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Abstract: 

This paper is concerned with giving a mathematical model on the propagation of Rayleigh waves in a 

homogeneous magneto-thermo-viscoelastic, pre-stressed elastic half – space subjected to theinitial stress 

and rotation. The dispersion equation has been derived for a half-space, when both media are considered as 

pre-stressed and the effect of rotation and initial stressshown in earlier investigators.Numerical results have 

been obtained  in the physical domain. Numerical simulated results are depicted graphically to show the effect 

of rotation and magnetic field and initial stress on Rayleigh wave velocity. Comparison was made with the 

results obtained in the presence and absence of the rotation , initial stressand magnetic field. The study 

shows that there is a variational effect of magneto-elasticityand rotation, initial stress on the Rayleigh wave 

velocity. 

Keywords: Fibre-reinforced, viscoelastic, Rayleig wave velocity, rotation, magnetic field, the elastic medium. 

 

1- Introduction: 

In recent years, the theory of magneto- thermoelasticity which deals the interactions among the 

strain, temperature and magnetic field has drawn the attention of several researches due to its 

extensive uses in diverse fields , such as geophysics, for under standing the effects of the 

earthsmagnetic field on seismic waves, damping of acoustic waves in a magnetic field , emission of 

electromagnetic raditions from nuclear devices etc. Fiber-reinforcedcomposites are widely used in 

engineering structures, due to their superiority over the structural materials in appplications requiring 

high strength and stiffness in lightweight components.A continuum model is used to explain the 

mechanical properties of such materials. Several hypothesis of this type of context have been made 

and attempted by manypractitioners and researchers ([1]-[7]). Numerous authors have submitted 

their elaborated works on the study of wave propagation in different types of anisotropic media. 

Achenbach[9] rendered a complete discussion of seismic wave propagation in elastic layered media. 
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Stoneley[10] discussed the Rayleigh wave propagation in a heterogeneous medium. Dutta[11] 

investigated the possibility of Rayleigh wave propagation in an incompressible medium lying over a 

transversely isotropic semi-infinite base. Chattopadhyay[12] deliberated the propagation of shear 

wave in the crustal of visco-elastic material. Dey et al.[13] investigated the impact of initial stress on 

the reflection and refraction phenomenon at the boundary present between core-mantle of the Earth. 

Pal and Chattopadhyay[14] tried to demonstrate the reflection pattern of plane elastic waves in 

initially stressed homoge- neous orthotropic media. Chattopadhyay et al.[15] discussed the Rayleigh 

wave propagation under initial stress in cylindrical coordinates. Sharma and Gogna[16] obtained the 

solution to a differential equation representing the motion of elastic wave in a dissipative liquid filled 

viscoelastic porous solid and applied this solution to obtain the nature of waves. Fu and 

Rogerson[17] presented the nonlinear instability analysis of incompressible plate under the effect of 

initial stress. Again, Rogerson and Fu[18] used the concept of asymptotic analysis to build up the 

dispersion relation for wave propagating in an initially stressed incompressible elastic plate. In the 

last two decades, some of the results have been found by various authors related to seismic wave 

propagation in different types of anisotropic media under different types of physical situations. Abd-

Alla et al.[19] performed impeccable effect of initial stress, orthotropy, and gravity field on Rayleigh 

wave propagation in a magneto-elastic half-space. Again, Abd-Allaet al.[20–21] made their efforts to 

confer the effect of various sorts of elastic parameters such as initial stress, gravity field, magnetic 

field, rotations, and relaxation time on the Rayleigh wave propagation. Sharma[22] perceived the 

influence of elasticity, pore-fluid viscosity, frequency, and pore characteristics numerically on the 

Rayleigh wave velocity in dissipative poro viscoelastic media. Afterwards, Sharma[23] made an 

attempt to discuss the propagation of Rayleigh waves in generalised thermo-elastic media with stress 

free boundaries, and solved the dispersion relation numerically for exact roots. Ahmed and Abo-

Dahab[24] established the frequency equation for Rayleigh and Stoneley wave in a determinant form 

of orders twelve and eight, respectively, and obtained the phase velocity and attenuation coefficients 

for the waves. Ogden and Singh[25] derived an equation for plane wave motion with small amplitude 

in a rotating and initially have made their efforts to dissert the Rayleigh-type wave propagation in an 

initially stressed inhomogeneous incompressible visco-elastic medium situated over the same semi-

infinite elastic medium. Wang et al.[26] remarkably studied the stop band properties of elastic waves 

in three-dimensional piezoelectric phononic crystals with the initial stress taking the mechanical and 

electrical coupling into account using the plane wave expansion (PWE) method. The elastic wave 

localization in disordered periodic piezoelectric rods with the initial stress was studied, and the 

effects of initial stress on the band gap characteristics were investigated using the transfer matrix and 

