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1Introduction: 

An oligopoly is a market form in which a market or an industry is dominated by small number of 

sellers, called oligopolists. Unlike monopoly, which has no competitor and perfectly & 

monopolistically competitive firm, which has many competitors, an oligopoly firm faces only few 

competitors. An oligopoly has greater market power than monopolistic competition and perfect 

competition, but not as much market power as monopoly. Since there are few participants in this type 

of market, each oligopolist is aware of actions of the others. Because of the thorough competition, it 

is often called as „cut-throat‟ competition. Many industries in the developed economies are 

of oligopolistic form of market. This form of market is an emerging phenomenon not only in 

domestic but in international market as well. Few examples of typical oligopoly markets are: (a) 

Credit Card (Visa, Master Card, American Express & Discover are competing in the global market), 

(b) Soft Drink (Pepsi & Coca Cola are competing in Indian  Market), (c) Automobile industry 

[specially family car manufacturing] (Maruti-Suzuki, Tata, Hyundai, Honda,  Toyota, General 

Motors & Ford are competing in the Indian market).A market with just two firms is called a duopoly. 

Obviously, a duopoly is the simplest sort of oligopoly, and many of the concepts and results that we 

will describe can be extended to the case of an oligopoly withmore than two firms. Duopoly analysis 

by economists dates back to the 19th century. Some ofthe central concepts of duopoly analysis have 

to do with strategic behavior, and the analysis of strategic behavior is the heart of the 20th century 

discipline called game theory. Therefore, game theory builds on duopoly theory. It is one of the most 

important theories that is used to describe and study such competition among competitors statically 

and dynamically. The dynamic case in which the equilibrium point (Nash equilibrium) is sought and 
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its complex dynamic characteristics are of main interest have been studied in literature [1]-[14]. 

There are two fundamentally different approaches to duopoly theory. The first assumes that 

duopolists compete with each other through their choices of quantity: each firm decides on the 

quantity it should produce and sell in the market, contingent on the other firm‟s quantity. The second 

assumes that duopolists compete with each other through their choices of price: each firm decides on 

the price it should charge, contingent on the price the other firm is charging. The French 

mathematician and economist Antoine Augustin Cournot (1801-1877), who wrote about duopoly in 

1838, took the first approach. Another French mathematician, Joseph Louis Francois Bertrand (1822-

1900), in 1883, developed the second approach.  

The Cournot duopolistic game has been studied intensively in literature. Agiza and Elsadany[14] 

have modeled a Cournot duopolistic game on which one of the competitors is heterogeneous. They 

have studied the proposed game in details and particularly when the game‟s fixed point becomes 

unstable due to bifurcation occurred. In [15], a heterogeneous duopoly game with rational and 

adaptive competitors was examined. The authors have studied the impact of quadratic cost function 

on the complex behavior of the game and came up with the conclusion that introducing nonlinearity 

in cost generalizes the implications of heterogeneous Cournot duopoly with adjusting strategies. 

Other interesting works related to Cournot duopolistic games can be in literature [16], [17] and [18]. 

In Cournot duopoly games, Nash equilibrium or Cournot equilibrium is the basic solution in such 

games and reflects the rationality of the firms within games. Since, firm rationality contradicts with 

Pareto optimality (in cooperation case), and then Nash equilibrium in duopoly game is not Pareto 

optimal. In other words, Pareto optimality in such games cannot be achieved by firm interest‟s 

maximization. As reported in [19] and [20], theoretical and experimental studies have leaded up to 

several ways by which the cooperative solution can be obtained. For instance, in the well-known 

short game of prisoner‟s dilemma, the Nash equilibrium point is Pareto optimal as cooperation is 

obtainable. However, for the repeated games, emergence of cooperation among competitors (firms) 

may be possible to achieve and then cooperation in iterated prisoner‟s dilemma can be explained. In 

[21], it has been shown that the conditional cooperative strategy such as the so-called “tit-for-tat” 

may be used to achieve cooperation among firms in repeated games. 

The emergence of cooperation has attracted much of interest for a long time and it would look like 

even pleonastic to report some of the recent and important papers in this field. In [22], setups based 

on discrete, continuous and mixed strategy have been proposed in the social dilemma games and 

their performance on networks populations has been shown. A useful source of information on the 

evolutionary games on multilayer networks and particularly in the evolution of cooperation is 

reported in details in [23]. An evolutionary dictator game model is introduced in [24] by which the 

evolution of altruism and fairness of populations has been studied. In this study, the influence of 

assignation on heterogeneous populations has been investigated. An important review of the 

universality of scaling for the dilemma strength in evolutionary games has been reported in [25]. The 

review has shown that social viscosity or spatial structure causes the existing scaling parameters to 

fail. In addition to the review has developed new parameters to resolve the paradox of cooperation 

benefits. Two-layer scale-free networks has been introduced in [26] to show evolution of 

cooperation. In [27], the authors have demonstrated that the influence of simple strategy-independent 

form may expand the scope of cooperation on structured populations. For more related works, 
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readers are advised to have a look on some important papers [28] and [29] and a more informational 

report [30]. 

