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Abstract  

Fractional differential equations play a significant role in science and technology given that several scientific 

problems in mathematics, physics, engineering and chemistry can be resolved using fractional partial differential 

equations in terms of space and/or time fractional derivative. Because of new developments in the analysis and 

understanding of many complex systems in engineering and sciences, it has been observed that several phenomena 

are more realistically and accurately described by differential equations of fractional order. Fast computational 

methods for solving fractional partial differential equations using finite difference schemes derived from skewed 

(rotated) difference operators have been extensively investigated over the years. The main aim of this paper is to 

examine a new fractional group iterative method which is called Preconditioned Fractional Explicit Decoupled 

Group (PFEDG) method in solving 2D time-fractional diffusion equations. Numerical experiments and comparison 

with other existing methods are given to confirm the superiority of our proposed method.  

 

Keywords: Preconditioned Fractional Explicit Decoupled Group Method; Time-Fractional Diffusion  Equation.  

 

1. Introduction 

Fractional differential equations have been the focus on many studies due to their frequent appearance in various 

fields such as physics, chemistry and engineering. The differential equations with a fractional derivative serve as 

superior models in subjects as diverse as astrophysics, chaotic dynamics, fractal network, signal processing, 

continuum mechanics, turbulent flow and wave propagation ([1], [2], [3]). Fractional partial differential equations 

(FPDE's) started to play an important role, in particular, during the last few decades, in modeling of the so-called 

anomalous phenomena and in the theory of the complex or fractal systems [4]. As it was in the classical PDE's there 

is no general method that can be used in solving FPDE's. Numerical solution of FPDE's has received great progress 

in the recent years ([5], [6]).  

We consider the following time fractional diffusion equation  
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where  is the order of the time fractional derivative in Caputo sense which is defined as [7] 
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In the last few years there has been a growing interest in the development of numerical techniques appropriate for 

the approximation of FPDE's ([8], [9]). The construction of a specific splitting-type preconditioner in block 

formulation applied to a class of group relaxation iterative methods derived from the rotated (skewed) finite 

difference approximations have been shown to improve the convergence rates of these methods ([10], [11], [12]). 

In this article, we aim to construct an efficient method which is called Preconditioned Fractional Explicit Decoupled 
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Group (PFEDG) method in solving equation (1.1). The paper is organized in five sections: Section 2 describes the 

formulation of the Fractional Explicit Group (FEG) Method.  In Section 3, the derivation of Fractional Explicit 

Decoupled Group (FEDG) Method will be presented. The accelerated version of Fractional Explicit Decoupled 

Group (PFEDG) Method will be introduced in Section 4. In Section 5, the numerical results are presented in order 

to show the efficiency of the new proposed method. Finally, the conclusion is given in Section 6. 

 

2. Formulation of Fractional Explicit Group Method 

In this section, it is assumed that the domains are constant for both x and y , while the grid dimensions in relation 

to space and time for the positive integers n and l are respectively represented by 
1

h
n

 and 
T

l
 . The grid 

points in the space in the space interval [0 ,1] are denoted , , { , 0 ,1, .. .}
i j

x i h x j h i j   and the grid points for 

time are designated , 0 ,1, .. . , .
k

t k k l    Discretization with regard to time fractional with utilization of Crank-

Nicolson finite difference approximations at 
1 / 2

( , , )
i j n

x y t


is realized through the formula displayed below [13]  
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utilization of the standard second order Crank-Nicolson difference scheme with the TFD formula (2.1) for finite 

difference discretization of (1.1) will result in the standard Crank-Nicolson formula portrayed below 
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The application of (2.2) to whichever group of four points on a discretized solution domain will lead to a 

4 4 system displayed as follows  
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A four point FEG equation can be generated through a reversal of the matrix above as the following 
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3. Formulation of Fractional Explicit Decoupled Group Method 

It can be seen that for the rotated five-point finite difference approximation the following transformations take 

place 
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Therefore, the rotated finite difference approximation (achieved through 45
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axis) for equation (1.1) can be utilized to unveil the following: 

1 1 1 1 1

, 1 , 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1

11

1 * 1 * * 1 * 0 2

1 , 1 , , 0 ,

1

1
{ [( ) ( )]

1 4

(1 2 ) 2 [( ) 2 ,

k k k k k k k k k

i j i j i j i j i j i j i j i j i j

kk

k s

i j k s k s i j k i j i j

s

r
u u u u u u u u u

r

w r u w w u w u m f

    

               



     

  



       


      

             (3.1) 

Wher  
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w  as mentioned before, the application of (2.3) to whichever four-point group on a discretized 

solution domain will lead to a 4 4 system of equations. This is illustrated as follows:  
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The 4 4 system can be effortlessly reversed into the de-coupled system of 2 2  equations
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The FEDG scheme involves group comprising two varieties of points located in the x-y plane of the solution 

domain. The iteration of one variety was achieved through the utilization of equation (3.3) until convergence was 

realized. Subsequent to the attainment of convergence, equation (2.3) was applied for a direct assessment of the 

solutions at the residual points [8].   
 