Lyapunovexponent method byWang et al.[27]. Some neoteric achievements in this domain have 
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been done by numerous authors including Chatterjee et al.[28–29], Dhua and Chattopadhyay[30], 

Kumari et al.[31–32], and Khurana and Tomar[33]. Till now, no authors have made their efforts to 

dissert the Rayleigh-type wave propagation in an initially stressed inhomogeneous incompressible 

visco-elastic medium situated over the same semi-infinite elastic medium. Chatterjee and 

Chattopadhyay[34] studied the propagation, reflection, and transmission of SH-waves in slightly 

compressible, finitely deformed elastic media.                                                                                         

The purpose of the present research is to study the influences of rotation, magnetic field and specific 

heat, initial stresson the fiber-reinforced elastic anisotropicmagneto-thermo-viscoelastic media. 

Normal mode analysis is adopted to obtain the Frequency equation in closed form. These derived 

expressions are calculated numerically and depicted graphically to observe the effects of rotation, 

magnetic field and, initial stress specific heat on Rayleigh wave velocity.                                             

2-Formulation of the problem and basic equations 

 
We investigate the dynamic interactions in a fiber-reinforced anisotropic half-spacewithrotation and magnetic 

field, intial stress under thermoelastic theory and x -axis is assumed to be pointing vertically into the medium 

so that the half-space occupies the region x ≥ 0. We restrict our analysis to xy-plane. Since we are 

considering a two dimensional problem with ( , , 0 )u u v


, so all the considered functions will depend on 

time t and the coordinates x  and y. The field equations and constitutive relations for a fiber-reinforced linear 

thermoelastic anisotropic diffusive medium under rotation and magnetic field are given by [8] as 

 
 

 

      ),(2

2

0 ijijijjikmmkkikjkjkiTL

kkjiijkmmkijTijkkij

PTTaaeaaDeaaeaaDD

eaaeaaDeDeD













(1) 

where ij  are the components of stress , ij
e   are the components of strain,aninitialcompression P ,

ij


small rotation, T
DD


,  are viscoelastic parameters ,  

TL
DDDD


,, are reinforcement viscoelastic 

parameters,  
tt

DD 


,23  is thermal expansion coefficient, 
ij

 is the Kronecker delta,T is the 

temperature above reference temperature
0

T , and    1,,,
2

3

2

2

2

1321
 aaaaaaa . We choose the fiber-

direction as  0,0,1a .  

The strains can be expressed in terms of the displacement 
i

u and small rotation as                                              

 
ijjiij

uue
,,

2

1
 , )(

2

1

,, jiijij
uu  (2)  

The elastic medium is rotating uniformly with an angular velocity n  where n  is a unit vector 

representing the direction of the axis of rotation .   The displacement equation of motion in the rotating frame 



Journal of Progressive Research in Mathematics(JPRM) 

ISSN: 2395-0218   

 
 Volume 14, Issue 3  available at www.scitecresearch.com/journals/index.php/jprm                                                     2422| 

 

has two additional term centripetal acceleration ,  u  is the centripetal acceleration due to time varying 

motion only and u2  is the Cariole's acceleration , and   ,0,0 .We assume that an induced 

magnetic field ),0,0( hh  is developed due to the application of an initial magnetic field. 

For a slowly moving homogenous electrically conducting elastic solid medium taking into account absence 

of the displacement current (SI)[29] 
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where
e

 is the magnetic permeability and u


 is the dynamic displacement vector. 

The components of the magnetic intensity vector are  
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For plane strain deformation in the yx  plane, displacement  0,, vuu  , 0/  z . Eq. (1) then yields  
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The equation of motion in the context of the Green-Naghdi theory is  
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The heat conduction in the absence of heat sources under the G-N III theory is  
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where  is the mass density, 
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C is the specific heat at constant strain , 
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K  and K are respectively the 

material constant characteristic of the theory and thermal conductivity. When, 0


K  ''equation (8),'' reduces 

heat conduction equation of the G-N II theory. Eq.s (7),  (8) and (1) constitute the complete system of 

generalized thermoelasticity under the G-N III theory. 
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Equations (9), (10) can be written as  
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where
1

  is usually the thermo elastic coupling factor, 
2

 is the characteristic parameter of the G-N theory of 

type II and 
3

 is the characteristic parameter of the G-N theory of type III. 

 

3 – Solution of the problem  

The normal mode analysis gives exact solutions without any assumed restrictions on temperature, 

displacement and stress distributions. It is applied to a wide range of problems in different branches; see [26-

27]. The normal mode analysis is, in fact, to look for the solution in the Fourier transformed domain. Assume 

that all the field quantities are sufficiently smooth on the real line such that normal mode analysis of these 

functions exists.  