Bounded rationality and Puu incomplete information are two different approaches that have been 

recently used to study monopoly and duopoly markets. Bounded rational players (firms) update their 

production strategies based on discrete time periods and by using a local estimate of the marginal 

profit. With such local adjustment mechanism, the players are not requested to have a complete 

knowledge of the demand and the cost functions [11], as all they need to know is how the market 

will response to small production changes, in order to adjust their production levels by means of a 

local estimate of the marginal profit. On the other hand, Puu[12] has recently introduced the so-

called Puu incomplete information in which, more realistically, a firm does not need to know the 

local slope of the profit function to choose the quantity to produce in the next time step ( 

see[31] and [10]).Instead, all it needs is its profit and the quantities produced in the past two times. 

In this paper, a description of a Cournot duopoly model based on a more general form of downward 

sloping and concave inverse demand function than the one used in [32] is explored. The two-

dimensional map whose iteration gives the time evolution of the output of the two competing firms is 

defined. Existence and stability of equilibrium points are investigated analytically and numerically. 

Cooperation in duopoly is considered with “tit-for tat” behavior and control. 

2  Duopoly Model: 

 Assume there are two firms in the market producing a homogenous good. Production decisions 

occur at discrete times𝑡 = 0,1,2, …  at time 𝑡, firm one produces 𝑞1,𝑡 units of the good; firm 2 

produces 𝑞2,𝑡  units of the good. The total amount produced is  𝑄𝑡 = 𝑞1,𝑡 + 𝑞2,𝑡 . We consider the 

inverse demand function𝑝 = 𝑓 𝑄𝑡 = 𝑎 − 𝑏𝑄𝑡
𝑛 , 𝑛 ∈ ℝ , 𝑎 > 0, 𝑏 > 0. We assume firm i has the 

production cost function 𝐶𝑖 𝑞𝑖,𝑡 , 𝑖 = 1,2,given by 𝐶1 𝑞1,𝑡 = 𝑐1𝑞1,𝑡
2 + 𝑐2𝑞1,𝑡 + 𝑐3, and𝐶2 𝑞2,𝑡 =

𝑑1𝑞2,𝑡
2 + 𝑑2𝑞2,𝑡 + 𝑑3, and where𝑐𝑗 > 0,   𝑑𝑗 > 0, 𝑗 = 1,2,3, and 𝑎 > max 𝑐2, 𝑑2 .   

The cost functions 𝐶𝑖 𝑞𝑖 ,𝑡 , 𝑖 = 1,2  are non-negative, convex, and has positive first derivative. The 

profit function for the ith firm, may be written, with 𝑞𝑡  denoting the vector of outputs  

 𝑞1,𝑡 , 𝑞2,𝑡 at time 𝑡, as ∶ 

𝜋𝑖 𝑞𝑡 = 𝑞𝑖,𝑡𝑓 𝑄𝑡 − 𝐶𝑖 𝑞𝑖 ,𝑡 ,     𝑖 = 1,2 

or𝜋𝑖 𝑞𝑡 = 𝑞𝑖,𝑡 𝑎 − 𝑏𝑄𝑡
𝑛 − 𝐶𝑖 𝑞𝑖,𝑡 ,    𝑖 = 1,2 

The empirical estimate of the marginal profit is given by  

𝜕𝜋𝑖 𝑞𝑡 

𝜕𝑞𝑖 ,𝑡
= 𝑎 − 𝑏𝑄𝑡

𝑛 − 𝑛𝑏𝑞𝑖 ,𝑡𝑄𝑡
𝑛−1 −

𝑑𝐶𝑖 𝑞𝑖 ,𝑡 

𝑑𝑞𝑖,𝑡
,     𝑖 = 1,2 

Then the dynamical system of two players in a Cournot game, which describes the time evolution of 

the outputs of the two competing firms, is  
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𝑞𝑖,𝑡+1 = 𝑞𝑖,𝑡 + 𝛼𝑖 𝑞𝑖,𝑡 
𝜕𝜋𝑖 𝑞𝑡 

𝜕𝑞𝑖,𝑡
                    𝑖 = 1,2          (1) 

Where 𝛼𝑖(𝑞𝑖,𝑡) is a positive function that gives the extent of the production variation of the 𝑖th firm 

according to its marginal profit. (1) can then be written as: 

 
 
 

