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Abstract 

In this paper, the permanence, extinction and periodic solution of a delayed periodic predator-prey system with 

Holling type IV functional response and stage structure for prey is studied. By means of comparison theorem, 

some sufficient and necessary conditions are derived for the permanence of the system. 

Key words: Predator-prey system; Holling type IV functional response; Permanence; Extinction; 

Stage structure. 

1. Introduction 

Since the predator-prey system has established and were accepted by many scientists and now it became the 

most important means to explain the ecological phenomenon. For many years, a lot of extensive research results 

were made in mathematical biology and Mathematical ecology, during this time predator-prey system has 

played an important role in theses research field of mathematical biology and mathematical ecology. Still now 

many research work mostly discussed permanence(or uniformly persistence) and global stability of periodic 

Lotka-Volterra predator-prey systems[1-14]. 

As we well known, functional response and stage structure population system is one of the most important 

class of model which is discussed widely in mathematical biology and mathematical ecology. Recently, 

predator-prey population dynamical systems with stage structure and functional response have been discussed 

by many authors, see for example[1-12] and references cited therein. 
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In [2], the authors have studied the following ratio-dependent predator-prey system 

𝑥 1 𝑡 = 𝑎𝑥2 𝑡 − 𝑟1𝑥1 𝑡 − 𝑏𝑥1 𝑡 ,

𝑥 2 𝑡 = 𝑏𝑥1 𝑡 − 𝑏1𝑥2
2 𝑡 −

𝑎1𝑥2 𝑡 𝑦 𝑡 

𝑚𝑦 𝑡 + 𝑥2 𝑡 
,

𝑥 3 𝑡 = 𝑦 𝑡  −𝑟 +
𝑎2𝑥2 𝑡 

𝑚𝑦 𝑡 + 𝑥2 𝑡 
 ,

 

where 𝑥1 𝑡  represents the density of immature individuals preys at time t, and𝑥2 𝑡 represents the density of 

mature individuals preys at time 𝑡, y(t) represents the density of predator at time 𝑡. The authors obtained 

sufficient conditions for the uniform persistence, impermanence and the global asymptotic stability of 

nonnegative equilibria of the model. 

In[4], the authors considered the following delayed predator-prey system with Beddington-De Angelis 

functional and stage structure for prey: 

𝑥 1 𝑡 = 𝑏 𝑡 𝑥2 𝑡 − 𝑑1 𝑡 𝑥1 𝑡 

            −𝑏 𝑡 − 𝜏1 exp − 𝑑1 𝑠 𝑑𝑠
𝑡

𝑡−𝜏1

 𝑥2 𝑡 − 𝜏1 −
𝑐1 𝑡 𝑥1 𝑡 𝑦 𝑡 

𝑒 𝑡 + 𝛽 𝑡 𝑥1 𝑡 + 𝛾 𝑡 𝑦 𝑡 
,

𝑥 2 𝑡 = 𝑏 𝑡 − 𝜏1 exp − 𝑑1 𝑠 
𝑡

𝑡−𝜏1

𝑑𝑠 𝑥2 𝑡 − 𝜏1 − 𝑎 𝑡 𝑥2
2 𝑡 ,

𝑦  𝑡 = 𝑦 𝑡  −𝑑2 𝑡 +
𝑐2 𝑡 𝑥1 𝑡 − 𝜏2 

𝑒 𝑡 + 𝛽 𝑡 𝑥1 𝑡 − 𝜏2 + 𝛾 𝑡 𝑦 𝑡 − 𝜏2 
− 𝑞 𝑡 𝑦 𝑡  ,

 

where 𝑥1 𝑡  and 𝑥2 𝑡 denote the densities of immature and mature preys at time 𝑡 , respectively; 𝑦 𝑡  

represent the density of predators at time 𝑡. The authors obtained sufficient conditions for the permanence, 

extinction and periodic solution of the system. 

In[7], the authors have studied the following delayed predator-prey system with Holling type IV functional 

and stage structure for predators: 

𝑥  𝑡 = 𝑥 𝑡  𝑟 𝑡 − 𝑎 𝑡 𝑥 𝑡 − 𝜏1 −
𝑏 𝑡 𝑦2 𝑡 

𝑘𝑥2 𝑡 + 𝑥 𝑡 + 𝑎∗ ,

𝑦 1 𝑡 =
𝑘 𝑡 𝑏 𝑡 𝑥 𝑡 − 𝜏2 𝑦2 𝑡 − 𝜏2 

𝑘𝑥2 𝑡−𝜏2 + 𝑥 𝑡 − 𝜏2 + 𝑎∗
−  𝐷 𝑡 + 𝑣1 𝑡  𝑦1 𝑡 − 𝑘1 𝑡 𝑦1

2 𝑡 ,

𝑦 2 𝑡 = 𝐷 𝑡 𝑦1 𝑡 − 𝑣2 𝑡 𝑦2 𝑡 ,

 

where𝑥 𝑡  is the density of the prey population at time t,
1( )y t  is the density of immature predators at time t, 

2 ( )y t  is the density of mature predators at time t. The authors obtained sufficient conditions for the existence of 

multiple positive periodic solutions of the system. 

Motivated by the above works, in this paper, we study the following delayed predator- prey system with 

Holling type IV response function and stage structure for prey 
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𝑥 1 𝑡 = 𝑟 𝑡 𝑥2 𝑡 − 𝐵 𝑡 𝑥1 𝑡 − 𝑑1 𝑡 𝑥1
2 𝑡 ,

