal curvatures kq,--- , Ky, be
the eigenvalues of the matrix {a;;[v]}. We choose an orthonormal local frame 7,---, 7, around zg on S
such that v;;(zo) is diagonal. Then, letting y = e -z for z € 8. we have 7v(z¢) = 0 and at zp
Qi = Yvi5 — p{.idij.

We assume
= H‘rnax(XO)-

The function % ¢ = n — a, which is defined locally near zq, then achieves its maximum at zg at which

therefore
a
(11 =0, 1<i<n
@ J;

a 1 . K1 )
1) = —F"ayy 4 — %le@ii =0, 1<i<n.
iw @ 4

and

Volume 13, Issue 3 available at www.scitecresearch.com/journals/index.php/jprm 2239




Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

Proposition 5.3 and Lemma 5.4 in [2] give
(8) oy — )i + (a —2(1 = y?)(y — a))m1 X fi < 40wy,

which is (6.5) in [2]. We attempt to drop the second term on the left hand side of (8) so as to avoid dealing
with the somewhat unfathomable function k13X f;. For this, we proceed to find conditions under which the
coefficient

9) Wy)i=a =201 —y*)(y —a) = 24*(y —a) + 3a — 2y
is nonnegative. In [2], the condition o2 > % is imposed to make sure that
Y(y) >0 forall y € [a,1].

To improve this, we notice that, by Lemma 3.5 in [2], for a sufficiently small £y > 0, we have y — o > —Cg
if 0 < ¢ < g1, where C' is a uniform constant. Hence, in particular, infy > —oc.

First recall from Lemma 3.1 in [2] that near the boundary 92, we have |y — 0| < Co, where C' is the
uniform constant as above. Suppose the interior maximum point X of My is so close to the boundary that
at Xg we have y = 1y < 0+ Co. In this case, we may fix £; with &1 < % and choose a close to o such that

3
(10) 0—5051 >a>0—20s.
Then
Y(yo) = 2y§(yg —a)+3a — 2y > 3a —2yy >0 — 8C=; > 0.

We are now allowed in this case to throw away the second term on the left hand side of (8) and then obtain
from (8) that x; < y‘%a. Now that yg —a > %C‘glq we have

[os]

11 0 < —.
(1) "=

And then

maxy —a _ 2r1(20) - 16
miny —a — (g~ (Cg)2

(12) MAX Kpax < K1(Zo)
a

which is independent of =.

Next let Xz be the points at which the function y for «f attains its maximum value 1. We have y(1) = a > 0
for each a € (0,1). Moreover, for some sufficiently small number 4§, v:(y) is still positive if 1 =4 < y < 1 and
£ < gq1. If the interior maximum point Xy of My is sufficiently close to X, then at Xg we have y = yg > 1—46
and e (y) is still positive for ¢ < 1. By choosing o to satisty (10), we still obtain (11) and (12).

It remains to consider the case where the interior maximum of My is attained at a point where y = o,
1—0>wyg >0+ Czy. To treat this, we may let Lo(y) be the curve on which y = ¢. Also denote by FE-(7)
the region in the graph of #® which contains X, and is enclosed by L-(7). Thus y > i in F.(y). We take
a; with %yg >y > %yo and let v1(y) = v(y) with @ = a3. Then v1(yo) > 0 and hence vy (yy £ 4d) > 0 for
sufficiently small 8, say § < 8;. Take 8; = min{d;. %-yo}. and consider the function

K x)
M; = max ﬂ
zel; 1] — W1
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defined in the region Fq := E-(yo — 01) \ Ez(yo + d1); here we may notice that in the region E; we have
y = ay. As above, we consider two cases separately.

Case a. Suppose the maximum of M; is attained at an interior point of E; Then the previous discussion
on My can be applied to My on Eq to derive that at the interior maximum point ot M; there holds

4 4 32
20 K1 < < < .
(20) 1_3!0—51—0-1_(1/8)3!0_U—Cfl

And then
maxp, y —a _ 8K1(Z0) - 256

MAax Amax < K1(Z0) — < o S 2
bol ming, ¥ — ay o—Csy (o0 —Csq)?