 
 𝑞1,𝑡+1 = 𝑞1,𝑡 + 𝛼1(𝑞1,𝑡)  𝑎 − 𝑏𝑄𝑡

𝑛 − 𝑛𝑏𝑞1,𝑡𝑄𝑡
𝑛−1 −

𝑑𝐶1 𝑞1,𝑡 

𝑑𝑞1,𝑡
 

𝑞2,𝑡+1 = 𝑞2,𝑡 + 𝛼2(𝑞2,𝑡)  𝑎 − 𝑏𝑄𝑡
𝑛 − 𝑛𝑏𝑞2,𝑡𝑄𝑡

𝑛−1 −
𝑑𝐶2 𝑞2,𝑡 

𝑑𝑞2,𝑡
 

  

We take the function𝛼𝑖 𝑞𝑖 ,𝑡  ,   𝑖 = 1,2, as linear, that is:𝛼𝑖 𝑞𝑖,𝑡 = 𝑘𝑖𝑞𝑖,𝑡 , where 𝑘𝑖  is a positive 

constant, which is called the speed of adjustment of the𝑖th firm. 

 
𝑞1,𝑡+1 = 𝑞1,𝑡 + 𝑘1𝑞1,𝑡  𝑎 − 𝑏𝑄𝑡

𝑛−1   𝑛 + 1 𝑞1,𝑡 + 𝑞2,𝑡 − 2𝑐1𝑞1,𝑡 − 𝑐2 

𝑞2,𝑡+1 = 𝑞2,𝑡 + 𝑘2𝑞2,𝑡  𝑎 − 𝑏𝑄𝑡
𝑛−1   𝑛 + 1 𝑞2,𝑡 + 𝑞1,𝑡 − 2𝑑1𝑞2,𝑡 − 𝑑2 

              (2) 

 

2.1 Existence of equilibrium points and local stability: 

Equilibrium points of the nonlinear dynamical system (2) are given by the solutions to the 

following nonlinear dynamical system, obtained by letting  

𝑞𝑖,𝑡+1 = 𝑞𝑖 ,𝑡  ,     𝑖 = 1,2in (2) 

 
𝑘1𝑞1,𝑡  𝑎 − 𝑏𝑄𝑡

𝑛−1   𝑛 + 1 𝑞1,𝑡 + 𝑞2,𝑡 − 2𝑐1𝑞1,𝑡 − 𝑐2 = 0

𝑘2𝑞2,𝑡  𝑎 − 𝑏𝑄𝑡
𝑛−1   𝑛 + 1 𝑞2,𝑡 + 𝑞1,𝑡 − 2𝑑1𝑞2,𝑡 − 𝑑2 = 0

  

There are four equilibrium points given by: 

𝐸0 = (0,0),       𝐸1 = (𝑞 1, 0),       𝐸2 = (0, 𝑞 2),               𝐸3 = (𝑞1
∗, 𝑞2

∗), 

The equilibrium points   𝐸0, 𝐸1, 𝐸2are called the boundary equilibrium points, and the 

equilibrium point 𝐸3 is called Nash equilibrium. Now, we show the existence of   𝑞 1and𝑞 2. 

Letting 𝑞1 ≠ 0, and   𝑞2 = 0  in system (2), we get the following equation: 

𝑏 𝑛 + 1 𝑞1
𝑛 + 2𝑐1𝑞1 + 𝑐2 − 𝑎 = 0                 
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Figure 2. The Maximum Lyapunov Exponent versus k.

Define the function𝜑 𝑞1 = 𝑏 𝑛 + 1 𝑞1
𝑛 + 2𝑐1𝑞1 + 𝑐2 − 𝑎. It can be shown easily that  𝜑 𝑞1  is a 

strictly increasing convex function, and that𝜑 0 = 𝑐2 − 𝑎 < 0,and 𝜑  
𝑎−𝑐2

2𝑐1
 = 𝑏(𝑛 + 1)  

𝑎−𝑐2

2𝑐1
 
𝑛

>

0. From these properties of the function 𝜑 𝑞1 , we conclude, from Intermediate value theorem, that 

there exists a unique value of 𝑞1 , call it 𝑞 1 , such that 𝜑 𝑞
1
 = 0. Similarly, the function𝛾 𝑞2 ∶=

𝑏 𝑛 + 1 𝑞2
𝑛 + 2𝑑1𝑞2 + 𝑑2 − 𝑎  has a unique value𝑞 2  such that 𝛾 𝑞

2
 = 0. Byapplying Theorem 1 

[33], we conclude the existence of Nash equilibrium𝐸3. 

Numerical experiments are simulated to investigate the stability of the two-dimensional system (2).  