The solution of the considered physical variable can be decomposed in terms of normal modes as the 

following form:    

     ,exp)(,)(,)(,,],,[ ybitxxvxutyxvu
ijij





                     

(14) 

Let  

 

 

where is a complex time constant, 1i , b is the wave number in the y- direction, 

)(,)(,)( xTxvxu


and )( x
ij


 are the amplitudes of the field quantities .  

By using Eq.(14) , then Eqs.(11)-(13) take the from  

  









 
 




DvDhbiuADh

*

*

21

2*

11
2 ,                                                (15) 

  













 




bivADhuDhbi

2

2*

1

*

2*
2 ,                                               (16) 

                                         
  ,

4

2

33


  ADvAbiuDA                                                       (17) 

PvAbiuDA
xx


 ***

12

*

11
                                   (18)                                        

PvAbiuDA
yy





**

22

*

12
                      (19) 

ibyt
extyxTT





 )(),,(,

*

0



Journal of Progressive Research in Mathematics(JPRM) 

ISSN: 2395-0218   

 
 Volume 14, Issue 3  available at www.scitecresearch.com/journals/index.php/jprm                                                     2425| 

 

PvbDiuDA
zz




 
***

12
                                                    (20) 

  ,0,)(
2

***




yzxzLxy
ibuDv

P
vDubiD 


 

  )(
2

***
ibuDv

P
vDubiD

Lyx







                                                    
   (21) 

where, 

    ,/,,,,,,
**

2

*

1

*

22

*

11

*

2

*

1

*

22

*

11
BBAAhhhh   

2

1111100000

*

11
)242(242

oeTLTL
HA   ,     

 
10

*

1100

*

12
,)(

TT
TDA   , 

 
2

1100

*

22
)2(2

oeTT
HA   ,  

10

*

10

*

1
,

2
LL

L
LL

D
P

B    , 

2

111000

*

2

2
)(

oeLL
H

P
B   , 

.)23(23,,,

,,)(,)(

1100

*

32

22

4

*

1

2

3*

222*

222*

222*

11


















dx

d
DbA

AbhAbhA

 

Eliminating  xT
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In the similar manner, we can show that  xv
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Eq.(26) represent the initial integral equation of six orders,  has six roots, i.e., 
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We have six roots three positive and three negative the positive roots have given an unbounded solution for 
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Using equations (28),(30),(31) into equations (18)-(19) we get the following relations: 
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4- The Boundary conditions of the problem 

The parameter has to be chosen such that the boundary conditions on the surface at 0x take the form: 

(i) A thermal boundary conditions that the surface of the half-space is  
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Using the expressions of the variables considered into the above boundary conditions (43) and (44), we get  
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To determine the constants  3,2,1, nM
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,  it’s necessary that the determinant of the constant coefficients 
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Equation (48) determines the Rayleigh surface waves under the influences of the viscosity and rotation in 

Fiber- reinforced isotropic solid thermo-viscoelastic media, from determining this equation has complex roots. 

The real part (Re) gives the velocity of Rayleigh waves and the imaginary part (Im) gives the attenuation 

coefficient. We discuss this case and special cases in Green-Naghdi theory II and III. 
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i) G-N theory III 

 

 

 

Fig. (1) Rayleigh wave velocity under effects of the rotation Ω, magnetic field H ,specific heat
E

C and  intial stress P with 

respect wave number 

 

ii) G-N theory II , i.e 0
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K  
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Fig. (2) Rayleigh wave velocity under effects of the rotation Ω, magnetic field H , specific heat
E

C and  intial stress P with 

respect wave number 

 

 

5- Special case 

i- If  the rotation  Ω are neglected: 

i) G-N theory III 

 

 

 

 

Fig. (3) Rayleigh wave velocity under effects of the magnetic field H , specific heat
E

C and  intial stress P with respect wave 

number 
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ii) G-N theory II , i.e 0
*
K  

 

 

 

 

Fig. (4) Rayleigh wave velocity under effects of the magnetic field H , specific heat
E

C and  intial stress P with respect wave 

number 
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Fig. (5) Rayleigh wave velocity under effects of the rotation Ω , specific heat
E

C and  intial stress P with respect wave number 

 

ii) G-N theory II , i.e 0
*
K  

 

 

 

Fig. (6) Rayleigh wave velocity under effects of the rotation Ω , specific heat
E

C and  intial stress P with respect wave number 

 

 

 

-1.80E+33

-1.60E+33

-1.40E+33

-1.20E+33

-1.00E+33

-8.00E+32

-6.00E+32

-4.00E+32

-2.00E+32

2.16E+17

0 0.2 0.4 0.6 0.8 1 1.2

0.00E+00

5.00E+32

1.00E+33

1.50E+33

2.00E+33

2.50E+33

3.00E+33

3.50E+33

4.00E+33

4.50E+33

5.00E+33

0 0.2 0.4 0.6 0.8 1 1.2

0.00E+00

5.00E+32

1.00E+33

1.50E+33

2.00E+33

2.50E+33

3.00E+33

3.50E+33

4.00E+33

4.50E+33

5.00E+33

0 0.2 0.4 0.6 0.8 1 1.2

0.00E+00

1.00E+33

2.00E+33

3.00E+33

4.00E+33

5.00E+33

6.00E+33

0 0.2 0.4 0.6 0.8 1 1.2

R
ay

le
ig

h
 w

av
e 

v
el

o
ci

ty
 

wave number (b) 

9^10*10P ___ 

9^10*20P …….  