Moreover, since the interior maximum ot Mj is attained at a point in F;, we have

maxgy —a _ 2maxg, Kmax - 512

21 max K < maxk - ,
(21) o g "™mingy—a ~ Ceq = (0= C=)2C0g

which is independent of =; here a is taken to satisty (17). We notice that to begin the discussion we may
have to make a horizontal translation of the origin in R”*!; however, the value v is invariant under such a
horizontal translation.

Case b. Suppose the maximum of M, is taken at a boundary point of £y. We observe:

Lemma 1. If the mazimum of My is attained at a boundary point of Ey. then al this boundary point
Y= Yyo— 0.
Proof of Lemma 1. Suppose that the maximum of M; is attained at a boundary point of F); where

y =y = yo +d. Denote by £ and k} the value of K., taken respectively at g and the maximum point of
M. Then, since the maximum of My is attained at yg. we have

Yy —a

K] < K .
1 1
Yo —a

On the other hand, since the maximum of Af; is assumed to be attained at a point with y = yj, we have

*
i —
ROZE L

"}2 1
Yo — a1

However, since a; > a and yj > 1o, we have

* #*
—a yi —a
2 1 > i .
Yo — ay Yo —a

a contradiction which proves Lemma 1.

If Case b occurs, then we set y; = yg — ¢ and then take as with % Y > g > %yl. Let 42 (y) = v(y) with
a = as. Then ya(y1) > 0 and hence v2(y; +=6) > 0 for sufficiently small § and & < &4, say § < dy. Take
d9 = min{da, éyl }. Counsider the function

K x)
M = max %
zel, 1) — a2

defined in the region Ey := F.(y; — d2) \ Ez(y1 +d2). Then there holds y > as in Ey. We consider two cases
separately as above:
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Case a%. Suppose the maximum of Ms is attained at an interior point of Ey. Then, we can obtain the
estimates
256 512

15 K1 < ——— and maxk < —
(15) =0 a T (o= C)20

as in (13) and (14).
Case b?. Suppose the maximum of M, is attained at a boundary point of Es. Then again at such a
boundary point we have y = ys := 7y — ds.

If Case b? occurs, we can adapt the discussion made in Case b and subsequently consider separately the
corresponding Case a® and Case b®, which can be formulated in an obvious manner analogously to Case
a? and Case b?. In this manner we make the discussion iteratively and then, putting inductively, there hold
alternatively the following two:

(i) for some 1, Case a™~! oceurs and we obtain the estimate (15);

(ii) Case b1 occurs with y = Ym—1, and we take a,, with %ym_l > Uy > %ym_l and let v (y) = y(y)
with @ = @y, Then Y (Ym_1) > 0 and hence v, (41 = 4) > 0 for sufficiently small 4 and £ < =4, say
5 < b,,. Take 6, = min{gm. éym,l . Consider the tunction

Fmax ()
M,, = max ————,
zeQ 1 — Um

defined in the region Em .= Ee(ym—1 — 0m) \ Fe(ym—1+ dm ). We subsequently consider two cases separately.
Case a™. Suppose the maximum of M, is attained at an interior point of E,,,. Then. we can obtain the
estimate (15).
Case b™. Suppose the maximum of M, is attained at a boundary point y,, of E,,. Again y = y,, =
Ym—1 — O and we subsequently consider separately Case a™t!, Case b™tH1,

The iteration process is terminated if either Case a™ occurs or if v,,, < 4+ Csy for some m. In the latter
case, we however have the estimates (11) and (12) as indicated above.
In conclusion, we obtain

16 512
(Cep)?" (7 — Ceq)2Ce,

b

(16) AX Ky = Max{
Q

which is independent of . This completes the proot of Theorem 1.
Part II. Graphs over a domain with nonnegative mean curvature.

In [3] the focus is on finding graphs over a domain with nonnegative mean curvature and problem (1.1)-(1.2)
reduces to the Dirichlet problem for a fully nonlinear second order equation which we write in the form

(17) Cm?(DQR._ Du,u)=0, u>0 inQcCR" where G =ud.
Following the literature we define the class ot admissible functions
A={ueC?*Q:rlu € K}.