4. Preconditioned Fractional EDG Method 

It is well known that preconditioners play a vital role in accelerating the convergence rates of iterative methods, 

several preconditioned strategies have been used for improving the convergence rate of the iterative methods 

derived from the standard and skewed (rotated) finite difference operators ([14], [15], [16]). Dramatic 

improvements are possible, but the difficulty is to construct the suitable preconditioner.  In general, a good 

preconditioner should satisfy the following prosperities: the first one is that, the preconditioned system should be 

easy to solve and the second one is that the preconditioner should be cheap to construct and apply.  

By multiplication the following preconditioner matrix  
*

U
P  for both sides of equation (3.2) such that: 
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The resulted preconditioned system PFEDG has the same solution of system (3.2), but that has more favourable 

spectral properties. The effectiveness of this preconditioned PFEDG method will be shown in the next section. 

5. Numerical Results and Discussion 

Numerical experiments are conducted to examine the effectiveness of the proposed PFEDG method by using the 

following problem [17],  
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 Through the numerical experiments, the FEG, FEDG and 

PFEDG  iterative methods applied on a variety of grid dimensions (4, 8,16, 20 and 24) with varying time steps 

1 1 1 1 1
( , , , , )

4 8 1 6 2 0 2 4
 for 0 1 t  . Preconditioned methods were deemed efficient through investigations which 

revealed their superiority in the context of execution time (measured in seconds), number of iterations (Ite) and 

maximum absolute error (Max) with tolerance 6
1 0


 .  From the following tables (1) and (2), we can observe 

that the proposed preconditioned system (PFEDG) is the most superior among the FEG and FEDG methods in term 

of the number of iterations and execution times with 0 .25  and 0 .75  respectively which yield very 

encouraging results.  Furthermore, we can observe that the results reveal the significant improvement in number of 

iterations and execution timings of the proposed PFEDG iterative method compared to the results obtained in( [18], 

[19]).

 

 
Table 1. Comparison of the number of iterations, Execution time and maximum error for 0 .25   

 t  n  Method Time iterations Max Error 

1

4

 4  
FEG 0.0297 9 8.24E-5 

FEDG 0.0124 8 8.13E-4 

PFEDG 0.0063 4 8.09E-5 

1

8

  

8 

FEG 0.8704 26 4.62E-4 

FEDG 0.4922 19 4.62E-4 

PFEDG 0.3379 11 4.21E-5 

1

1 6
 16 

FEG 6.9461 43 9.86E-4 

FEDG 4.2013 37 9.75E-4 

PFEDG 3.6812 25 9.06E-4 

1

2 0
 20 

FEG 218.035 67 8.52E-5 

FEDG 198.016 56 7.66E-5 

PFEDG 164.486 32 7.26E-5 

1

2 4
 24 

FEG 224.492 121 4.52E-6 

FEDG 202.012 93 2.98E-5 

PFEDG 172.324 64 2.44E-6 

 

 

 

Table 2. Comparison of the number of iterations, Execution time and maximum error for 0 .75  

 t  n  Method Time iterations Max Error 

1

4

 4  
FEG 0.1463 8 3.36E-3 

FEDG 0.0104 7 3.33E-3 

PFEDG 0.0063 4 3.32E-3 

1

8

 8 

FEG 0.7553 21 1.41E-3 

FEDG 0.4241 17 1.48E-3 

PFEDG 0.3182 10 1.47E-3 

1

1 6
 16 

FEG 6.4563 41 5.22E-4 

FEDG 4.0014 35 4.71E-4 

PFEDG 3.3231 23 4.68E-4 

1

2 0
 20 

FEG 218.035 52 3.76E-4 

FEDG 146.235 48 2.61E-4 

PFEDG 144.221 27 2.57E-4 

1

2 4
 24 

FEG 186.673 96 3.15E-3 

FEDG 172.545 82 2.12E-3 

PFEDG 134.981 54 2.08E-3 
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6. Conclusion  

In this paper, we have developed a new fractional explicit decoupled group method for solving two-dimensional 

time-fractional diffusion equation. The proposed PFEDG is derived from the rotated fractional formula with 

2 h spacing. It has been demonstrated that the PFEDG method requires less iterations and less computing times 

to solve the equation, making it a more effective method in solving fractional diffusion equation problems 

comparing with the FEG and FEDG methods. 

 

Acknowledgements 

The author gratefully acknowledges Qassim University, represented by the Deanship of Scientific Research, on the 

material support for this research under the number (1123-cos-2016-12-s) during the academic year 1438 

AH/2017AD). 

 

References 

[1] Shlesinger, M.F., West, B.J., Klafter, J. (1987). L´evy dynamics of enhanced diffusion: Application to 

turbulence. Phys.Rev. Lett. 58(11), 1100–1103.  
 

