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Abstract 
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1. Introduction 

Recently, there has been great interest in investigating the behavior of solutions of a system of non linear difference 

equations and discussing the asymptotic stability of their equilibrium points. For example, in [3], El-Owaidy et al. 

studied stability, boundedness character and oscillation behavior of the difference equation 

𝑥𝑛+1 = 𝛼 +
𝑥𝑛−1
𝑝

𝑥𝑛
𝑝 .          # 1.1  

In [1], Bao investigated the local stability, oscillation and boundedness character of positive solutions of the system 

of difference equations 

𝑥𝑛+1 = 𝐴 +
𝑥𝑛−1
𝑝

𝑦𝑛
𝑝 ,   𝑦𝑛+1 = 𝐴 +

𝑦𝑛−1
𝑝

𝑥𝑛
𝑝 , 𝑛 = 0,1, . . . ,   # 1.2  

where𝐴 ∈  0,∞ , 𝑝 ∈  1,∞ , and initial conditions 𝑥𝑖 , 𝑦𝑖 ∈  0,∞ , 𝑖 = −1,0. 

In [6], Gümüş and Soykan considered the dynamical behavior of positive solutions for a system of rational 

difference equations of the following form 

𝑢𝑛+1 =
𝛼𝑢𝑛−1

𝛽 + 𝛾𝑣𝑛−2
𝑝 ,   𝑣𝑛+1 =

𝛼1𝑣𝑛−1

𝛽1 + 𝛾1𝑢𝑛−2
𝑝 ,   𝑛 = 0,1, . . . ,   # 1.3  

Where the parameters 𝛼, 𝛽, 𝛾, 𝛼1, 𝛽1, 𝛾1, 𝑝 and the initial values 𝑢−𝑖 , 𝑣−𝑖  for  𝑖 = 0,1,2 are positive real numbers. 

In [7], Okumuş and Soykan studied the boundedness, persistence and periodicity of the positive solutions and the 

global asymptoticst ability of the positive equilibrium points of system of the difference equations 
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𝑥𝑛+1 = 𝐴 +
𝑥𝑛−1

𝑧𝑛
,   𝑦𝑛+1 = 𝐴 +

𝑦𝑛−1

𝑧𝑛
,   𝑧𝑛+1 = 𝐴 +

𝑧𝑛−1

𝑦𝑛
,   𝑛 = 0,1, . . . ,   # 1.4  

where𝐴 ∈  0,∞ ,  and initial conditions 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ∈  0,∞ , 𝑖 = −1,0. 

Also, in [8], the authors investigated the oscillatory, the existence of unbounded solutions and the global behavior 

of positive solutions for the system of difference equations 

𝑥𝑛+1 = 𝐴 +
𝑥𝑛−𝑚
𝑧𝑛

,   𝑦𝑛+1 = 𝐴 +
𝑦𝑛−𝑚
𝑧𝑛

,   𝑧𝑛+1 = 𝐴 +
𝑧𝑛−𝑚
𝑦𝑛

,   𝑛 = 0,1, . . . ,   # 1.5  

where𝐴 and the initial values 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , for 𝑖 = 0,1,… ,𝑚 are positive real numbers. 

Motivated by all above mentioned studies and in the light of the works in [7] and [8], in this paper, we studied the 

system of difference equations 

𝑥𝑛+1 = 𝐴 +
𝑥𝑛−1
𝑝

𝑧𝑛
𝑝 ,   𝑦𝑛+1 = 𝐴 +

𝑦𝑛−1
𝑝

𝑧𝑛
𝑝 ,   𝑧𝑛+1 = 𝐴 +

𝑧𝑛−1
𝑝

𝑦𝑛
𝑝 , 𝑛 = 0,1. . . ,   # 1.6  

where 𝐴 ∈  0,∞ , 𝑝 ∈  1,∞ , and the initial values 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ∈  0,∞ , 𝑖 = −1,0. 

For some other papers in which systems of difference equations have been studied, see [1-14]. 

 

2. Preliminaries 

 

We recall some basic definitions that we afterwards need in the paper. 