In what follows, we take for simplicity 𝑘𝑖 = 𝑘, 𝑖 = 1,2.The dynamical behavior of map (2) is carried 

out by fixing the model parameters as follows: a = 2.0, b =0.3, c1=0.11, c2=0.15, d1=.9, d2=0.25, 

n=3. Fig. 1 shows the bifurcation diagram of the dynamic system with initial conditionq1_0 =0.1, 

and q2_0 = 0.1.The equilibrium point is𝑞1 = 0.836 and 𝑞2 = 0.383 and is locally stable when 𝑘 lies 

in the interval [0.0, 0.412].For ≥ 0.412 , there is transition to chaos via a sequence of period-

doubling bifurcations. In Fig.2 , the Maximum Lyapunov Exponent (MLE) corresponding to the 

bifurcation diagram given in Fig. 1 is plotted. Positive values of maximum Lyapunov exponents 

show that the solution have chaotic behavior. Negative maximum Lyapunov exponents corresponds 

to a stable coexistence of the system. Fig. 3 exhibits the chaotic attractor of the map (2) for the same 

parameters. One of the properties of a dynamical system to be chaotic is its sensitivity to initial 

conditions. In Fig. 4 the sensitivity of the system (when the system loose stability) is carried out with 

the previous values of the parameters. The figure presents two orbits of the first firm when 𝑞1,1 = 0.1 

and with some deviation  𝑞1,1 = 0.1 + 0.0001. At the beginning, the two orbits are identical, then the 

distinction between them builds up rapidly. 
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Figure 1. Bifurcation Diagram of q1 and q2 of system (2) versus k.Fig. 1Bifurcation Diagram of q1 and q2 of system (2) versus k 
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2.2 Case of linear production cost function : 

In case, the production cost functions are linear, that is 𝐶 𝑞𝑖,𝑡 = 𝑐𝑖𝑞𝑖 ,𝑡 + 𝑑𝑖   ,   where 

𝑐1 = 𝑐2 = 𝑐 > 0,and  𝑎 > c, system (2) becomes  

 
𝑞1,𝑡+1 = 𝑞1,𝑡 + 𝑘1𝑞1,𝑡  𝑎 − 𝑏𝑄𝑡

𝑛−1   𝑛 + 1 𝑞1,𝑡 + 𝑞2,𝑡 − 𝑐 

𝑞2,𝑡+1 = 𝑞2,𝑡 + 𝑘2𝑞2,𝑡  𝑎 − 𝑏𝑄𝑡
𝑛−1   𝑛 + 1 𝑞2,𝑡 + 𝑞1,𝑡 − 𝑐 

              (3) 

The equilibrium points of system (3) are obtained explicitly and given by 

𝐸0 = (0,0),   𝐸1 =   
𝑎−𝑐

 𝑛+1 𝑏
 

1/𝑛

, 0 ,     

𝐸2 =  0,  
𝑎−𝑐

 𝑛+1 𝑏
 

1/𝑛
 ,   𝐸3 =   

𝑎−𝑐

2𝑛−1 𝑛+2 𝑏
 

1/𝑛

,  
𝑎−𝑐

2𝑛−1 𝑛+2 𝑏
 

1/𝑛
 , where 𝐸3 is the 

only Nash equilibrium. 

The local stability of the fixed points of the two dimensional system (3) depends on the 

eigenvalues of the Jacobian matrix of (3).  

The Jacobian matrix at the point (𝑞1, 𝑞2)is given by 𝐽(𝑞1, 𝑞2) =  
𝐽11 𝐽12

𝐽21 𝐽22
   , where: 

𝐽11 = 1 + 𝑘1 𝑎 − 𝑐 − 𝑏𝑄𝑛−2   𝑛 + 1 𝑞1 + 𝑞2 
2 + 𝑛𝑞1𝑞2   

𝐽22 = 1 + 𝑘2 𝑎 − 𝑐 − 𝑏𝑄𝑛−2   𝑛 + 1 𝑞2 + 𝑞1 
2 + 𝑛𝑞1𝑞2   

𝐽12 = −𝑛𝑘1𝑏𝑄
𝑛−2(𝑛𝑞1

2 + 𝑞1𝑞2) 
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Figure 4. Sensitivity of system (2).Fig. 4 Chaos Sensitivity of system (2) 
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Figure 3. Chaotic Attractor of system (2).Fig. 3 Chaotic Attractor of system (2) 
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𝐽21 = −𝑛𝑘2𝑏𝑄
𝑛−2(𝑛𝑞2

2 + 𝑞1𝑞2) 

At the equilibrium point  𝐸0 = (0,0), we have   

𝐽(0,0) =  
1 + 𝑘1(𝑎 − 𝑐) 0

0 1 + 𝑘1(𝑎 − 𝑐)
  

whose eigenvalues are 𝜆1 = 1 + 𝑘1 𝑎 − 𝑐 > 1, and𝜆2 = 1 + 𝑘2(𝑎 − 𝑐) > 1. Hence the 

equilibrium point 𝐸0 is unstable.   At the equilibrium point   𝐸1 =   
𝑎−𝑐

 𝑛+1 𝑏
 

1/𝑛

, 0 ,  we 

have   

𝐽(𝐸1) =  
1 − 𝑘1𝑛(𝑎 − 𝑐) −𝑛2𝑘1(𝑎 − 𝑐) 𝑛 + 1 

0 1 + (𝑛2𝑘2(𝑎 − 𝑐) 𝑛 + 1) 
  