𝑥 2 𝑡 = 𝐵 𝑡 𝑥1 𝑡 − 𝑑2 𝑡 𝑥2
2 𝑡 −

𝑎1 𝑡 𝑥2 𝑡 𝑦 𝑡 − 𝜏1 

𝑘𝑥2
2 𝑡 + 𝑥2 𝑡 + 𝑎∗

,

𝑦  𝑡 = 𝑦 𝑡  −𝑑3 𝑡 +
𝑎2 𝑡 𝑥2 𝑡 − 𝜏2 

𝑘𝑥2
2 𝑡 − 𝜏2 + 𝑥2 𝑡 − 𝜏2 + 𝑎∗

− 𝑑 𝑡 𝑦 𝑡  ,

                    (1.1) 

where 𝑥1 𝑡  represents the density of immature individuals preys at time 𝑡, and 𝑥2 𝑡 represents the density of 

mature individuals preys at time 𝑡, 𝑦 𝑡  represents the density of predator at time 𝑡. 𝑟 𝑡 > 0 represents the 

birth rate of the immature prey at time 𝑡, 𝐵 𝑡 = 𝑏 𝑡 − 𝜏1 exp  − 𝑑1 𝑠 𝑑𝑠
𝑡

𝑡−𝜏1
  represents the number of 

immature preys that were born at time 𝑡 − 𝜏1 which is still survive at time t and are transferred from the 

immature stage to the mature stage at time 𝑡, 𝑑1 𝑡 , 𝑑2 𝑡  and 𝑑3 𝑡  are the death rates of the immature prey, 

mature prey, and predator at time 𝑡 respectively, 𝑎1 𝑡  is the capturing rate of the predator, 𝑎2 𝑡 /𝑎1 𝑡  is 

the rate of conversion of nutrients into reproduction of the predator, constant, the item – 𝑑 𝑡 𝑦 𝑡  represents 

the dynamics of predator 𝑦 to incorporate the negative feedback of predator crowding. 𝑟 𝑡 , 𝑑𝑖 𝑡  𝑖 = 1,2,3 , 

𝐵 𝑡 , 𝑑 𝑡 , 𝑎𝑖 𝑡  (𝑖 = 1,2) are all continuously positive 𝜔 −periodic functions, 𝜏𝑖 𝑖 = 1,2 , 𝑘, 𝑎∗ are positive 

constants. 

Due to the biological meaning of the model, the initial conditions for system (1.1) take the form 

 
 𝑥1 𝜃 , 𝑥2 𝜃 , 𝑦 𝜃  =  𝜑1 𝜃 , 𝜑2 𝜃 ,𝜓 𝜃  ∈ 𝐶+ =:𝐶  −𝜏max , 0 , 𝑅+

3 ,

𝜑1 0 > 0,    𝜑2 0 > 0,   𝜓 0 > 0
                  1.2  

where 𝜏𝑚𝑎𝑥 = max 𝜏1 , 𝜏2  ,    𝑅+
3 =   𝑥, 𝑦, 𝑧  𝑥 ≥ 0, 𝑦 ≥ 0, 𝑧 ≥ 0 . 

If the term 𝑑 𝑡 = 0 then system (1.1) become the following system 

𝑥 1 𝑡 = 𝑟 𝑡 𝑥2 𝑡 − 𝐵 𝑡 𝑥1 𝑡 − 𝑑1 𝑡 𝑥1
2 𝑡 ,

𝑥 2 𝑡 = 𝐵 𝑡 𝑥1 𝑡 − 𝑑2 𝑡 𝑥2
2 𝑡 −

𝑎1 𝑡 𝑥2 𝑡 𝑦 𝑡 − 𝜏1 

𝑘𝑥2
2 𝑡 + 𝑥2 𝑡 + 𝑎∗

,

𝑦  𝑡 = 𝑦 𝑡  −𝑑3 𝑡 +
𝑎2 𝑡 𝑥2 𝑡 − 𝜏2 

𝑘𝑥2
2 𝑡 − 𝜏2 + 𝑥2 𝑡 − 𝜏2 + 𝑎∗

 .

 1.3  

The system (1.3) also satisfies the initial condition (1.2). 

Throughout this paper, for a continuous 𝜔 −periodic function 𝑓 𝑡 , we set 

𝐴 𝑓 𝑡  =
1

𝜔
 𝑓 𝑡 𝑑𝑡

𝜔

0

,     𝑓𝑀 = max
𝑡∈ 0,𝜔 

𝑓 𝑡 ,      𝑓𝐿 = min
𝑡∈ 0,𝜔 

𝑓 𝑡 . 

The organization of this paper is as follows. In the next section we will prove positivity and boundedness of 

solutions for system (1.1). In section 3, we present the main results in this paper. In section 4, give the proof of 

the main results. 

2. Positivity and boundedness of solutions 

In this section, we will prove that the solutions of system (1.1) under initial value condition (1.2) are 

positive and ultimately bounded. 
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Theorem 2.1.The solutions of system (1.1) with initial condition (1.2) are positive for all 𝑡 ≥ 0. 

Proof. Suppose that  𝑥1 𝑡 , 𝑥2 𝑡 , 𝑦 𝑡   is any solution of (1.1) with initial condition (1.2). From system (1.1) 

we get 

𝑥 1 𝑡 |𝑥1=0 = 𝑟 𝑡 𝑥2 𝑡 > 0,      𝑓𝑜𝑟     𝑥2 𝑡 > 0,

𝑥 2 𝑡 |𝑥2=0 = 𝐵 𝑡 𝑥1 𝑡 > 0,       𝑓𝑜𝑟     𝑥1 𝑡 > 0,

𝑦  𝑡 |𝑦=0 = 𝑦 0 exp  −𝑑3 𝑠 +
𝑎2 𝑠 𝑥2 𝑠 − 𝜏2 

𝑘𝑥2
2 𝑠 − 𝜏2 + 𝑥2 𝑠 − 𝜏2 + 𝑎∗

− 𝑑 𝑠 𝑦 𝑠  𝑑𝑠
𝑡

0

> 0.

 

Theorem 2.2.The solutions of systems (1.1) with initial condition (1.2) are ultimately bounded. 