9^10*30P __ __  
 

wave number (b) 

R
ay

le
ig

h
 w

av
e 

v
el

o
ci

ty
 

wave number (b) 

R
ay

le
ig

h
 w

av
e 

v
el

o
ci

ty
 

wave number (b) 

9^10*10P ___ 

9^10*20P …….  

9^10*30P __ __  
 

5^5
E

C ____ 

5^50
E

C …..….  

5^100
E

C __ __  

5^10*3.0 ___ 

5^10*5.0 …….  

5^10*7.0 __ __  
 



Journal of Progressive Research in Mathematics(JPRM) 

ISSN: 2395-0218   

 
 Volume 14, Issue 3  available at www.scitecresearch.com/journals/index.php/jprm                                                     2432| 

 

6 - Numerical results and discussion. 

 

The purpose of the present study is to promote the wide applications of thermelastic process. The 

numerical work has been carried out with the help of computer  programming using the softwareMobile 

and physical data for which is given [28]. 
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The numerical technique, outlined above, used study propagation of Rayleigh waves in Fiber reinforced 

anisotropic solid thermo-viscoelastic media under the effect of rotation,magenetic field and  initial stress. 

 

General case 

i) G-N theory III 

Fig. 1 show that the variation of the Rayleigh wave velocity with respect to wave number b for 

different values of  rotation  , magnetic field H and initial stress P ,specific heat
E

C . The 

Rayleigh wave velocitydecrease with increasing of rotation,initialstressandspecific heat, while it 

increasing with increasemagnetic field H . 

ii) G-N theory II , i.e 0
*
K  

Fig. 2 show that the variation of the Rayleigh wave velocity with respect to wave number b for 

different values of   rotation  , magnetic field H andinitialstress P ,specific heat
E

C . The 

Rayleigh wave velocity increases with increasing of rotation, initial stressand specific heat, while 

it decreases with increasingmagnetic field. 

 

Special cases 

(i) If the rotation    is neglected: 

Fig. 3 show that the variation of the Rayleigh wave velocity with respect to wave number b for 

different values of   magnetic field H ,initial stress P and  specific heat
E

C in the absence of 

rotation   in (G-N theory III). The Rayleigh wave velocity increases with increasing of  
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magnetic field, specific heat and decrease with increasing initial stress P .  

Fig. 4 show that the variation of the Rayleig wave velocity with respect to wave number b for 

different values of  magnetic field H ,initial stress P and  specific heat
E

C in the absence of 

rotation   in (G-N theory II). The Rayleigh wave velocity increase with increasing of magnetic 

field,initialstressand specific heat. 

(ii) If the magnetic field is neglected: 

Fig. 5 show that the variation of the Rayleig wave velocity with respect to wave number b , for 

different values of rotation  ,initial stress P and  specific heat
E

C in the absenceofmagnetic 

field H .in (G-N theory III) The Rayleigh wave velocity decrease with increasing ofrotation, 

specific heat while it increase with increasinginitialstress. 

Fig. 6  show that the variation of the Rayleig wave velocity with respect to wave number b , for 

different values of rotation  ,initial stress P and  specific heat
E

C in the absenceofmagnetic 

field H .in (G-N theory II) The Rayleigh wave velocity increase with increasing ofrotation, 

specific heat ,initial stress. 

 

7. Conclusion   
 

The analysis of graphs permits us some concluding remarks  

1. The Rayleigh wave velocity in a homogeneous, anisotropic, fibre-reinforced  viscoelastic solid media under 

the effect of rotation,initialstress and magnetic field are investigated.                                                        

2. Rayleigh waves in a homogeneous, general thermo viscoelastic  solid medium, we find that the wave 

velocity equation, proves that there is a dispersion of waves due to the presence of rotation, magnetic field  

and specific heat. The results are in complete agreement with the corresponding classical results in the 

absence of all fields.                                                                                                                                  

3. ·The results presented in this paper will be very helpful for researchers in geophysics, designers of new 

materials and the study of the phenomenon of rotation and magnetic field is also used to improve the 

conditions of oil extractions.                                                                                                                   
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