Let us introduce the discrete dynamical system: 

𝑥𝑛+1 = 𝑓1 𝑥𝑛 , 𝑥𝑛−1, … , 𝑥𝑛−𝑘 , 𝑦𝑛 , 𝑦𝑛−1, … , 𝑦𝑛−𝑘 , 𝑧𝑛 , 𝑧𝑛−1, … , 𝑧𝑛−𝑘 , 

𝑦𝑛+1 = 𝑓2 𝑥𝑛 , 𝑥𝑛−1, … , 𝑥𝑛−𝑘 , 𝑦𝑛 , 𝑦𝑛−1, … , 𝑦𝑛−𝑘 , 𝑧𝑛 , 𝑧𝑛−1, … , 𝑧𝑛−𝑘 ,   # 2.1  

𝑧𝑛+1 = 𝑓3 𝑥𝑛 , 𝑥𝑛−1, … , 𝑥𝑛−𝑘 , 𝑦𝑛 , 𝑦𝑛−1, … , 𝑦𝑛−𝑘 , 𝑧𝑛 , 𝑧𝑛−1, … , 𝑧𝑛−𝑘 , 

 

𝑛 ∈ ℕ where 𝑓1: 𝐼1
𝑘+1 × 𝐼2

𝑘+1 × 𝐼3
𝑘+1 → 𝐼1,𝑓2: 𝐼1

𝑘+1 × 𝐼2
𝑘+1 × 𝐼3

𝑘+1 → 𝐼2 and 𝑓3: 𝐼1
𝑘+1 × 𝐼2

𝑘+1 × 𝐼3
𝑘+1 → 𝐼3 are 

continuously differentiable functions and 𝐼1,  𝐼2,  𝐼3, are some intervals of real numbers. Also, a solution 

  𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛  𝑛=−𝑘
∞  of system (2.1) is uniquely determined by initial values  𝑥−𝑖 , 𝑦−𝑖 , 𝑧−𝑖 ∈ 𝐼1 × 𝐼2 × 𝐼3for 𝑖 ∈

 0,1, … , 𝑘 . 

Definition 2.1 An equilibrium point of system (2.1) is a point  𝑥, 𝑦, 𝑧  that satisfies 

𝑥 = 𝑓1 𝑥, 𝑥,… , 𝑥, 𝑦, 𝑦, … , 𝑦, 𝑧, 𝑧, … , 𝑧 , 

𝑦 = 𝑓2 𝑥, 𝑥,… , 𝑥, 𝑦, 𝑦, … , 𝑦, 𝑧, 𝑧, … , 𝑧 , 

𝑧 = 𝑓3 𝑥, 𝑥,… , 𝑥, 𝑦, 𝑦, … , 𝑦, 𝑧, 𝑧, … , 𝑧 . 

Together with system (2.1), if we consider the associated vector map 

𝐹 =  𝑓1, 𝑥𝑛 , 𝑥𝑛−1, … , 𝑥𝑛−𝑘 , 𝑓2 , 𝑦𝑛 , 𝑦𝑛−1 , … , 𝑦𝑛−𝑘 , 𝑓3 , 𝑧𝑛 , 𝑧𝑛−1 , … , 𝑧𝑛−𝑘 , 

then the point  𝑥, 𝑦, 𝑧  is also called a fixed point of the vector map F. 

Definition 2.2 Let  𝑥, 𝑦, 𝑧  be an equilibrium point of system (2.1). 

(a) An equilibrium point  𝑥, 𝑦, 𝑧  is called stable if, for every 𝜀 > 0; there exists 𝛿 > 0 such that for every initial 

value  𝑥−𝑖 , 𝑦−𝑖 , 𝑧−𝑖 ∈ 𝐼1 × 𝐼2 × 𝐼3, with 

  𝑥𝑖 − 𝑥 < 𝛿
0

𝑖=−𝑘
,  𝑦𝑖 − 𝑦 < 𝛿

0

𝑖=−𝑘
,  𝑧𝑖 − 𝑧 < 𝛿

0

𝑖=−𝑘
 

implying  𝑥𝑛 − 𝑥 < 𝜀,  𝑦𝑛 − 𝑦 < 𝜀,  𝑧𝑛 − 𝑧 < 𝜀  for 𝑛 ∈ ℕ. 

 (b) If an equilibrium point  𝑥, 𝑦, 𝑧  of system (2.1) is called unstable if it is not stable. 