Proof. Suppose that  𝑥1 𝑡 , 𝑥2 𝑡 , 𝑦 𝑡   is any solution of (1.1) with initial condition (1.2). Defining the 

function 

𝑤 𝑡 = 𝑥1 𝑡 + 𝑥2 𝑡 + 𝑦 𝑡  

and calculating the derivative of 𝑤 𝑡  along the positive solutions of system (1.1), we have 

𝑤  𝑡 = 𝑥 1 𝑡 + 𝑥 2 𝑡 + 𝑦  𝑡 ≤ 𝑟𝑀𝑥2 𝑡 − 𝐵𝐿𝑥1 𝑡 − 𝑑1
𝐿 𝑡 𝑥1

2 𝑡 + 𝐵𝑀𝑥1 𝑡 

                                                        −𝑑2
𝐿𝑥2

2 𝑡 − 𝑑3
𝐿𝑦 𝑡 + 𝑎2

𝑀𝑦 𝑡 − 𝑑𝐿𝑦2 𝑡 
 

Then 

𝑤  𝑡 + 𝜌1𝑤 𝑡 ≤ 𝐵𝑀𝑥1 𝑡 − 𝑑1
𝐿 𝑡 𝑥1

2 𝑡 + 2𝑟𝑀𝑥2 𝑡 − 𝑑2
𝐿𝑥2

2 𝑡 + 𝑎2
𝑀𝑦 𝑡 − 𝑑𝐿𝑦2 𝑡 , 

where 𝜌1 = min 𝑟𝑀 , 𝐵𝐿 , 𝑑3
𝐿 . Then there exists a positive number 𝜌2 such that 

𝑤  𝑡 + 𝜌1𝑤 𝑡 ≤ 𝜌2 

which yields 

𝑤 𝑡 ≤
𝜌2

𝜌1
+  𝑤 0 −

𝜌2

𝜌1
 𝑒−𝜌1𝑡 . 

This implies that any positive solutions of system (1.1) is ultimately bounded. This completes the proof. 

3. Main results 

In this section we introduce some lemmas and state the main results. 

Definition 3.1System (1.1) is said to be permanent if there exist positive constants 𝑚, 𝑀 and 𝑇0, such that 

each positive solution (𝑥1 𝑡 , 𝑥2 𝑡 , 𝑦(𝑡)) of system (1.1) with any positive initial value 𝜑 , fulfill 𝑚 ≤

𝑥𝑖 𝑡 ≤ 𝑀  𝑖 = 1,2 ,𝑚 ≤ 𝑦 𝑡 ≤ 𝑀for all𝑡 ≥ 𝑇0, where 𝑇0may depend on 𝜑. 

Lemma 3.1([15])If 𝑎 𝑡 , 𝑏 𝑡 , 𝑑 𝑡  and 𝑓 𝑡  are all 𝜔 −periodic, then system 

     
𝑥 1 𝑡 = 𝑎 𝑡 𝑥2 𝑡 − 𝑏 𝑡 𝑥1 𝑡 − 𝑑 𝑡 𝑥1

2 𝑡 ,

𝑥 2 𝑡 = 𝑐 𝑡 𝑥1 𝑡 − 𝑓 𝑡 𝑥2
2(𝑡)

                       (3.1) 

has a positive 𝜔 −periodic solution  𝑥1
∗ 𝑡 , 𝑥2

∗ 𝑡   which is globally asymptotically stable with respect to 

𝑅+
2 =   𝑥1, 𝑥2 ∶ 𝑥1 > 0, 𝑥2 > 0  . 

Lemma 3.2([16])If 𝑏 𝑡  and 𝑎 𝑡  are all 𝜔 −periodic, and if 𝐴𝜔 𝑏 > 0 and 𝐴𝜔 𝑎 > 0 for all 𝑡 ∈ 𝑅, 

then system  

                     𝑥  𝑡 =  𝑥 𝑡  𝑏 𝑡 − 𝑎 𝑡 𝑥 𝑡  ,                                                                 3.2  
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has a positive 𝜔 −periodic solution which is globally asymptotically stable. 

Theorem 3.1.  System (1.1) is permanent if and only if  

                            𝐴  −𝑑3 𝑡 + 
𝑎2 𝑡 𝑥2

∗ 𝑡 − 𝜏2 

𝑘𝑥2
∗2
 𝑡 − 𝜏2 + 𝑥2

∗ 𝑡 − 𝜏2 + 𝑎∗
 > 0                     (3.3) 

where  𝑥1
∗ 𝑡 , 𝑥2

∗ 𝑡   is the unique positive periodic solution of system (3.1) given by Lemma 3.1. 

As a direct corollary of [17, Theorem 2], from Theorem 2.1, we have 

Corollary 3.1.  If the assumption (3.3) hold, then system (1.1) has at least one positive 𝜔 −periodic solution. 

From the proof of Theorem 3.1, we also have 

Theorem 3.2.  If the assumption (3.3) hold, then system (7) is permanent and system (1.3) has at least one 

positive 𝜔 −periodic solution. 

Corollary 3.2.  Assume that 

                      𝐴  −𝑑3 𝑡 +  
𝑎2 𝑡 𝑥2

∗ 𝑡 − 𝜏2 

𝑘𝑥2
∗2
 𝑡 − 𝜏2 + 𝑥2

∗ 𝑡 − 𝜏2 + 𝑎∗
 ≤ 0                              (3.4) 

where  𝑥1
∗ 𝑡 , 𝑥2

∗ 𝑡   is the unique positive periodic solution of system (3.1) given by Lemma 3.1, then any 

solution of system (1.1) and (1.3) with initial condition (1.2) satisfies 

                               limt→+∞ 𝑦 𝑡 = 0.                                                                               (3.5) 

4. Proof of the main results 

In this section we will state and prove four propositions to prove Theorem 3.1. 

Proposition 4.1.  There exist positive constants 𝑀𝑥  and 𝑀𝑦 , such that 

lim
𝑡→∞

sup 𝑥𝑖 𝑡 ≤ 𝑀𝑥 ,      lim
𝑡→∞

sup𝑦 𝑡 ≤ 𝑀𝑦  

for all solution of system (1.1) with initial condition (1.2). 