whose eigenvalues are 𝜆1 = 1 − 𝑘1𝑛 𝑎 − 𝑐 < 1, and 

𝜆2 = 1 + 𝑛2𝑘2(𝑎 − 𝑐) 𝑛 + 1 > 1. Hence, the equilibrium point 𝐸1 is unstable.  At the 

equilibrium point 𝐸2 =  0,  
𝑎−𝑐

 𝑛+1 𝑏
 

1/𝑛
 ,  we have   

𝐽(𝐸2) =  
1 + (𝑛𝑘1(𝑎 − 𝑐) (𝑛 + 1)) 0

−𝑛2𝑘2(𝑎 − 𝑐) 𝑛 + 1 1 − 𝑘2𝑛(𝑎 − 𝑐)
  

whose eigenvalues are 𝜆1 = 1 + [𝑛𝑘1(𝑎 − 𝑐) (𝑛 + 1)] > 1, and𝜆2 = 1 − 𝑘2𝑛(𝑎 − 𝑐) <

1. Hence, the equilibrium point 𝐸2 is unstable. 

At the Nash equilibrium point  𝐸3 =   
𝑎−𝑐

2𝑛−1 𝑛+2 𝑏
 

1/𝑛

,  
𝑎−𝑐

2𝑛−1 𝑛+2 𝑏
 

1/𝑛
 , we have   

𝐽(𝐸3) =  
1 − (𝑘1𝑛(𝑛 + 3)(𝑎 − 𝑐) 2(𝑛 + 2)) −𝑘1𝑛(𝑛 + 1)(𝑎 − 𝑐) 2(𝑛 + 2) 

−𝑘2𝑛(𝑛 + 1)(𝑎 − 𝑐) 2(𝑛 + 2) 1 − (𝑘2𝑛(𝑛 + 3)(𝑎 − 𝑐) 2(𝑛 + 2)) 
  

The characteristic equation is𝑝 𝜆 = 𝜆2 − 𝑇𝑟 𝐽 𝐸3  + 𝐷𝑒𝑡(𝐽 𝐸3 = 0,   where 

𝑇𝑟 𝐽 𝐸3  is the sum of the main diagonal entries of the Jacobian matrix𝐽 𝐸3 and 

𝐷𝑒𝑡(𝐽 𝐸3  is the determinant of the Jacobian matrix 𝐽 𝐸3 , that is  

𝑇𝑟 𝐽 𝐸3  = 2 − ((𝑘1 + 𝑘2)(𝑎 − 𝑐)𝑛(𝑛 + 3) 2 𝑛 + 2  ),      and  

𝐷𝑒𝑡(𝐽 𝐸3 ) = 1 − (𝑘1 + 𝑘2)(𝑎 − 𝑐)𝑛(𝑛 + 3) 2 𝑛 + 2  + 𝑘1𝑘2(𝑎 − 𝑐)2 𝑛2 (𝑛 + 2 ) 

According to Jury‟s conditions, the Nash equilibrium point  𝐸3 is locally asymptotically  

stable if  𝑇𝑟 𝐽 𝐸3   < 1 +  𝐷𝑒𝑡(𝐽 𝐸3 < 2   or equivalently: 
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i) 𝐷𝑒𝑡(𝐽 𝐸3 < 1 

ii) 1 −  𝑇𝑟 𝐽 𝐸3  +  𝐷𝑒𝑡(𝐽 𝐸3 > 0 

iii) 1 +  𝑇𝑟 𝐽 𝐸3  +  𝐷𝑒𝑡(𝐽 𝐸3 > 0 

Condition ii) is obviously satisfied. Conditions i) and iii) can be expressed as  

𝑘1 + 𝑘2 > 𝑘1𝑘2
2𝑛 𝑎−𝑐 

𝑛+3
and 𝑘1 + 𝑘2 

𝑛(𝑛+3) 𝑎−𝑐 

𝑛+2
< 4 + 𝑘1𝑘2

𝑛2(𝑎−𝑐)2

𝑛+2
.         

 Therefore 𝐸3 is locally asymptotically stable if the above conditions are satisfied. 

