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Abstract: Effect of slip velocity on blood flow through an arterial stenosis which is developed 

along a tapering wall is studied here. A uniform catheter is inserted in a stenosed tube. Blood is 

assumed to behave like Newtonian fluid. No slip as well as slip condition is taken in the present 

paper, at the arterial wall a velocity slip condition is employed and a no slip at the catheter 

boundary. Analytic expressions are obtained for different flow parameters and their behavior 

discussed through graphs. For the numerical solution of the problem, which is described by Navier-

Stokes equations with appropriate boundary conditions, the Perturbation method is adopted. It is 

found that due to the introduction of an axial slip velocity and flow rate increases but wall shear 

stress decreases. The effect of tapering is also seen in the present model. 
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1. Introduction  

One major type of arterial disease is atherosclerosis in which localized deposits and 

accumulation of cholesterol and lipid substances, as well as proliferation of connective 

tissues cause a partial reduction in the arterial cross-sectional area (stenosis) and a 

considerable increase in the wall stiffness. Tu and Deville (1992) gave an idea that the 

assumption of Newtonian behavior of blood is acceptable for high shear rate flow, e.g. in 

the case of flow through large arteries. It has also been pointed out that in some diseased 

conditions, e.g. patients with severe myocardial infarction, cerebrovascular diseases and 

hypertension, blood exhibits remarkable non-Newtonian properties. 

 

 It is true that the Casson fluid model can be used for moderate shear rates γ < 10 

s−1 in smaller diameter tubes whereas, the Herschel–Bulkley fluid model can be used at 

still lower shear rate of flow in very narrow arteries where the yield stress is high. Also 

Herschel–Bulkley fluid model can be reduced to that of power law, Bingham and 

Newtonian fluid models by suitable choice of the parameters. The same model can be used 

http://www.scitecresearch.com/journals
mailto:geeta05_hbti@rediffmail.com


 
 Volume 15, Issue 2  available at www.scitecresearch.com/journals/index.php/jprm                               2595| 

 

 

for larger arteries where the effect of yield stress can be ignored by Maruti et al. 

(2008).Sankar and Hemalatha (2007) have mentioned that, for tube diameter 0.095 mm, 

blood behaves like H-B fluid rather than power law and Bingham fluids.Mandal (2005)has 

considered an unsteady analysis of non-Newtonian blood flow through tapered arteries with 

a stenosis. 

 

In recent years, many researchers have investigated the tapered angles in the clinical 

study of human arterial blood flow.How and Black (1987) investigated that the study of 

blood flow through tapered tube is important not only for an understanding of the behavior 

of the marvelous body fluid in arteries, but also for the design of prosthetic blood 

vessels.Guyton (1970) has found in human systems, there prevail different geometries in 

blood vessels such as, circular, branched, bifurcated, tapered, inclined etc.Biswas and Paul 

(2012)have been investigated blood flow through an inclined tapered artery for Newtonian 

fluid. Some of them have divided the stenosed arteries into three types of non-tapered 

angle, divergent tapered angle and convergent tapered angle to explore the relationship 

between the arterial stenosis and tapered angles. 

 

Mu et. al (2013) have seen the effect of tapered angles in an artery on distribution of 

blood flow pressure with gravity.Arora (2011) has designed an ANN model to study the 

effect of blood flow and cross sectional area through tapered artery with mild stenosis , 

considering blood flow as a two-fluid model with the suspension of all the erythrocytes in 

the core region as Herschel-Bulkley fluid and the plasma in the peripheral layer as 

Newtonian fluid. 
 

Pressure-flow relationship alters the blood flow in a stenosed artery. Sometimes, for 

some clinical purposes, catheters are inserted in arteries. The pressure-flow relationship 

changes appreciably when a catheter is inserted in a stenosed artery. Blood flow models 

through catheterized stenosed artery have been proposed by Jayaraman (1995). Biswas et 

al. (2003, 2011) described blood flow in annular region of a catheterized stenosed 

artery.Mekheimer et al. (2008) described the micropolar fluid model for blood flow through 

a tapered artery with a stenosis. Verma and Parihar (2010) have studied the effects of 

stenosis and hematocrit on the flow rate, wall shear stress, and resistance parameter for 

Newtonian fluid through the tapered artery.The problem of blood flow through a stenosesd 

segment of an artery where the rheology of the blood is described by the Herschel Bulkley 

model has been explained by Kumar et al. (2015).Misra et al. (2018) examined the effects 

of catheterization on various physiological flow variables when blood flows in a bifurcated 

artery in the presence of stenosis on the endothelium, which is located in the neighborhood 

of the bend. 