Proof.  Obviously, 𝑅+
3 =   𝑥1 𝑡 , 𝑥2 𝑡 , 𝑦 𝑡   𝑥𝑖 𝑡 ≥ 0, 𝑦 𝑡 ≥ 0  is a positively invariant set of system 

(1.1) with initial condition (1.2), we have 

𝑥 1 𝑡 =  𝑟 𝑡 𝑥2 𝑡 −  𝐵 𝑡 𝑥1 𝑡 − 𝑑1 𝑡 𝑥1
2 𝑡 ,

𝑥 2 𝑡 ≤ 𝐵 𝑡 𝑥1 𝑡 − 𝑑2 𝑡 𝑥2
2 𝑡 ,

 

By Lemma 3.1, the following auxiliary equation: 

𝑢 1 𝑡 = 𝑟 𝑡 𝑢2 𝑡 − 𝐵 𝑡 𝑢1 𝑡 − 𝑑1 𝑡 𝑢1
2 𝑡 ,

𝑢 2 𝑡 = 𝐵 𝑡 𝑢1 𝑡 − 𝑑2 𝑡 𝑢2
2 𝑡 ,

                                               (4.1) 

has unique globally asymptotically stable positive 𝜔 −periodic solution  𝑥1
∗ 𝑡 , 𝑥2

∗ 𝑡  . Let  𝑢1 𝑡  , 𝑢2 𝑡   be 

the solution of with  𝑢1 0 , 𝑢2 0  =  𝑥1 𝑡 , 𝑥2 𝑡  . In view of the vector comparison method, we have 

                      𝑥𝑖 𝑡 ≤ 𝑢𝑖 𝑡  𝑖 = 1,2 ,      𝑡 ≥ 0.                                                  (4.2) 
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Moreover, from the global attractivity of 𝑥1
∗ 𝑡 , 𝑥2

∗ 𝑡  , for every given 𝜀 0 < 𝜀 < 1 , there exists a 𝑇1 > 0, 

such that 

                               𝑢𝑖 𝑡 − 𝑥𝑖
∗ 𝑡  < 𝜀,      𝑡 ≥ 𝑇1                                                    (4.3) 

from (4.2) and (4.3) we have 

lim
𝑡→+∞

sup𝑥𝑖 𝑡 ≤ 𝑀𝑥 , 

where 𝑀𝑥 = max0≤𝑡≤𝜔 \𝑥𝑖
∗ 𝑡 + 𝜀,   𝑖 = 1,2 .  

In addition, from the third equation of system (1.1) we get 

𝑦  𝑡 ≤ 𝑦 𝑡  𝑎2 𝑡 − 𝑑 𝑡 𝑦 𝑡  . 

Consider the following auxiliary equation: 

𝑣  𝑡 ≤ 𝑣 𝑡  𝑎2 𝑡 − 𝑑 𝑡 𝑦 𝑡  ,                                                                     (4.4) 

it follows from Lemma 3.2 that equation (4.4) has a unique positive 𝜔 −periodic solution 𝑦∗ 𝑡 > 0 which is 

globally asymptotically stable. Similarly to the above analysis, there exists a 𝑇2 > 𝑇1 such that for above 𝜀, 

one has 

𝑦 𝑡 < 𝑦∗ 𝑡 + 𝜀,       𝑡 ≥ 𝑇2 . 

This completes the proof of proposition 4.1. 

Proposition 4.2.  There exist positive constant 𝑚𝑖𝑥 < 𝑀𝑥 , such that 

lim
t→+ ∞

inf 𝑥𝑖 𝑡 ≥ 𝑚𝑖𝑥 ,     𝑖 = 1,2. 

Proof.  By proposition 4.1, there exists 𝑇2 > 0 such that 

0 < 𝑦 𝑡 ≤ 𝑀𝑦 ,      𝑡 ≥ 𝑇2 . 

Hence, from system (1.1), we have 

𝑥 1 𝑡 = 𝑟 𝑡 𝑥2 𝑡 − 𝐵 𝑡 𝑥1 𝑡 − 𝑑1 𝑡 𝑥1
2 𝑡 ,

𝑥 2 𝑡 ≤ 𝐵 𝑡 𝑥1 𝑡 −  𝑑2 𝑡 +
𝑎1 𝑡 

𝑎∗
𝑀𝑦 𝑥2

2 𝑡 ,
 

for 𝑡 ≥ 𝑇2. By lemma 3.1, the following auxiliary equation 

                       
𝑢 1 𝑡 = 𝑟 𝑡 𝑢2 𝑡 − 𝐵 𝑡 𝑢1 𝑡 − 𝑑1 𝑡 𝑢1

2 𝑡 ,

𝑢 2 𝑡 ≤ 𝐵 𝑡 𝑢1 𝑡 −  𝑑2 𝑡 +
𝑎1 𝑡 

𝑎∗ 𝑀𝑦 𝑢2
2 𝑡 ,

                                   4.5  

has a unique globally attractive positive 𝜔 −periodic solution  𝑥1
∗ 𝑡 , 𝑥2

∗ 𝑡  . Let  𝑢1 𝑡 , 𝑢2 𝑡   be the 

solution of (4.5) with  𝑢1 𝑇2 , 𝑢2 𝑇2  = ( 𝑥1 𝑇2 , 𝑥2 𝑇2  , by comparison method, we have 

                 𝑥𝑖 𝑡 ≥ 𝑢𝑖 𝑡  𝑖 = 1,2 ,     𝑡 ≥ 𝑇2 .                                                                       (4.6) 

Again from the globally attractivity of  𝑥1
∗ 𝑡 , 𝑥2

∗ 𝑡  , there exists a 𝑇3 > 𝑇2, such that  

                               𝑢𝑖 𝑡 − 𝑥𝑖
∗ 𝑡  <

𝑥𝑖
∗ 𝑡 

2
,  𝑖 = 1,2      𝑡 ≥ 𝑇3 .                             (4.7) 
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Equation (4.7) combine with (4.6) leads to 

𝑥𝑖 𝑡 > 𝑚𝑖𝑥 = min
0≤𝑡≤𝜔

 
𝑥𝑖
∗ 𝑡 

2
,   𝑖 = 1,2      𝑡 > 𝑇3 . 

Therefore,  

lim
𝑡→+∞

inf 𝑥𝑖 𝑡 ≥ 𝑚𝑖𝑥 ,     𝑖 = 1,2. 

This completes the proof of proposition 4.2. 

Proposition 4.3.Suppose that (3.3) holds, then there exists a positive constant 𝑚𝑦such that any solution 

 𝑥1 𝑡 , 𝑥2 𝑡 , 𝑦 𝑡  of system (1.1) with initial condition (1.2) satisfies 

                    lim𝑡→+∞ sup𝑦 𝑡 ≥ 𝑚𝑦 .                                                                             (4.8) 

Proof.  By (3.3), we can choose constant 𝜀0 > 0 (without loss of generality, we may assume that 𝜀0 <

1

2
min𝑡∈ 0,𝜔  𝑥1

∗ 𝑡  , where  𝑥1
∗ 𝑡 , 𝑥2

∗ 𝑡   is the unique positive periodic solution of system (3.1) such that 

                                            𝐴  𝜓𝜀0
 𝑡  > 0,                                              4.9  

where 

𝜓𝜀0
 𝑡 = −𝑑3 𝑡 +

𝑎2 𝑡  𝑥2
∗ 𝑡 − 𝜏2 − 𝜀0 

𝑘 𝑥2
∗2
 𝑡 − 𝜏2 − 𝜀0 +  𝑥2

∗ 𝑡 − 𝜏2 − 𝜀0 + 𝑎∗
− 𝑑 𝑡 𝜀0 . 

