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Abstract: The aim of this paper is to discuss the oscillation of numerical solutions for the 

Lasota-Wazewska model. Using two  -methods (the linear  -method and the one-leg  -

method), some conditions under which the numerical solutions oscillate are obtained for 

different range of parameter  . Furthermore, it is shown that every non-oscillatory numerical 

solution tends to the fixed point of the original continuous equation. Numerical examples are 

given.  
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1 Introduction 

   Nowadays, there are much scientific activity concerning the oscillatory behavior of difference 

equations[1], dynamic equations[2], hyperbolic equations[3], fractional differential equations[4], 

hybrid systems[5] and differential equations with piecewise continuous arguments (DEPCA)[6]. 

Among these studies, oscillations of solutions of delay differential equations (DDEs) have also 

been the subject of many recent investigations [7, 8]. The intensive interest in this subject is 

motivated by the fact that it has many useful applications in some mathematical models, such as 

biology, ecology, spread of some infectious diseases in humans and so on. 

It was worth noting that much research has been focused on the oscillation properties of the 

numerical solutions for DDEs. In [9, 10], numerical oscillation for a retarded DEPCA was 

considered, respectively. Wang et al. [11] studied oscillation of alternately advanced and 

retarded DEPCA from numerical aspect. However, for nonlinear DDEs, until now very few 
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results dealing with the numerical oscillation have been found except for [12]. Different from 

[12], in the present paper, we will study the oscillation of numerical solution for the Lasota-

Wazewska model. 

Consider the following equation 

                  
( )

'( ) ( ) , 0
N t

N t N t p e t
 


 

                                                                             (1) 

with initial condition 

( ) ( ) , 0 ,N t t t                                                                    (2) 

where ([ , 0 ], (0 , )) , (0 ) 0 .C       Denote *
N  is the positive fixed point of 

(1), then 

*

*
N

p e
N







 . (1) has been used by Wazewska-Czyzewska and Lasota [13] as a 

model for the survival of red blood cells in an animal. Here ( )N t  denotes the number of red 

blood cells at time t , the parameter 0   is the probability of death of a red blood cell, p  and 

  are positive constants related to the production of red blood cells per unit of time, and   is the 

time required to produce a red blood cell.         

There are many papers concern different properties of (1). The oscillation and attractivity have 

been extensively studied in [14]. The existence of periodic solutions has been given in [15]. 

Mallet-Paret and Nussbaum [16] presented a deep analysis of a class of nonlinear equations with 

one delay which includes (1). In addition, the generalized Lasota-Wazewska model [17], the 

impulsive Lasota-Wazewska model [18] and the discrete Lasota-Wazewska model [19] have 

been comprehensive investigated, respectively. Nevertheless, up to now, few results on the 

properties of numerical solutions for (1) were established. In the present paper, we will 

investigate numerical oscillation for (1). We also analyze the asymptotic behavior of non-

oscillatory numerical solutions. 

Next, we shall address some statements which are useful in presenting the main results of 

the paper. 

Theorem 1 ([14]) Consider the difference equation 

                        
1

0 ,

l

n n j n j

j k

a a q a
 

 

                                                                             (3)                   

assume that ,k l  N  and 
j

q  R  for , ,j k l   , then the following statements are equivalent: 

(a) Every solution of (3) oscillates; 
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(b) The characteristic equation 1 0

l

j

j

j k

q 

 

    has no positive roots. 

Theorem 2 ([14]) Consider the difference equation 

                    
1

0 ,
n n n k

a a a
 
       0 ,1, 2 ,n                                                                    (4)                     

where   R  and k  Z , then every solution of (4) oscillates if and only if one of the following 

conditions holds:  

(a) 1k    and 1   ; 

(b) 0k   and 1  ; 

(c)    , 3, 2 1, 2,k       and 
1

( 1) / 1 .
k k

k k


   

From the linearized oscillation theory in [14], we have the following theorem. 

Theorem 3
 
The solution of (1) and (2) oscillates about *

N  if and only if 

                            * 1
.N e

e

 
                                                                                              (5) 

2 Oscillation of Numerical Solutions 

In order to reduce the complexity, we introduce a transformation 
*

( ) ( ) / ,N t N x t   which 

can change (1) into the form  

                     
*

1 2
'( ) ( ( ) ) ( ( ) ) 0 ,x t f x t N f x t                                                                  (6) 

where 
1 2
( ) , ( ) 1 .

u
f u u f u e


    Clearly, ( )N t  oscillates about *

N  if and only if ( )x t  oscillates 

about zero. 

Let /h m  be a given step-size with 1m  , application of the linear  -method and the one-

leg  -method to (6) gives  

        
* *

1 1 1 2 1 1 2
( ) ( ) (1 ) ( ) (1 ) ( ) ,

n n n n m n n m
x x h f x h N f x h f x h N f x        

    
                               

              (7) 

where 0 1  , 
1n

x


 and 
1n m

x
 

 are approximations to ( )x t  and ( )x t   of (6) at 
1n

t


, 

respectively.  

Set 
*

( ) ,
n n

x N N   then we have 
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   
* *

* *

1 1

1 (1 ) (1 )
e x p ( ) e x p ( ) .