Numerical simulation are carried to show that the stability and period doubling bifurcation to chaos 

for system (3). As in the previous model, for simplicity, 𝑘𝑖 = 𝑘, 𝑖 = 1,2. The parameters are taken to 

be 𝑎 =2.0, b=0.3, c=0.15, n=3. The Nash equilibrium at these values is𝐸3 =(0.6756  , 0.6756). The 

bifurcation diagram in Fig. 5 shows that the trajectories converge to the equilibrium (0.6756, 0.6756) 

for 𝑘 < 0.36 and for𝑘 > 0.36, the Nash equilibrium becomes unstable, period doubling bifurcation 

appears at 𝑘 = 0.36 and finally chaotic behavior occurs. In Fig. 6, the maximal Lyapunov exponent 

is plotted. A positive MLE is usually taken as an indication that the system is chaotic. In the range 

0 < 𝑘 < 0.36, the maximum Lyapunov exponents are negative, corresponding to a stable 

coexistence of the system. While in range 0.36 < 𝑘 < 0.6, most Lyapunov exponents are positive, 

and few are negative. This means that there exist stable fixed points or periodic windows in the 

chaotic band. Fig. 7 exhibits the chaotic attractor of the map (3) for the same parameters 

and𝑘 is fixed to 0.58. In Fig. 8, the sensitivity of the system when the system becomes chaotic is 

carried out with the previous parameters and 𝑘 = 0.58. The figure presents two orbits of the first 

firm when 𝑞1,1 = 0.1 and with some deviation  𝑞1,1 = 0.1 + 0.0001. At the beginning the time series 

are indistinguishable, but after a number of iterations, the difference between them builds  

up rapidly. 
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Figure 5. Bifurcation Diagram of q1 and q2 of system (3) versus k.
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Fig. 6Maximum Lyapunov Exponent of system (3) versus k 
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3 Cooperative Duopoly Model : 

In this section, the same assumptions made on the previous model (2) are considered. In 

particular, firm i has a quadratic production cost function 𝐶𝑖 𝑞𝑖 ,𝑡 = 𝑐𝑖𝑞𝑖,𝑡
2 + 𝑑𝑖𝑞𝑖,𝑡 +

𝑒𝑖 ,   𝑖 = 1,2,and where𝑐𝑗 ≥ 0, 𝑑𝑗 ≥ 0, 𝑒𝑗 ≥ 0, 𝑗 = 1,2,3, and 𝑎 > max 𝑐1, 𝑐2  . 

 The profit function for the i
th

 ( 𝑖 = 1,2) firm is given by      

𝜋𝑖 𝑞1,𝑡 , 𝑞2,𝑡 = 𝑞𝑖 ,𝑡 𝑎 − 𝑏𝑄𝑡
𝑛 − 𝐶𝑖 𝑞𝑖,𝑡  

= 𝑞𝑖 ,𝑡 𝑎 − 𝑏𝑄𝑡
𝑛 − ( 𝑐𝑖𝑞𝑖,𝑡

2 + 𝑑𝑖𝑞𝑖 ,𝑡 + 𝑒𝑖) ,             𝑖 = 1,2. 

Where  𝑞𝑡 = (𝑞1,𝑡 , 𝑞2,𝑡)and 𝑄𝑡 = 𝑞1,𝑡 + 𝑞2,𝑡 . 

Hence, the empirical estimate of the marginal profit is:  

𝜕𝜋𝑖 𝑞1,𝑡 , 𝑞2,𝑡 

𝜕𝑞𝑖 ,𝑡
= 𝑎 − 𝑏𝑄𝑡

𝑛 − 𝑛𝑏𝑞𝑖 ,𝑡𝑄𝑡
𝑛−1 − 2𝑐𝑖𝑞𝑖 ,𝑡 − 𝑑𝑖 ,      𝑖 = 1,2,                           

  Cooperation under incomplete information is based on the assumption that the firms 

compare their own profits with the cooperative profit. The cooperative profit means the 

profit, which is solved by maximizing the sum of all firms‟ profit. That is: 

𝑚𝑎𝑥 𝜑(𝑞1,𝑡 , 𝑞2,𝑡) = 𝜋1 𝑞1,𝑡 , 𝑞2,𝑡 + 𝜋2 𝑞1,𝑡 , 𝑞2,𝑡  

Next, it is proved that the function 𝜑(𝑞1,𝑡 , 𝑞2,𝑡) is strictly concave, and therefore has a unique global 

maximum. This global maximum is obtained by applying first order optimality conditions to the 

above unconstrained problem. That is, by solving the equation ∇𝜑 𝑞1,𝑡 , 𝑞2,𝑡 = 0 which ca be written 

as:    
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Figure 7. Chaotic Attractor of system (3).
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Figure 8. Sensitivity of system (3). 
Fig. 7 Chaotic Attractor of system (3) 

 

Fig. 8  Chaos Sensitivity of system (3) 
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∇𝜑 𝑞1,𝑡 , 𝑞2,𝑡 =  

𝜕𝜑 𝑞1,𝑡 ,𝑞2,𝑡 

𝜕𝑞1,𝑡

𝜕𝜑 𝑞1,𝑡 ,𝑞2,𝑡 

𝜕𝑞2,𝑡

 =   
𝑎 −  𝑛 + 1 𝑏𝑄𝑡

𝑛 − 2𝑐1𝑞1,,𝑡 − 𝑑1

𝑎 −  𝑛 + 1 𝑏𝑄𝑡
𝑛 − 2𝑐2𝑞2,𝑡 − 𝑑2

 =  
0
0
                     (4) 

Remark 1 If(𝑞1,𝑡 , 𝑞2,𝑡) satisfies (4), then necessarily it satisfies the following relation :   

𝑞1,𝑡 = 𝑞2,𝑡 +
𝑑2−𝑑1

2(𝑐1−𝑐2)
 and if𝑑1 = 𝑑2, then 𝑞1,𝑡 = 𝑞2,𝑡 . 