Consider the following equation with a parameter 𝛼, 

𝑥 1 𝑡 = 𝑟 𝑡 𝑥2 𝑡 − 𝐵 𝑡 𝑥1 𝑡 − 𝑑1 𝑡 𝑥1
2 𝑡 ,

𝑥 2 𝑡 = 𝐵 𝑡 𝑥1 𝑡 −  𝑑2 𝑡 +
2𝑎1 𝑡 

𝑎∗
𝛼 𝑥2

2 𝑡 .
                                    (4.10) 

By Lemma 3.1, (4.10) has a unique positive 𝜔 −periodic solution  𝑥1𝛼
∗  𝑡 , 𝑥2𝛼

∗  𝑡   which is globally attractive. 

Let  𝑥1𝛼 𝑡 , 𝑥2𝛼 𝑡   be solution of (4.10) with initial condition 𝑥𝑖𝛼  0 = 𝑥𝑖
∗ 0  𝑖 = 1,2 , where 

 𝑥1
∗ 𝑡 , 𝑥2

∗ 𝑡   is the unique positive periodic solution of system (3.1). Hence, for above 𝜀0, there exists a 

sufficiently large 𝑇4 > 𝑇3 such that 

 𝑥𝑖𝛼  𝑡 − 𝑥𝑖𝛼
∗  𝑡  <

𝜀0

4
,      𝑖 = 1,2 ,     𝑓𝑜𝑟    𝑡 ≥ 𝑇4 . 

By the continuity of the solution in the parameter, we have 𝑥𝑖𝛼  𝑡 → 𝑥𝑖𝛼
∗  𝑡  uniformly in  𝑇4 , 𝑇4 + 𝜔  as 

𝛼 → 0. Hence, for 𝜀0 > 0, there exists a 𝛼0 = 𝛼0 𝜀0 > 0 such that 

 𝑥𝑖𝛼  𝑡 − 𝑥𝑖𝛼
∗  𝑡  <

𝜀0

4
,      𝑖 = 1,2 ,     𝑓𝑜𝑟     𝑡 ∈  𝑇4 , 𝑇4 + 𝜔 . 

So, we have 

 𝑥𝑖𝛼
∗  𝑡 − 𝑥𝑖

∗ 𝑡  <
𝜀0

2
,      𝑖 = 1,2 ,     𝑓𝑜𝑟     𝑡 ∈  𝑇4 , 𝑇4 + 𝜔 . 

Note that 𝑥𝑖𝛼
∗  𝑡  and 𝑥𝑖

∗ 𝑡  are all 𝜔 −periodic, hence 
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 𝑥𝑖𝛼
∗  𝑡 − 𝑥𝑖

∗ 𝑡  <
𝜀0

2
,      𝑖 = 1,2 ,     𝑓𝑜𝑟    𝑡 ≥ 0, 0 < 𝛼 < 𝛼0 . 

Choosing a constant 𝛼1 0 < 𝛼1 < 𝛼0 , 2𝛼1 < 𝜀0 , we have 

𝑥𝑖𝛼1

∗  𝑡 ≥ 𝑥𝑖
∗ 𝑡 −

𝜀0

2
,      𝑖 = 1,2 ,     𝑓𝑜𝑟   𝑡 ≥ 0.                                      (4.11) 

Suppose that (4.8) is not true, then there exists 𝜙 ∈ 𝑅+
3  such that 

lim
𝑡→+∞

sup𝑦 𝑡, 𝜙 < 𝛼1 , 

where  𝑥1 𝑡, 𝜙 , 𝑥2 𝑡, 𝜙 , 𝑦 𝑡, 𝜙   is the solution of system (1.1) with initial condition  𝑥1 𝜃 , 𝑥2 𝜃 ,

  𝑦𝜃=𝜙𝜃,     𝜃∈−𝜏,0.  So there exists 𝑇5>𝑇4 such that 

                            𝑦 𝑡, 𝜙 < 2𝛼1 < 𝜀0 ,     𝑡 ≥ 𝑇5 .                                              (4.12) 

By applying (4.12), from system (1.1) it follows that for all 𝑡 ≥ 𝑇6 ≥ 𝑇5 + 𝜏1, 

𝑥 1 𝑡, 𝜙 = 𝑟 𝑡 𝑥2 𝑡, 𝜙 − 𝐵 𝑡 𝑥1 𝑡, 𝜙 − 𝑑1 𝑡 𝑥1
2 𝑡, 𝜙 ,

𝑥 2 𝑡, 𝜙 ≥ 𝐵 𝑡 𝑥1 𝑡, 𝜙 −  𝑑2 𝑡 +
2𝑎1 𝑡 

𝑎∗
𝛼1 𝑥2

2 𝑡, 𝜙 ,
                        4.13  

Let  𝑢11 𝑡 , 𝑢2 𝑡   be the solution of (4.10) with 𝛼 = 𝛼1 and  

 𝑢1 𝑇6 , 𝑢2 𝑇6  =  𝑥1 𝑇6 , 𝜙 , 𝑥2 𝑇6 , 𝜙  , 

then 

𝑥𝑖 𝑡, 𝜙 ≥ 𝑢𝑖 𝑡 ,  𝑖 = 1,2 ,     𝑡 ≥ 𝑇6 . 

By the global asymptotic stability of (𝑥1𝛼1

∗  𝑡 , 𝑥2𝛼1

∗  𝑡 ), for the given 𝜀 =
𝜀0

2
, there exists 𝑇7 ≥ 𝑇6, such that 

 𝑢𝑖 𝑡 − 𝑥𝑖𝛼1

∗  𝑡  <
𝜀0

2
,     𝑖 = 1,2 ,    𝑡 ≥ 𝑇7 . 