[2] Metzler, R. Klafter, J. (2000). The random walk’s guide to anomalous diffusion: a fractional dynamics 

approach. Physics Reports, 339(1) pp.1–77. 

 

[3] Hristov J. (2011). “Approximate Solutions to Fractional Subdiffusion Equations”, European Physical 

Journal, vol. 193(1) pp. 229-243. https://doi.org/10.1140/epjst/e2011-01394-2. 

 

[4]   Luchko, Y. (2012).  Anomalous diffusion: models, their analysis, and interpretation. Chapter in: 

Advances in Applied Analysis, Series: Trends in Mathematics, Basel: Birkhäuser, 115–146. 

 

[5] Beibalaev, V. D., Ruslan, Meilanov P. (2012). “The Dirihlet Problem for The Fractional Poisson’s 

Equation With Caputo Derivatives: Afinite Difference Approximation and A Numerical Solution”, 

Thermal Science, vol. 16(2), pp.385-394. 

 

[6]  Li, Z. B., He, J. H. (2010). “Fractional Complex Transform for Fractional Differential Equations”, 

Mathematical and Computational Applications, 15(5), 970-973. https://doi.org/10.3390/mca15050970. 

 

[7] Zhang, Y.-n , Sun, Z.-z. (2011). “Alternating direction implicit schemes for the two-dimensional fractional 

sub-diffusion equation”, Journal of Computational Physics, vol. 230(24), pp. 8713-8728. 

  

[8]  Tareq, B. A., Ali, N. H. M. (2016 ). “Group iterative methods for the solution of two-dimensional time-

fractional diffusion equation.,” " AIP Conference Proceedings. Vol. 1750. No. 1. AIP Publishing. 

 

[9]  Ali, N. H. M., Saeed, A. M. (201‎  Convergence Analysis of the Preconditioned Group Splitting Methods .(2‏

in Boundary Value ‎Problems, Abstract and Applied Analysis, 2012, pp. 1-14. 
https://doi.org/10.1155/2012/867598. 

 

[10] Saeed, A. M. (2014). Fast Iterative Solver for The 2-D Convection Diffusion Equations, Journal Of 

Advances In Mathematics, 9 (6), 2773-2782. 

 

[11] Saeed A. M. (2017). A Numerical Study on MEDG Iterative Method for Solving Nonlinear Steady 

Burgers' Equation, Global Journal of EngineeringScience and Research Management 4 (2), 32-40. 

 

[12] Saeed, A. M., and Badiea, A. M. (2017).  A new Approach on Numerical Solutions of Burger's Equation 

using PMEDG Iterative Method, Journal of Asian Scientific Research 7 (7), 263-270. 

 

[13] Karatay, I., Kale , N., Bayramoglu, S. R. (2013) “A new Difference Scheme for Time Fractional Heat 

Equations Based on the Crank-Nicholson Method,” Fractional Calculus and Applied Analysis 16 (4), 

892-910. https://doi.org/10.2478/s13540-013-0055-2. 

 



Journal of Progressive Research in Mathematics(JPRM) 

ISSN: 2395-0218   

 
 Volume 14, Issue 2  available at www.scitecresearch.com/journals/index.php/jprm                                                       2394| 

 

[14] Saeed, A. M. and Ali, N. H. M.  (2011). On the Convergence of the Preconditioned Group Rotated 

Iterative Methods In The Solution of Elliptic PDEs, Applied Mathematics & Information Sciences .5(1), 

65-73. 

 

[15] Ali, N. H. M. and Saeed, A. M. (2011). New Preconditioned Group Methods for the Solution of a Coupled 

System of Partial Differential Equations, International Journal of Mathematics and Computation. 

10(M11), 137-149. 

 

[16] Ali, N. H. M. and Saeed A. M. (2013). Preconditioned Modified Explicit Decoupled Group for the 

Solution of Steady State Navier-Stokes Equation, Applied Mathematics & Information Sciences. 7(5), 

1837-1844. 

 

[17]  Cui, M. (2013 ). “Convergence analysis of high-order compact alternating direction implicit schemes for 

the two-dimensional time fractional diffusion equation,” Numerical Algorithms. 62(3), 383–409. 

https://doi.org/10.1007/s11075-012-9589-3. 

 

[18] Saeed A. M. (2018). On Approximate Solutions for Time-Fractional Diffusion Equation, Journal of Asian 

Scientific Research, 8(10), 287-292. https://doi.org/10.18488/journal.2.2018.810.287.292 . 

 

[19] Saeed A. M. (2018). A New Version of the Accelerated FRFD Method for Solving Time-Fractional 

Diffusion Equations, Journal of Computer Science & Computational Mathematics (JCSCM), 8(3), 55-57.  
DOI: 10.20967/jcscm.2018.03.005. https://www.jcscm.net/cms/?action=showpaper&id=2056369. 

 

https://www.jcscm.net/cms/?action=showpaper&id=2056369