Our goal in Part II is to show that the Dirichlet problem (17)-(6) adinits smooth solutions for all 0 < o < 1,
removing the restriction imposed on o in [3]. Namely, we shall establish the following.
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Theorem 2. Let T = 99 x {0} < R*"FL, where Q is a bounded smooth domain in R™. Suppose that the
Euclidean mean curvature Hogq is nonnegative and o € (0,1). Under conditions (4)-(10), there exists a
complete hypersurface ¥ in HML satisfying (1)-(2) with uniformly bounded principal curvatures

[k[E]] < C  on X

Moreover, ¥ is the graph of an admissible solution uw € C>(Q2) N CY(Q) of the Dirichlet problem (25)-(13).
Furthermore, u> € C'>(Q) N CYL(Q) and

1 i
V14 |Dul? < p u|D?*u| < C  inQ,
1 o
V1+|Dul?2 = ~ o a9,

In [3], Theorem 2 is proved under the restriction that o € (0,1) satisfies o > g, where oy Is the unique

zero in (0,1) of

oy 8022 5005 3/2.

o(a) = 3¢ + 57 % 27(& +3)°%
(numerical caleulations show 0.3703 < gy < 0.3704.) To remove this restriction, recall that again in [3] we
approximate the boundary condition (6) by (7), and it is shown in [3] that for any £ > 0 sufficiently small,
there exists an admissible solution u¥ € C'>(Q) of the Dirichlet problem (17)-(7).

In this case, the linearized operator of G at w is invertible for all = € (0,1). A sharp gradient estimate
is obtained under the assumption Hao > 0. Using this, the C? estimate is obtained in Section 5 of [3]. To
finish the proof of Theorem 2, we again need to show that for ¢ € (0, 1), an estimate can be obtained for
SUPq Fmax Which is independent of ¢ as ¢ tends to zero. For this, we again consider

My = ma "mex()
reQQ 11— a
with the notation used in Part 1. Using Proposition 5.3 and Lemma 5.4 of [2], we obtain after some manipula-
tion, the inequality (6.18) in [3]; i.e., fixing ¢ € (0. 1) which is chosen later and letting a = ar, /(K1 — (y —a))
and
J={itk>a>a, [1 <Of},

we have
(18) a(y —a)ri + de(y)ra1 Y fi < 208,
icJ
where the coefficient of rq EZ ey Jils
. a—vW) | 3
da(y) =(y) — ——= +a’.
ve(y) = () -6 ¢

Again we desire to throw away the second term on the left hand side of (18) by finding conditions under
which its coefficient is nonnegative. It is here in [3] we make the restriction on ¢ which we shall remove
below. Namely, setting # = (), we obtain from (9),

) 5 1
doly) :1’7(34) - Ea +a®
5 1 5
=i(3a —2y) - qa+ éyg(y —a)
7 9_
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And again, having prescribed o, we know that for a sufficiently small s1 > 0, if 0 < ¢ < 1 then we have
y > o — Czq, where C' is a uniform constant.

For points near the boundary, we obtain from Lemma 3.2 in [3] that |y — o] < C=y. If the interior
maximum of M is attained at a point so close to the boundary that |y — a| < C's1, we may as above fix £,
with £; < g and again choose a close to o such that (10) is satisfied. Then

5

‘ 7 9 ; 19 ,
oa(y) > §a- — iy > ia — ICEI > 0.
Hence we have ¢g(y) > 0 it € > 0 is chosen small. We are now allowed to throw away the second term on
the left hand side of (18) in this case and then obtain from (18) that sy < F‘ia Now that y —a > %Cal. we
again obtain in this case the estimates (11) and (12), which is independent of ¢.

Also we have ¢g(1) > 0. Therefore if the interior maximum Xg of My is close to the point where p = 1
and at Xy the function uf takes p > 1 — 4, for some sufficiently small 4, we still obtain the estimates (11)
and (12), by taking € small enough.

On the other hand, suppose at the interior maximum point of My we have 0 — Csy < p < 1 —4. If we
choose % y>a > %y then as above we have ¢q(y) > 0. Thus the iteration process used in the end of Part
1 can be adapted to obtain estimates (15), by taking ¢ small enough. We then again obtain the estimates
(16) and completes the proof of Theorem 2.
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