So, 

𝑥𝑖 𝑡, 𝜙 ≥ 𝑢𝑖 𝑡 > 𝑥𝑖𝛼1

∗  𝑡 −
𝜀

2
,     𝑖 = 1,2 ,    𝑡 ≥ 𝑇7 , 

and hence, by using (4.11), it follows 

                                𝑥𝑖 𝑡, 𝜙 ≥ 𝑥𝑖
∗ 𝑡 − 𝜀0 ,    𝑖 = 1,2 ,    𝑡 ≥ 𝑇7 .                         (4.14) 

Therefore, by using (4.12) and (4.14), for 𝑡 ≥ 𝑇7 + 𝜏2 it follows: 

𝑦  𝑡, 𝜙 ≥  −𝑑3 𝑡 +
𝑎2 𝑡  𝑥2

∗ 𝑡 − 𝜏2 − 𝜀0 

𝑘 𝑥2
∗2
 𝑡 − 𝜏2 − 𝜀0 +  𝑥2

∗ 𝑡 − 𝜏2 − 𝜀0 + 𝑎∗
− 𝑑 𝑡 𝜀0 

= 𝜓𝜀0
 𝑡 𝑦 𝑡, 𝜙 .                                                                                        

 

Integrating above inequality from 𝑇7 + 𝜏2 to 𝑡 yields 

𝑦 𝑡, 𝜙 ≥ 𝑦 𝑇7 + 𝜏2 , 𝜙 exp 𝜓𝜀0
 𝑡 

𝑡

𝑇7+𝜏2

𝑑𝑡. 
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Thus, from (4.9) it follows that 𝑦 𝑡, 𝜙 → +∞ as 𝑡 → +∞. It is a contradiction. This completes the proof of 

Proposition 3. 

Proposition 4.4.  Suppose that (3.3) holds, then there exists a positive constant 𝜏𝑦  such that any solution 

 𝑥1 𝑡 , 𝑥2 𝑡 , 𝑦 𝑡   of system (1.1) with initial condition (1.2) satisfies 

                       lim𝑡→+∞ inf 𝑦 𝑡 ≥ 𝜏𝑦 .                                                                               4.15  

Proof.  Suppose that (4.15) is not true, then there exists a sequence 𝜙𝑚  ∈ 𝑅+
3 , such that 

lim
𝑡→+∞

inf 𝑦 𝑡, 𝜙𝑚  <
𝑚𝑦

 𝑚 + 1 2
,    𝑚 = 1,2, …. 

On the other hand, by Proposition 4.3, we have 

lim
𝑡→+∞

sup 𝑦 𝑡, 𝜙𝑚  > 𝑚𝑦 ,    𝑚 = 1,2,…. 

Hence, there are time sequences  𝑠𝑞
 𝑚 

  and  𝑡𝑞
 𝑚 

  satisfying 

0 < 𝑠1
 𝑚 

< 𝑡1
 𝑚 

< 𝑠2
 𝑚 

< 𝑡2
 𝑚 

< ⋯ < 𝑠𝑞
 𝑚 

< 𝑡𝑞
 𝑚 

< ⋯, 

𝑠𝑞
 𝑚 

→ +∞,    𝑡𝑞
 𝑚 

→ +∞ as 𝑞 → +∞. 

And 

𝑦  𝑠𝑞
 𝑚 

, 𝜙𝑚 =
𝑚𝑦

𝑚 + 1
,     𝑦  𝑡𝑞

 𝑚 
, 𝜙𝑚 =

𝑚𝑦

 𝑚 + 1 2
, 

𝑚𝑦

 𝑚 + 1 2
< 𝑦 𝑡, 𝜙𝑚  <

𝑚𝑦

𝑚 + 1
,     𝑡 ∈  𝑠𝑞

 𝑚 
, 𝑡𝑞

 𝑚 
 . 

By proposition 4.1, for a given positive integer 𝑚, there is a 𝑇1
 𝑚 

> 0, such that for all 𝑡 > 𝑇1
 𝑚 

𝑦 𝑡, 𝜙𝑚  < 𝑀𝑦 . 

Because of 𝑠𝑞
 𝑚 

→ +∞ as 𝑞 → +∞, there is a positive integer 𝐾 𝑚 , such that 𝑠𝑞
 𝑚 

> 𝑇1
 𝑚 

 as 𝑞 ≥ 𝐾 𝑚 , 

hence 

𝑦  𝑡, 𝜙𝑚  ≥ 𝑦 𝑡, 𝜙𝑚   −𝑑3 𝑡 − 𝑑 𝑡 𝑀𝑦                                                   (4.16) 

for 𝑡 ∈  𝑠𝑞
 𝑚 

, 𝑡𝑞
 𝑚 

 , 𝑞 ≥ 𝐾 𝑚 . Integrating (4.16) from 𝑠𝑞
 𝑚 

 to 𝑡𝑞
 𝑚 

 yields 

𝑦  𝑡𝑞
 𝑚 

, 𝜙𝑚 ≥ 𝑦  𝑠𝑞
 𝑚 

, 𝜙𝑚 exp    −𝑑3 𝑡 − 𝑑 𝑡 𝑀𝑦 
𝑡𝑞
 𝑚  

𝑠𝑞
 𝑚  

𝑑𝑡  

or  
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  𝑑3 𝑡 + 𝑑 𝑡 𝑀𝑦 
𝑡𝑞
 𝑚  

𝑠𝑞
 𝑚  𝑑𝑡 ≥ ln 𝑚 + 1    for    𝑞 ≥ 𝐾 𝑚  

thus from the boundedness of 𝑑3 𝑡 + 𝑑 𝑡 𝑀𝑦 , we have 

𝑡𝑞
 𝑚 

− 𝑠𝑞
 𝑚 

→ +∞    as   𝑚 → +∞,   𝑞 ≥ 𝐾 𝑚                                                                     (4.17) 