 

In the present analysis, we have considered the pulsatile flow of blood to study the 

effects of velocity slip (at the stenotic vessel wall), tapering tube, catheterization of the 

artery on the flow variables for annular blood flow through a catheterized tapering artery 

with the formation of an axially asymmetric mild stenosis, by considering blood to behave 
as a Newtonian fluid. 
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2. Formulation of the problem 
 

Consider a pulsatile flow of blood through a tapered, catheterized artery in the 

presence of slip velocity at the stenotic wall. We consider a steady, laminar and fully 

developed and incompressible flow of blood through the annular region between a 

constricted tapered tube of normal radius 
0

R and a co-axial rigid catheter of radius
1

R . The 

flow geometry of the catheterized tapering vessel is shown in Figure 1. 

 

Mathematical expression for the geometry of stenosed tapered artery is given by eq. (1)Liu 

et. al (2004), 

 

0 0

0

0 0

c o s
( ) 1 c o s

2( )

( )

s z
R m z d z z

zR z

R m z d z z

    
      

   


  



                                (1) 

 

 

where ( )R z  is the radius of the tapered arterial segment in the stenotic region, 0R  is the 

radius of the normal straight artery,   is the angle of tapering, c o ss   is the length of the 

stenosis at the location d for the tapered artery, 0z  is the half length of the stenosis and 

tanm  represents the slope of the tapered vessel. Cylindrical polar coordinate system 

( , , )r z  has been used to analyze the flow field, where z-axis is taken along the axis of the 

artery and ,r   are along the radial and circumferential directions respectively. 

The geometry of tapered stenosed artery is shown in Fig. 1. 
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It is found that the radial velocity being negligibly small can be neglected for low Reynolds 

number in case of mild stenosis. The momentum equations governing the fluid flow are 

given by Schlichting and Gersten (2004).  

 

     1 / ,
pu r r

t z r
 

     
   

(2) 

 

0 ,
p

r





(3) 

 

where u  represent the axial velocity along z-direction, p  is the pressure,  is the density, t  

the time,   the shear stress. 

 

Blood has been considered as Newtonian fluid described in equation (4) 

 

  ,u

r
   


(4) 

 

where   is the shear viscosity of blood. 

 

The boundary conditions are 

 

  ,
s

u u a t r R z                                                                                                          (5)

1
0 ,at ru R 

                                                                                                                     
(6)  

 

where 
s

u  is the slip velocity at the stenotic wall, 
1

R  is the radius of the catheter. 

Since the pressure gradient is the function of z  and t , we take 

 

   0 1
, c o s , 0 ,

p
z t A A t t

z


 
  

                                                                                         
(7) 

 

where 
0

A  is the steady state pressure gradient,
1

A  is the amplitude of the fluctuating 

component, 2 ,f   where 
p

f  is the pulse rate frequency. 

 

We introduce the following non-dimensional variables 
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(8) 

The non-dimensional momentum equation (2) can be written as 

 

     
2 (

) 4 1  2 / ,
u

eC o s t r r
t r

 


  
 

                                                                          (9) 

 

 

where 2 2
( ),

p o
R     is called Womersley frequency parameter. 

 

 

Equation (4) can be written as  

 

1
,

2

u

r



 

                                                                                                                          
(10) 

 

On substituting the value of  in Equation (9) we have 

 

     
2 (

) 4 1  1 /
u ueC o s t r r

t rr


   
 

.                                                                  (11) 

 

The boundary conditions (5) and (6) reduces to 

 

  ,
s

u u a t r R z 
                                                                                                            

(12)  

1
0  u a t r R  ,                                                                                                                   (13) 

 

The geometry of an arterial stenosis in dimensionless form is given by 
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0

0 0

c o s
( ) 1 c o s

2( )

( )
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R m z d z z

    
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   


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

                                    (14) 

 

 

The non-dimensional volumetric flow rate and effective viscosity is defined by equation 

(15) and (16) respectively. 

 



 
 Volume 15, Issue 2  available at www.scitecresearch.com/journals/index.php/jprm                               2599| 

 

 

 

 

 
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, 4  , ,
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Q z t r u z r t d r                                                                                                (15) 

 

Where  
 

 
4

0 0

,
,

8
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Q z t

A R


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Effective viscosity  
e

  defined as  

 

 

 

4
( )

,
e

p
R z

z

Q z t





 
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 

 

4
1  

,e

R e c o s t

Q z t





                                                                                               

(16) 

 

3. Method of Solution: 
 

Let the velocity u can be expressed in the following form 

 

     
2

0 1
, , , , , ,u z r t u z r t u z r t                                                                                 (17) 

 

Substituting Eq.(17) in Eq. (11), (12), (13) respectively and equating constant term and 2
  

term we get 

 

0 4 (1 c o s )
u

r r e t
rr

  
   

  
                                                                                           (18) 

 

 

0 1
1u u

r
t rr r

    
       

                                                                                                  (19) 

 

 0 1
0  

s
u u and u a t r R z  

                                                                                          
(20) 

 

0 1 1
0 0  u a n d u a t r R  

                                                                                              
(21) 

 

On solving Eq. (18) and Eq. (19) using boundary conditions we get the expression for 

velocity as, 
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The wall shear stress 
w

 can be obtained as 
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Volumetric flow rate Q(z ,t) can be obtained as  
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The expression for effective viscosity
e

  can be obtained from equation (16) and (24).  