 (c) An equilibrium point  𝑥, 𝑦, 𝑧  of system (2.1) is called locally asymptotically stable if, it is stable, and if in 

addition there exists 𝛾 > 0 such that 
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  𝑥𝑖 − 𝑥 < 𝛾
0

𝑖=−𝑘
,  𝑦𝑖 − 𝑦 < 𝛾

0

𝑖=−𝑘
,  𝑧𝑖 − 𝑧 < 𝛾

0

𝑖=−𝑘
 

and 𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛 →  𝑥, 𝑦, 𝑧   as 𝑛 → ∞. 

(d) An equilibrium point  𝑥, 𝑦, 𝑧 of system (2.1) is called a global attractor if,  𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛 →  𝑥,𝑦, 𝑧  as 𝑛 → ∞. 

(e) An equilibrium point  𝑥,𝑦, 𝑧  of system (2.1) is called globally asymptotically stable if it is stable, and a global 

attractor. 

Definition 2.3Let  𝑥, 𝑦, 𝑧  be an equilibrium point of the map F where 𝑓1, 𝑓2and 𝑓3are continuously differentiable 

functions at  𝑥, 𝑦, 𝑧 . The linearized system of system (2.1) about the equilibrium point  𝑥, 𝑦, 𝑧  is 

𝑋𝑛+1 = 𝐹 𝑋𝑛 = 𝐵𝑋𝑛 , 

where 

𝑋𝑛 =

 

 
 
 
 
 
 

𝑥𝑛
⋮

𝑥𝑛−𝑘
𝑦𝑛
⋮

𝑦𝑛−𝑘
𝑧𝑛
⋮

𝑧𝑛−𝑘 

 
 
 
 
 
 

 

and B is a Jacobian matrix of system (2.1) about the equilibrium point  𝑥, 𝑦, 𝑧 . 

Definition 2.4 Assume that 

𝑋𝑛+1 = 𝐹 𝑋𝑛 ,   𝑛 = 0,1,…, 

be a system of difference equations such that 𝑋 is a fixed point of F. If no eigenvalues of the Jacobian matrix B 

about 𝑋 have absolute value equal to one, then 𝑋 is called hyperbolic. If there exists an eigenvalue of the Jacobian 

matrix B about 𝑋 with absolute value equal to one, then 𝑋 is called nonhyperbolic. 

Theorem 2.5 (The Linearized Stability Theorem) 

Assume that 

𝑋𝑛+1 = 𝐹 𝑋𝑛 ,   𝑛 = 0,1,…, 

be a system of difference equations such that 𝑋 is a fixed point of F. 

(a) If all eigenvalues of the Jacobian matrix B about 𝑋 lie inside the open unit disk  𝜆 < 1, that is, if all of them 

have absolute value less than one, then 𝑋 is locally asymptotically stable. 

(b) If at least one of them has a modulus greater than one, then 𝑋 is unstable. 

Definition 2.6Let  𝑥, 𝑦, 𝑧  be an equilibrium point of system (2.1), and assume that   𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛  𝑛=−𝑘
∞  is a solution 

of the system (2.1). 

A "string" of consecutive terms  𝑥𝑠 , … , 𝑥𝑚   (resp.  𝑦𝑠 , … , 𝑦𝑚  ,  𝑧𝑠 , … , 𝑧𝑚  ), 𝑠 ≥ −1,𝑚 ≤ ∞is said to be a positive 

semicycle if 𝑥𝑖 ≥ 𝑥(resp. 𝑦𝑖 ≥ 𝑦, 𝑧𝑖 ≥ 𝑧),𝑖 ∈  𝑠,… ,𝑚 , 𝑥𝑠−1 < 𝑥 (resp. 𝑦𝑠−1 < 𝑦, 𝑧𝑠−1 < 𝑧), and 𝑥𝑚+1 < 𝑥 (resp. 

𝑦𝑚+1 < 𝑦, 𝑧𝑚+1 < 𝑧). 