By (4.9) and (4.17), there are constants 𝑃 > 0 and 𝑁0 > 0, such that 

𝑚𝑦

𝑚 + 1
< 𝛼1 < 𝜀0 ,   𝑡𝑞

 𝑚 
− 𝑠𝑞

 𝑚 
> 2𝑃,                                                      (4.18) 

and  

 𝜓𝜀0
 𝑡 

𝛼

0

𝑑𝑡 > 0 

for 𝑚 ≥ 𝑁0 , 𝑞 ≥ 𝐾 𝑚  and 𝛼 ≥ 𝑃. (4.18) implies that 

                      𝑦 𝑡, 𝜙𝑚  < 𝛼1 < 𝜀0 ,     𝑡 ∈  𝑠𝑞
 𝑚 

, 𝑡𝑞
 𝑚 

                              (4.19) 

for 𝑚 ≥ 𝑁0 , 𝑞 ≥ 𝐾 𝑚 . In addition, for 𝑡 ∈  𝑠𝑞
 𝑚 

, 𝑡𝑞
 𝑚 

 ,  we have 

𝑥 1 𝑡, 𝜙𝑚  = 𝑟 𝑡 𝑥2 𝑡, 𝜙𝑚  − 𝐵 𝑡 𝑥1 𝑡, 𝜙 − 𝑑1 𝑡 𝑥1
2 𝑡, 𝜙𝑚  ,

𝑥 2 𝑡, 𝜙𝑚  ≥ 𝐵 𝑡 𝑥1 𝑡, 𝜙𝑚  −  𝑑2 𝑡 +
2𝑎1 𝑡 

𝑎∗
𝛼1 𝑥2

2 𝑡, 𝜙𝑚  ,
 

Let 𝑢1 𝑡 , 𝑢2 𝑡  be the solution of (4.10) with 𝛼 = 𝛼1 and 𝑢𝑖  𝑠𝑞
 𝑚 

 = 𝑥𝑖  𝑠𝑞
 𝑚 

, 𝜙𝑚 (𝑖 = 1,2), then bye 

applying comparison theorem, we have 

𝑥𝑖 𝑡𝑞 , 𝜙𝑚 ≥ 𝑢𝑖 𝑡 ,  𝑖 = 1,2 ,       𝑡 ∈  𝑠𝑞
 𝑚 

, 𝑡𝑞
 𝑚 

 , 

Further, by using Proposition 4.1 and 4.2, there exists an enough large 𝐾1
 𝑚 

> 𝐾2
 𝑚 

 such that 

𝜏𝑖𝑥 < 𝑥𝑖  𝑠𝑞
 𝑚 

, 𝜙𝑚 < 𝑀𝑥  

for 𝑞 ≥ 𝐾1
 𝑚 

. For 𝛼 = 𝛼1, (4.10) has a unique positive 𝜔 −periodic solution  𝑥1𝛼1

∗  𝑡 , 𝑥2𝛼1

∗  𝑡   which is 

globally asymptotically stable. In addition, by the periodicity of (4.10), the periodic solution  𝑥1𝛼1

∗  𝑡 , 𝑥2𝛼1

∗  𝑡   

is uniformly asymptotically stable with respect to compact set 𝛺 =  𝑥 𝜏𝑖𝑥 < 𝑥 < 𝑀𝑥 . Hence, for the given 𝜀0 

in Proposition 4.3, there exists 𝑇0 = 𝑇0 𝜀0 > 𝑃 + 𝜏2, which is independent of 𝑚 and 𝑞, such that 

𝑢𝑖 𝑡 > 𝑥𝑖𝛼1

∗  𝑡 −
𝜀0

2
,  𝑖 = 1,2 ,     as    𝑡 > 𝑇0 + 𝑠𝑞

 𝑚 
. 

Thus by using (4.11), 
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𝑢𝑖 𝑡 > 𝑥𝑖
∗ 𝑡 − 𝜀0 ,  𝑖 = 1,2 ,   as   𝑡 > 𝑇0 + 𝑠𝑞

 𝑚 
. 

By (4.17), there exists a positive integer 𝑁1 ≥ 𝑁0 such that 𝑡𝑞
 𝑚 

> 𝑠𝑞
 𝑚 

+ 2𝑇0 > 𝑠𝑞
 𝑚 

+ 2 𝑃 + 𝜏2  for 

𝑚 ≥ 𝑁1 and 𝑞 ≥ 𝐾1
 𝑚 

. So, we have 

𝑥𝑖 𝑡, 𝜙𝑚  > 𝑥𝑖
∗ 𝑡 − 𝜀0 ,  𝑖 = 1,2 ,     𝑎𝑠   𝑡 ∈  𝑇0 + 𝑠𝑞

 𝑚 
, 𝑡𝑞

 𝑚 
 ,                              4.20  

as 𝑚 ≥ 𝑁1 and 𝑞 ≥ 𝐾1
 𝑚 

. Hence, by using (4.19) and (4.20), from the third equation of system (1.1), one has 

𝑦  𝑡, 𝜙𝑚  ≥ 𝜓𝜀0
 𝑡 𝑦 𝑡, 𝜙𝑚  ,    𝑡 ∈  𝑇0 + 𝑠𝑞

 𝑚 
+ 𝜏2 , 𝑡𝑞

 𝑚 
 , 

Integrating the above inequality from 𝑇0 + 𝑠𝑞
 𝑚 

+ 𝜏2 to 𝑡𝑞
 𝑚 

 leads to 

𝑦  𝑡𝑞
 𝑚 

, 𝜙𝑚 ≥ 𝑦  𝑇0 + 𝑠𝑞
 𝑚 

+ 𝜏2 , 𝜙𝑚 exp   𝜓𝜀0
 𝑡 

𝑡𝑞
 𝑚  

𝑇0+𝑠𝑞
 𝑚  

+𝜏2

𝑑𝑡 , 

that is, 

𝑚𝑦

 1 + 𝑚 2
≥

𝑚𝑦

 1 + 𝑚 2
exp   𝜓𝜀0

 𝑡 
𝑡𝑞
 𝑚  

𝑇0+𝑠𝑞
 𝑚  

+𝜏2

𝑑𝑡 >
𝑚𝑦

 1 + 𝑚 2
, 

This is contradiction. This completes the proof of Proposition 4.4. 

Proof of theorem 3.1.The sufficiency of this theorem 3.1 now follows from Proposition 4.1-4.4. To prove the 

necessity of theorem 3.1, we will show that  

lim
𝑡→+∞

𝑦 𝑡 = 0. 