 

4. Results and Discussion 
 

In the present analysis our aim is to study the effect of slip velocity and tapering of 

an artery in a catheterized stenosed artery assuming blood as a Newtonian fluid. The 

tapered effect is one of the important factors leading to nonlinearity in such hemodynamic 

parameters as blood flow pressure. The expressions for different flow parameters are 

obtained by solving the governing equation of flow using perturbation method. Computer 

codes are developed for the numerical evaluation of analytical results using MATLAB. 

The following values of different parameters are used in the present model for the 

quantitative analysis.
1

0 .2 , 0 .2 , 1, 0 .4
s

R e     . 

 

Fig.2 shows the variation of axial velocity with the radial distance showing the 

effect of different tapering angles and slip velocities. Also a comparison of velocity profile 

for different time values has been shown in Fig. 3. Velocity profile in fig. 2 indicates that 

the axial velocity of blood decreases with the increase in the tapering angle of the artery. It 

also shows that velocity is higher for flows with slip than that of no slip case. Fig. 3 shows 

the parabolic profile for axial velocity for different time values. As time increases velocity 

becomes low. 

 

 Fig. (4-6) shows the variation of wall shear stress with the catheter radius and axial 

distance z for different slip velocity and time. Fig. 4 reveals that the increase of catheter 

radius, increases the wall shear stress.Wall shear stress is reduced with the application of 

slip velocity. It further decreases with the increase in slip velocity.
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Fig. (5-6)depicts that as axial distance z increases from 
0

z z  to 0z  , wall shear stress 

increases from the minimum value at the mouth of the constricted annular region to the 

maximumone at the throat of the annulus. After that it decreases from the maximum value 

(at z=0) to the lower one at the other end of the annular stenotic region
0

z z . However 

throughout this variation, wall shear stress is low with the application of slip velocity at the 

flow boundary and also decreses with the increase in time. 

 

From Fig. (7-9) it is found that flow rate changes with the axial direction in non-uniform 

co-axial region. It is minimum at the throat of the stenosis, in the two equal regions 

0
0z z    and 

0
0 z z   flow rate increases from the smallest value to the greater values 

at the initiation or the termination of the stenosis. Fig. 7 shows the variation of volumetric 

flow rate with the axial distance z for different values of tapered angles. It is found that 

flow rate in artery with tapering is low than without tapering also increase in tapering angle 

further reduces the flow rate. 

 

Fig. 8 shows that flow rate obtained with the wall slip is more than that obtained with no 

slip at the boundary. As the magnitude of slip velocity is increases flow rate becomes 

higher and higher. Flow rate also depends on time is shown in fig.9. it decreases with the 

increase in time.  
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Fig. 6 Variation of wall shear stress with the axial 
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4. Conclusion 

 
In the present analysis combined influence of several flow parameters like slip velocity, 

catheter radius, tapering geometry, on assuming that blood is represented by Newtonian 

fluid, has been considered. The annular region is spaced within tapering, constricted (-

asymmetric stenosis) wall and a co-axial catheter. Analytical expressions of the important 

flow characteristics such as, velocity, flow rate, wall shear stress and effective viscosity 

variables are obtained and the variations have been shown and discussed through graphs. 

 

In this analysis, it is observed that flow rate accelerated on one hand but wall shear stress 

retarded on the other hand while applying a velocity slip condition at the constricted 

tapering vessel wall.Therefore, bore of the blood vessel could be increased and damages to 

the diseased vessel wall could be reduced by the application of appropriate slip velocity. It 

is therefore necessary to determine an appropriate velocity slip in accordance with the 

stenosis size, artery radius and other physiological situations. It is also found that the 

magnitudes of velocity and flow rate are found to be smaller in the present model than 

those in the non tapering catheterized artery with stenosis. Therefore it is concluded that 

tapering of an artery does not alter the flow pattern. Such models could be used as a device 

in the initiation of atherosclerosis and also in the treatment modalities of cardiovascular 

complications, stroke, thrombosis, renal and sickle cell diseases and other arterial disorders. 
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Fig. 9 Variation of flow rate with the axial distance 

for different values of time.
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