A "string" of consecutive terms  𝑥𝑠 , … , 𝑥𝑚   (resp.  𝑦𝑠 , … , 𝑦𝑚  ,  𝑧𝑠 , … , 𝑧𝑚  ), 𝑠 ≥ −1,𝑚 ≤ ∞ is said to be a negative 

semicycle if 𝑥𝑖 < 𝑥(resp. 𝑦𝑖 < 𝑦, 𝑧𝑖 < 𝑧),𝑖 ∈  𝑠,… ,𝑚 , 𝑥𝑠−1 ≥ 𝑥 (resp. 𝑦𝑠−1 ≥ 𝑦, 𝑧𝑠−1 ≥ 𝑧), and 𝑥𝑚+1 ≥ 𝑥 (resp. 

𝑦𝑚+1 ≥ 𝑦, 𝑧𝑚+1 ≥ 𝑧). 

A "string" of consecutive terms   𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠 ,… ,  𝑥𝑚 , 𝑦𝑚 , 𝑧𝑚   , is said to be a positive (resp. negative) semicycle if 
 𝑥𝑠 , … , 𝑥𝑚  ,  𝑦𝑠 ,… , 𝑦𝑚  ,  𝑧𝑠 , … , 𝑧𝑚   are positive (resp. negative) semicycles. 

Definition 2.7A solution   𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛  𝑛=−𝑘
∞  of system (2.1) is called non oscillatory about  𝑥, 𝑦, 𝑧 , or simply 

nonoscillatory, if there exists 𝑁 ≥ −𝑘 such that either 

𝑥𝑛 ≥ 𝑥,𝑦𝑛 ≥ 𝑦, 𝑧𝑛 ≥ 𝑧, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑁 

or 
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𝑥𝑛 < 𝑥,   𝑦𝑛 < 𝑦,   𝑧𝑛 < 𝑧, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑁. 

Otherwise, the solution   𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛  𝑛=−𝑘
∞  is called oscillatory about  𝑥, 𝑦, 𝑧 , or simply oscillatory. 

3. Main Results 

 

In this section, we prove our main results. 

Theorem 3.1 The following statements are true: 

(i) The system (1.6) has a positive equilibrium point  𝑥, 𝑦, 𝑧 =  𝐴 + 1,𝐴 + 1, 𝐴 + 1 . 

(ii) If 𝐴 > 2𝑝 − 1, then the equilibrium point of system (1.6) is locally asymptotically stable. 

(iii) If 𝐴 < 2𝑝 − 1, then the equilibrium point of system (1.6) is unstable. 

(iv) Also, when 𝐴 = 2𝑝 − 1and 𝑝 = 1, the results has been investigated in [7]. 

Proof. 

(i) It is easily seen from the definition of equilibrium point. 

(ii) We consider the following transformation to build the corresponding linearized form of system (1.6): 

 𝑥𝑛 , 𝑥𝑛−1, 𝑦𝑛 , 𝑦𝑛−1 , 𝑧𝑛 , 𝑧𝑛−1 →  𝑓, 𝑓1 , 𝑔, 𝑔1 , 𝑕, 𝑕1  

where 

𝑓 = 𝐴 +
𝑥𝑛−1
𝑝

𝑧𝑛
𝑝 , 

𝑓1 = 𝑥𝑛 , 

𝑔 = 𝐴 +
𝑦𝑛−1
𝑝

𝑧𝑛
𝑝 , 

𝑔1 = 𝑦𝑛 , 

𝑕 = 𝐴 +
𝑧𝑛−1
𝑝

𝑦𝑛
𝑝 , 

𝑕1 = 𝑧𝑛 . 

The Jacobian matrix about the equilibrium point  𝑥, 𝑦, 𝑧  under the above transformation is given by 

𝐵 𝑥, 𝑦, 𝑧 =

 

 
 
 
 
 
 
 

0
𝑝𝑥

𝑝−1

𝑧
𝑝 0 0 −

𝑝𝑥
𝑝

𝑧
𝑝+1 0

1 0 0 0 0 0

0 0 0
𝑝𝑦

𝑝−1

𝑧
𝑝 −

𝑝𝑦
𝑝

𝑧
𝑝+1 0

0 0 1 0 0 0

0 0 −
𝑝𝑧

𝑝

𝑦
𝑝+1 0 0

𝑝𝑧
𝑝−1

𝑦
𝑝

0 0 0 0 1 0  

 
 
 
 
 
 
 

.  # 3.1  

Hence, the linearized system of system (1.6) about the equilibrium point  𝑥, 𝑦, 𝑧 =  𝐴 + 1,𝐴 + 1, 𝐴 + 1  is 