The Hessian matrix of 𝜑(𝑞1,𝑡 , 𝑞2,𝑡)is given by: 

        𝐻 𝑞1,𝑡 , 𝑞2,𝑡 =  
−𝑛 𝑛 + 1 𝑏𝑄𝑡

𝑛−1 − 2𝑐1 −𝑛 𝑛 + 1 𝑏𝑄𝑡
𝑛

−𝑛 𝑛 + 1 𝑏𝑄𝑡
𝑛 −𝑛 𝑛 + 1 𝑏𝑄𝑡

𝑛−1 − 2𝑐2

 ,   

 

Clearly, 𝐻 𝑞1,𝑡 , 𝑞2,𝑡  is negative definite, and therefore the function 𝜑(𝑞1,𝑡 , 𝑞2,𝑡) is strictly concave, 

which implies that it has a unique global maximum. Let us denote it by  𝑞1
𝑐 , 𝑞2

𝑐 .For the firms, 

 𝑞1
𝑐 , 𝑞2

𝑐  represents the optimal cooperative output, and 𝜋𝑐 =
𝜋1 𝑞1

𝑐 ,𝑞2
𝑐 +𝜋2 𝑞1

𝑐 ,𝑞2
𝑐 

2
  , the cooperative 

profit.                                                                                                                                                        

  For achieving the cooperation between the two firms, the tit-for-tat strategy is used. With this 

strategy, every firm is doing what its opponent has done in the previous move. The tit-for-tat strategy 

is the best behavior allowing the achievement of cooperation in repeated games [34]. Its 

characteristic is that every player consists in doing what the opponent did in previous move. This is 

an incomplete information scenario. However, the only thing each firm knows are the output and the 

profit. In this situation, each firm 𝑖, will compare its profit 𝜋𝑖,𝑡
(∗), 𝑖 = 1,2, ,with the cooperative profit 

𝜋𝑐  that is Pareto optimal . If  𝜋𝑖,𝑡 > 𝜋𝑐   then this means that each firm will probably reduce its output 

to keep the cooperation between them. On the other hand, if 𝜋𝑖,𝑡 < 𝜋𝑐  , then this condition indicates 

that cooperation cannot be realized. Based on this argument, the following dynamic map is built: 

 

 
𝑞1,𝑡+1 = 𝑞1,𝑡 + 𝛼1 𝜋𝑐 − 𝜋1,𝑡 

𝑞2,𝑡+1 = 𝑞2,𝑡 + 𝛼2 𝜋𝑐 − 𝜋2,𝑡 
  

(*) 𝜋𝑖,𝑡 = 𝜋𝑖 𝑞1,𝑡 , 𝑞2,𝑡 , 𝑖 = 1,2. 

Where 𝛼𝑖 > 0  𝑖 = 1,2  is an adjustment parameter.For simplicity, 𝛼𝑖 = 𝑘, 𝑖 = 1,2. 

which can be written as  

 
𝑞1,𝑡+1 = 𝑞1,𝑡 + 𝑘 𝜋𝑐 − 𝑞1,𝑡 𝑎 − 𝑏𝑄𝑡

𝑛 + 𝑐1𝑞1,𝑡
2 + 𝑑1𝑞1,𝑡 + 𝑒1 

𝑞2,𝑡+1 = 𝑞2,𝑡 + 𝑘 𝜋𝑐 − 𝑞2,𝑡 𝑎 − 𝑏𝑄𝑡
𝑛 + 𝑐2𝑞2,𝑡

2 + 𝑑2𝑞2,𝑡 + 𝑒2 
(5)  

 In [19], [34], [35], the authors has used a special case of cost functions than the ones used in our 

model. Namely, they consider linear cost functions, that is: 𝑐1 = 𝑐2 = 0,  𝑑1 = 𝑑2 = 𝑑 > 0, 𝑒1 =
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𝑒2 = 0. In this special case, the cooperative output  𝑞1
𝑐 , 𝑞2

𝑐 , and the cooperative profit 𝜋𝑐are 

derived easily. Also, it happens that, in this case, the unique equilibrium point of the dynamical 

system (5) is exactly the optimal cooperative output  𝑞1
𝑐 , 𝑞2

𝑐 . But, in general, this does not hold for 

the quadratic case. 