Under the following condition 

                            𝐴  −𝑑3 𝑡 +
𝑎2 𝑡 𝑥2

∗ 𝑡 − 𝜏2 

𝑘𝑥2
∗2
 𝑡 − 𝜏2 + 𝑥2

∗ 𝑡 − 𝜏2 + 𝑎∗
 ≤ 0                       (4.21) 

In fact, by (4.21), for every given positive constant 𝜀 𝜀 < 1  , there exists 𝜀1 > 0(0 < 𝜀1 < 𝜀) and 𝜀0 > 0 

such that 

𝐴  −𝑑3 𝑡 +
𝑎2 𝑡  𝑥2

∗ 𝑡 − 𝜏2 + 𝜀1 

𝑘 𝑥2
∗2
 𝑡 − 𝜏2 + 𝜀1 +  𝑥2

∗ 𝑡 − 𝜏2 + 𝜀1 + 𝑎∗
− 𝑑 𝑡  𝜀 ≤ −

𝜀

2
𝐴 𝑑 𝑡  < −𝜀0 . 

Since 

𝑥 1 𝑡 = 𝑟 𝑡 𝑥2 𝑡 − 𝐵 𝑡 𝑥1 𝑡 − 𝑑1 𝑡 𝑥1
2(𝑡),

𝑥 2 𝑡 ≤ 𝐵 𝑡 𝑥1 𝑡 − 𝑑2 𝑡 𝑥2
2 𝑡 .
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Hence, for above 𝜀1 there exists a 𝑇 1 > 0 such that 

            𝑥𝑖 𝑡 < 𝑥𝑖
∗ 𝑡 + 𝜀1 ,  𝑖 = 1,2 ,         for    𝑡 ≥ 𝑇 1 .                                                      (4.22) 

It follows from (4.22) that for 𝑡 ≥ 𝑇 1 + 𝜏2, 

𝐴 −𝑑3 𝑡 +
𝑎2 𝑡 𝑥2 𝑡 − 𝜏2 

𝑘𝑥2
2 𝑡 − 𝜏2 + 𝑥2 𝑡 − 𝜏2 + 𝑎∗

− 𝑑 𝑡 𝜀 < −𝜀0 . 

First, we show that there exists 𝑇 2 > 𝑇 1 + 𝜏2, such that 𝑦 𝑇 2  < 𝜀. Otherwise, we have 

𝜀 ≤ 𝑦(𝑡)

≤ 𝑦 𝑇 1 + 𝜏2 exp    −𝑑3 𝑠 +
𝑎2 𝑠 𝑥2 𝑠 − 𝜏2 

𝑘𝑥2
2 𝑠 − 𝜏2 + 𝑥2 𝑠 − 𝜏2 + 𝑎∗

− 𝑑 𝑠 𝜀 𝑑𝑠
𝑡

𝑇 1 +𝜏2

 

≤ 𝑦 𝑇 1 + 𝜏2 exp{−𝜀0(𝑡 − (𝑇 1 + 𝜏2) )} → 0 

 

as 𝑡 → +∞. So, 𝜀 ≥ 0, which is a contradiction. 

Second, we show that  

                           𝑦 𝑡 ≤ 𝜀 exp 𝑀 𝜀 𝜔 for   𝑡 ≥ 𝑇 2 ,                                            4.23  

where 

𝑀 𝜀 = max
𝑡∈ 0,𝜔 

 𝑑3 𝑡 +
𝑎2 𝑡 𝑥2 𝑡 − 𝜏2 

𝑘𝑥2
2 𝑡 − 𝜏2 + 𝑥2 𝑡 − 𝜏2 + 𝑎∗

+ 𝑑 𝑡 𝜀  

is bounded for 𝜀 ∈  0,1 . Otherwise, there exists a 𝑇 3 > 𝑇 2  such that 

𝑦 𝑇 3  > 𝜀 exp 𝑀 𝜀 𝜔 . 

By the continuity of 𝑦 𝑡 , there must exists 𝑇 4 ∈  𝑇 2 , 𝑇 3   such that 𝑦 𝑇 4  = 𝜀 and 𝑦 𝑡 > 𝜀 for 

𝑡 ∈ (𝑇 4 , 𝑇 3 ]. 

Let 𝑃1 be the nonnegative integer such that 𝑇 3 ∈  𝑇 4 + 𝑃1𝜔, 𝑇 4 +  𝑃1 + 1 𝜔 . By (4.22), we have 

𝜀 exp 𝑀 𝜀 𝜔 < 𝑦 𝑇 3  

< 𝑦(𝑇 4 exp    −𝑑3 𝑡 +
𝑎2 𝑡 𝑥2 𝑡 − 𝜏2 

𝑘𝑥2
2 𝑡 − 𝜏2 + 𝑥2 𝑡 − 𝜏2 + 𝑎∗

− 𝑑 𝑡 𝜀 
𝑇 3 

𝑇 4 
𝑑𝑡 

    = 𝜀 exp   + exp 
𝑇 3 

𝑇 4 +𝑃1𝜔

𝑇 4 +𝑃1𝜔

𝑇 4 
  −𝑑3 𝑡 +

𝑎2 𝑡 𝑥2 𝑡 − 𝜏2 

𝑘𝑥2
2 𝑡 − 𝜏2 + 𝑥2 𝑡 − 𝜏2 + 𝑎∗

− 𝑑 𝑡 𝜀 𝑑𝑡

< 𝜀 exp    −𝑑3 𝑡 +
𝑎2 𝑡 𝑥2 𝑡 − 𝜏2 

𝑘𝑥2
2 𝑡 − 𝜏2 + 𝑥2 𝑡 − 𝜏2 + 𝑎∗

− 𝑑 𝑡 𝜀 
𝑇 3 

𝑇 4 +𝑃1𝜔

𝑑𝑡 

    ≤ exp 𝑀 𝜀 𝜔 .

 

Which is a contradiction. This shows that (4.23) holds. By the arbitrariness of 𝜀, it immediately follows that 

𝑦 𝑡 → 0 as 𝑡 → +∞. This completes the proof of Theorem 3.1. 

Proof of theorem 3.2. The proof of theorem 3.2 is similar to that of the proof of Proposition 4.1-4.4 in 

theorem 4.1, only with a slightly modification, we omit the detail here. 
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