𝑋𝑛+1 = 𝐵 𝑥, 𝑦, 𝑧 𝑋𝑛 , 

where 

𝑋𝑛 =  𝑥𝑛 , 𝑥𝑛−1, 𝑦𝑛 , 𝑦𝑛−1, 𝑧𝑛 , 𝑧𝑛−1 
𝑇 

and 



Journal of Progressive Research in Mathematics(JPRM) 

ISSN: 2395-0218   

 
 Volume 14, Issue 2  available at www.scitecresearch.com/journals/index.php/jprm                                                       2403| 

 

𝐵 𝑥, 𝑦, 𝑧 =

 

 
 
 
 
 

0
𝑝

𝐴 + 1
0 0 −

𝑝

𝐴 + 1
0

1 0 0 0 0 0

0 0 0
𝑝

𝐴 + 1
−

𝑝

𝐴 + 1
0

0 0 1 0 0 0

0 0 −
𝑝

𝐴 + 1
0 0

𝑝

𝐴 + 1
0 0 0 0 1 0  

 
 
 
 
 

. 

Then, the characteristic equation of 𝐵 𝑥, 𝑦, 𝑧  about  𝑥, 𝑦, 𝑧 =  𝐴 + 1, 𝐴 + 1, 𝐴 + 1  is 

𝜆6 −  
𝑝2

 𝐴 + 1 2
+ 3

𝑝

𝐴 + 1
 𝜆4 +  

𝑝3

 𝐴 + 1 3
+ 3

𝑝2

 𝐴 + 1 2
 𝜆2 −

𝑝3

 𝐴 + 1 3
= 0.  # 3.2  

From this, the roots of characteristic equation (3.2) are 

𝜆1 =  
𝑝

𝐴 + 1
, 

𝜆2 = − 
𝑝

𝐴 + 1
, 

𝜆3 = −
1

2 𝐴 + 1 
 𝑝 +  𝑝2 + 4𝐴𝑝 + 4𝑝 , 

𝜆4 =
1

2 𝐴 + 1 
 −𝑝 +  𝑝2 + 4𝐴𝑝 + 4𝑝 , 

𝜆5 =
1

2 𝐴 + 1 
 𝑝 +  𝑝2 + 4𝐴𝑝 + 4𝑝 , 

𝜆6 =
1

2 𝐴 + 1 
 𝑝 −  𝑝2 + 4𝐴𝑝 + 4𝑝 . 

From the Linearized Stability Theorem, since 𝐴 > 2𝑝 − 1, all roots of the characterictic equation lie inside the open 

unit disk  𝜆 < 1. Therefore, the positive equilibrium point of system (1.6) is locally asymptotically stable. 

 (iii) From the proof of (ii), it is true. 

Theorem 3.2 Let 0 < 𝐴 < 1 and   𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛   be an arbitrary positive solution of system (1.6). Then, the following 

statements are true. 

(i) If 

0 < 𝑥−1 < 1,   0 < 𝑦−1 < 1,   0 < 𝑧−1 < 1, 

𝑥0 ≥
1

 1 − 𝐴 
1
𝑝 

,   𝑦0 ≥
1

 1 − 𝐴 
1
𝑝 

,   𝑧0 ≥
1

 1 − 𝐴 
1
𝑝 

,   # 3.3  

then 

lim
𝑛→∞

𝑥2𝑛+1 = 𝐴,   lim
𝑛→∞

𝑦2𝑛+1 = 𝐴,   lim
𝑛→∞

𝑧2𝑛+1 = 𝐴, 

lim
𝑛→∞

𝑥2𝑛 = ∞, lim
𝑛→∞

𝑦2𝑛 = ∞, lim
𝑛→∞

𝑧2𝑛 = ∞. 

 

 

(ii) If 

0 < 𝑥0 < 1,   0 < 𝑦0 < 1,   0 < 𝑧0 < 1, 

𝑥−1 ≥
1

 1 − 𝐴 
1
𝑝 

,   𝑦−1 ≥
1

 1 − 𝐴 
1
𝑝 

,   𝑧−1 ≥
1

 1 − 𝐴 
1
𝑝 

,   # 3.4  

then 
lim
𝑛→∞

𝑥2𝑛+1 = ∞, lim
𝑛→∞

𝑦2𝑛+1 = ∞, lim
𝑛→∞

𝑧2𝑛+1 = ∞, 
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lim
𝑛→∞

𝑥2𝑛 = 𝐴,   lim
𝑛→∞

𝑦2𝑛 = 𝐴,   lim
𝑛→∞

𝑧2𝑛 = 𝐴. 