Due to the difficulty of determining the equilibrium points of the discrete time dynamical system 

(5) in explicit closed forms, numerical simulation will be performed to investigate the stability of 

the system. After running a number of times the simulation on various parameters values of this 

model and for a given value of the cooperative profit 𝜋𝑐 , it appears that, there are two main 

parameters that have the most impact on the stability of the dynamical system. Namely, the 

adjustment parameter 𝑘 and the exponent 𝑛 present in the demand function. Two values of 𝑛(  

0.5and 0.01 ) are considered to illustrate the effect on the behavior of the model. The parameters 

are taken to be a = 4.0, b = 0.3, c1 = 0.11, c2 = 0.15, d1 =.9, d2 = 0.25, and 𝑛 =0.5. The 

equilibrium at these values is𝑞1 =4.386and𝑞2 = 2.61. The bifurcation diagram in Fig. 9 a. shows 

that the trajectory of the solution𝑞1 converges to the equilibrium 4.386for 𝑘 < 0.784 and hence 

Pareto optimality may be reached. For 𝑘 > 0.784, the equilibrium becomes unstable, period 

doubling bifurcation appears at 𝑘 = 0.784,and finally, chaotic behavior occurs. Similarly, the 

trajectory of the solution𝑞2 converges to the equilibrium 2.61 for 𝑘 < 0.776. For 𝑘 > 0.776, the 

equilibrium becomes unstable, period doubling bifurcation appears at 𝑘 = 0.776 and finally 

chaotic behavior occurs. Fig. 10 a shows the Maximum Lyapunov Exponent corresponding to Fig. 

9aNotice that positive MLE indicates chaotic conduct. Fig. 11 a exhibits the chaotic attractor of the 

map (5) for the same parameters and𝑘 is fixed to 1.11 in the chaotic range. Fig. 12 a gives the 

sensitivity of the system in chaotic state with 𝑘 = 1.12. The figure presents two orbits of the first 

firm when 𝑞1,1 = 0.11 and with some deviation  𝑞1,1 = 0.11 + 0.0001. At the beginning, the time 

series are indistinguishable, but after a number of iterations, the difference between them builds up 

rapidly. 
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For the case 𝑛 =0.01, and the same values of the other parameters. That is:a = 4.0, b = 0.3, c1 = 

0.11, c2 = 0.15, d1 =.9, d2 = 0.25. Comparing the figures in case 𝑛 =0.01 with the ones with 𝑛 = 

0.5, they indicate that when 𝑛 =0.01, the chaotic pattern has beenreduced drastically. The 

bifurcation diagram in Fig. 9b shows that the trajectory of the solution𝑞1 is stable and converges 

to the equilibrium 3.288. On the other hand, the trajectory of the solution𝑞2 converges to the 

equilibrium 2.214  for𝑘 < 0.608 and for 𝑘 > 0.608, period doubling bifurcation appears at 

𝑘 = 0.608 and lastly, chaotic behavior occurs and hence Pareto optimality cannot be achieved. 

Fig. 11a Chaotic Attractor of system (5) with n=0.5 

 

Fig. 12a Chaos Sensitivity of system (5) with n=0.5 
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Figure 10 a. The Maximum Lyapunov Exponent versus k and n=0.5. 
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Figure 11 a. Chaotic Attractor of System (5) with n=0.5 
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Figure 12 a. Sensitivity of System (5) for the first firm wth n=0.5. 
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Figure 9 a. Bifurcation Diagram of System (5) versus k and n=0.5. Fig. 9a Bifurcation Diagram of q1 and q2 of system (5) versus k 

with n=0.5 

 

 

 

Fig. 10a MaximumLyapounov Exponent of system (5) versus k 

with n=0.5 
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Fig. 10b shows the Maximum Lyapunov Exponent corresponding to Fig. 9b Here MLE indicates 

very less chaotic 

conduct.Fig. 11b exhibits the chaotic attractor of the map (5) for the same parameters and 

𝑘 is fixed to 1.12. Fig. 12b gives the sensitivity of the system in chaotic state with 𝑘 = 0.78. The 

figure presents two orbits of the first firm when 𝑞1,1 = 0.11 and with some deviation  𝑞1,1 =

0.11 + 0.0001. The figure shows that the difference between the two orbits is highly less sensitive 

in comparison with Fig. 12a (n = 0.01). This is explained by the fact that the chaotic region in Fig.            

9a is much important than the one in Fig. 9b.     

 

 

5The conclusion :  

    In this paper, based on a general nonlinear inverse demand function and a quadratic cost function, 

three duopolostic Cournot models have been investigated. For the first two models, existence of 

equilibrium points and local stability has been studied. Numerical simulations on the dynamical 

systems has been performed to show bifurcations diagrams, stability regions and chaos. The third 

model is a cooperative Cournot duopoly game under the tit-for-tat strategy with incomplete 

information scenario. The analysis shows that Pareto optimality cannot be certain.    
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