Proof. 

(i) From system (1.6) and (3.3), we have 

𝑥1 = 𝐴 +
𝑥−1
𝑝

𝑧0
𝑝 ≤ 𝐴 +

1

𝑧0
𝑝 ≤ 𝐴 +  1 − 𝐴 = 1, 

𝑦1 = 𝐴 +
𝑦−1
𝑝

𝑧0
𝑝 ≤ 𝐴 +

1

𝑧0
𝑝 ≤ 𝐴 +  1 − 𝐴 = 1, 

𝑧1 = 𝐴 +
𝑧−1
𝑝

𝑦0
𝑝 ≤ 𝐴 +

1

𝑦0
𝑝 ≤ 𝐴 +  1 − 𝐴 = 1, 

𝑥1 = 𝐴 +
𝑥−1
𝑝

𝑧0
𝑝 > 𝐴, 

𝑦1 = 𝐴 +
𝑦−1
𝑝

𝑧0
𝑝 > 𝐴, 

𝑧1 = 𝐴 +
𝑧−1
𝑝

𝑦0
𝑝 > 𝐴. 

Hence, 

𝑥1 ∈  𝐴, 1 ,   𝑦1 ∈  𝐴, 1 ,   𝑧1 ∈  𝐴, 1 . 

Also, 

𝑥2 = 𝐴 +
𝑥0
𝑝

𝑧1
𝑝 ≥ 𝐴 + 𝑥0

𝑝
, 

𝑦2 = 𝐴 +
𝑦0
𝑝

𝑧1
𝑝 ≥ 𝐴 + 𝑦0

𝑝
, 

𝑧2 = 𝐴 +
𝑧0
𝑝

𝑦1
𝑝 ≥ 𝐴 + 𝑧0

𝑝
. 

Similarly, we get 

𝑥3 = 𝐴 +
𝑥1
𝑝

𝑧2
𝑝 ≤ 𝐴 +

1

 𝐴 + 𝑧0
𝑝 

𝑝 ≤ 𝐴 +
1

 𝐴 + 𝑧0
𝑝 

≤ 𝐴 +
1

𝑧0
𝑝 ≤ 𝐴 +  1 − 𝐴 = 1, 

𝑦3 = 𝐴 +
𝑦1
𝑝

𝑧2
𝑝 ≤ 𝐴 +

1

 𝐴 + 𝑧0
𝑝 

𝑝 ≤ 𝐴 +
1

 𝐴 + 𝑧0
𝑝 

≤ 𝐴 +
1

𝑧0
𝑝 ≤ 𝐴 +  1 − 𝐴 = 1, 

𝑧3 = 𝐴 +
𝑧1
𝑝

𝑦2
𝑝 ≤ 𝐴 +

1

 𝐴 + 𝑦0
𝑝 

𝑝 ≤ 𝐴 +
1

 𝐴 + 𝑦0
𝑝 

≤ 𝐴 +
1

𝑦0
𝑝 ≤ 𝐴 +  1 − 𝐴 = 1. 

Thus, 

𝑥3 ∈  𝐴, 1 ,   𝑦3 ∈  𝐴, 1 ,   𝑧3 ∈  𝐴, 1 . 

Also, 

𝑥4 = 𝐴 +
𝑥2
𝑝

𝑧3
𝑝 ≥ 𝐴 + 𝑥2

𝑝
≥ 𝐴 +  𝐴 + 𝑥0

𝑝 
𝑝
≥ 𝐴 +  𝐴 + 𝑥0

𝑝 = 2𝐴 + 𝑥0
𝑝

, 

𝑦4 = 𝐴 +
𝑦2
𝑝

𝑧3
𝑝 ≥ 𝐴 + 𝑦2

𝑝
≥ 𝐴 +  𝐴 + 𝑦0

𝑝
 
𝑝
≥ 𝐴 +  𝐴 + 𝑦0

𝑝
 = 2𝐴 + 𝑦0

𝑝
, 

𝑧4 = 𝐴 +
𝑧2
𝑝

𝑦3
𝑝 ≥ 𝐴 + 𝑧2

𝑝
≥ 𝐴 +  𝐴 + 𝑧0

𝑝 
𝑝
≥ 𝐴 +  𝐴 + 𝑧0

𝑝 = 2𝐴 + 𝑧0
𝑝

. 
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By induction for 𝑛 = 1,2,…, we obtain 

𝐴 < 𝑥2𝑛−1 < 1,   𝐴 < 𝑦2𝑛−1 < 1,   𝐴 < 𝑧2𝑛−1 < 1, 

𝑥2𝑛 ≥ 𝑛𝐴 + 𝑥0
𝑝

,   𝑦2𝑛 ≥ 𝑛𝐴 + 𝑦0
𝑝

,   𝑧2𝑛 ≥ 𝑛𝐴 + 𝑧0
𝑝

.  # 3.5  

From system (1.6) and (3.5), it follows that 

lim
𝑛→∞

𝑥2𝑛 = ∞, lim
𝑛→∞

𝑦2𝑛 = ∞, lim
𝑛→∞

𝑧2𝑛 = ∞, 

lim
𝑛→∞

𝑥2𝑛+1 = lim
𝑛→∞

 𝐴 +
𝑥2𝑛−1
𝑝

𝑧2𝑛
𝑝  = 𝐴, 

lim
𝑛→∞

𝑦2𝑛+1 = lim
𝑛→∞

 𝐴 +
𝑦2𝑛−1
𝑝

𝑧2𝑛
𝑝  = 𝐴, 

lim
𝑛→∞

𝑧2𝑛+1 = lim
𝑛→∞

 𝐴 +
𝑧2𝑛−1
𝑝

𝑦2𝑛
𝑝  = 𝐴. 

(ii) The proof is similar to the proof of (i), so we omit it. The proof is completed. 

Theorem 3.3 Let   𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛  be a positive solution of system (1.6) which consists of at least two semicycles. Then 
  𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛  𝑛=−1

∞  is oscillatory. 

Proof. Since   𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛  𝑛=−1
∞ has at least two semicycles, there exists 𝑁 ≥ 0 such that either 

𝑥𝑁−1 < 𝐴 + 1 ≤ 𝑥𝑁 , 

𝑦𝑁−1 < 𝐴 + 1 ≤ 𝑦𝑁 ,   # 3.6  

𝑧𝑁−1 < 𝐴 + 1 ≤ 𝑧𝑁 , 

or 

𝑥𝑁 < 𝐴 + 1 ≤ 𝑥𝑁−1 , 

𝑦𝑁 < 𝐴 + 1 ≤ 𝑦𝑁−1,   # 3.7  

𝑧𝑁 < 𝐴 + 1 ≤ 𝑧𝑁−1. 

First, we suppose the case (3.6). Then 

𝑥𝑁+1 = 𝐴 +
𝑥𝑁−1
𝑝

𝑧𝑁
𝑝 < 𝐴 + 1, 

𝑦𝑁+1 = 𝐴 +
𝑦𝑁−1
𝑝

𝑧𝑁
𝑝 < 𝐴 + 1, 

𝑧𝑁+1 = 𝐴 +
𝑧𝑁−1
𝑝

𝑦𝑁
𝑝 < 𝐴 + 1, 

𝑥𝑁+2 = 𝐴 +
𝑥𝑁
𝑝

𝑧𝑁+1
𝑝 > 𝐴 + 1, 

𝑦𝑁+2 = 𝐴 +
𝑦𝑁
𝑝

𝑧𝑁+1
𝑝 > 𝐴 + 1, 

𝑧𝑁+2 = 𝐴 +
𝑧𝑁
𝑝

𝑦𝑁+1
𝑝 > 𝐴 + 1. 

So, we have 

𝑥𝑁+1 < 𝐴 + 1 < 𝑥𝑁+2, 

𝑦𝑁+1 < 𝐴 + 1 < 𝑦𝑁+2 , 

𝑧𝑁+1 < 𝐴 + 1 < 𝑧𝑁+2. 

Last, we suppose the case (3.7). The case is similar to the first case, so we leave it to readers. 
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