1 1 1
n n n m n m

h h N h N
N N N N N N

h h h

     
 

     
   

  
      

  
                                                                  

                                                                                                                                          (8) 

It is known that 
n

N  oscillates about *
N  if and only if 

n
x  is oscillatory. In order to study 

oscillation of (8), we only need to consider the oscillation of (7). The following conditions which 

are taken from [14] will be used next. 

( ) 0
i

u f u   for 0u   and 
0

( )
lim 1 , 1, 2 .

i

u

f u
i

u

                               (9) 

The linearized form of (7) is  

      
* *

1 1 1
(1 ) (1 ) ,

n n n n m n n m
x x h x h N x h x h N x        

    
                             (10)  

equivalently 

          
* *

1 1

1 (1 ) (1 )
.

1 1 1
n n n m n m

h h N h N
x x x x

h h h

       

     
   

  
  

  
                                (11) 

It follows from [14] that (7) oscillates if (11) oscillates under the condition (9). 

In the following, we will study whether the  -methods preserve the oscillation of (1). That is, 

when Theorem 3 holds, we will investigate the conditions under which (8) is oscillatory. 

Let 
0

n

n
x x  in (10), by simple computation we have the characteristic equation of (10).  

Lemma 1 The characteristic equation of (10) is given by 

                            
*

,
m

R h N    


                                                                             (12) 

where 
 

 

1 (1 )
( )

1

x
R x

x





 



 is the stability function of the  -methods. 

Lemma 2 If condition (5) holds, then (12) has no positive roots for [0 ,1 / 2 ]  . 

Proof: Set   
*

( ) .
m

B R h N     


     Then by Lemma 3 in [20] we have 

                    
* *

ex p
m m

R h N h N       
 

     .                                           (13) 

We need to prove   
*

( ) ex p 0
m

E h N     


      for 0  . If it is not the case, there 

exists 
0

0   such that 
0

( ) 0E   , then   
*

0 0
ex p

m
h N    


   , further 

                    
*

0 0
ex p ( ) ,

m m
N    


                                                                        (14)    
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so 

 
* * *

0 0
ex p 1 .

m m
N e e N N


     

 
   

(I) If *

0
1 0

m
N  


  , then *

1N e e
 

    , we get the contradiction with the condition (5). 

(II) If 
*

0
1 0

m
N  


  , it is seen from the fact “ 1 / (1 )

x
e x   for 1x   and 0x  ” that  

 
 

*

0 **

00

1 1
ex p 1 ,

1 1

m

mm
N

NN
  

    




  

 

 

which implies 

 
* *

0 0
ex p 1 1,

m m
N N   

 
   

that is 

*
1,N e e

 
     

which is also a contradiction to (5). Thus 

     
* *

( ) ex p ( ) 0 ,
m m

B R h N h N E           
 

           

which implies that (12) has no positive roots. The proof is completed. 

Without loss of generality, we assume 1m   in the case of (1 / 2 ,1]  . 

Lemma 3 If the condition (5) holds and (1 / 2 ,1]  , then the characteristic equation (12) has no 

positive roots for 
0

h h , where 

*

*

0 *

*

, 1,

(1 ln )
, 1 .

1 ln

i f N

h N
if N

N

  

     
  

      

  


   


 

                                            (15) 

Proof: When 0  , we know that the function   
* m

R h N   


   is increasing about  , 

then for 0   and (1 / 2 ,1]   

  
 

   

*

*

* *

1 (1 ) 1
.

1 1

m

m

m m

h N
R h N

h N h N

    
   

        





 

  
   

   
 

Now we will prove that the inequality 

                          
 

*

1
0

1
m

h N


   


 
 

                                                                          (16) 

holds under certain conditions. In view of (16), we have 
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   

1

* *

1 (1 )
( ) ,

1 1

m

m m

h

h N h N

 
  

       



 


 

   
 

where 

*

11
( ) ,

1 1

m m h N

h h

 
   

 


  

 
 

then we only need to show that ( ) 0    for 0  . It is not difficult to know that ( )   is the 

characteristic polynomial of the following difference scheme 

*

1 1
0 .

1 1
n n n n m

h h N
y y y y

h h

  

 
  
   

 
 

From Theorems 1 and 2, we know that ( )   has no positive roots if and only if 

*

1
1 ,

1 ( 1) 1

m
m

m

h N m h

h m h

  

 


 
  

   

 

which is equivalent to  

                     
* 1

ln ( 1) ln 1 0 .
1

N m
m

 
  

 
    

 

                                                                    (17) 

(I): If 
*

1N    , then (17) holds true from 1m  . 

(II): If 
*

1N     and 
*

*

( (1 ln ))

(1 ln )

N
h

N

     

      

 


 
, from the fact that “

ln (1 ) / (1 )x x x    for 1x    and 0x  ” we get 

* *

*

1

1 1
ln ( 1) ln 1 ln ( 1)

11
1

1

( 1)(1 )
ln 0 .

m
N m N m

m

m

m
N

m

 

 
     

 

 
  

 



  
      

 




 
  



 

Thus Inequality (16) holds for 
0

h h , where 
0

h  is defined in (15). From the above discussion, 

we have 

 
*

1
( ) 0

1
m

B
h N

 
   


  

 
 

holds for 
0

h h  and 0  , which implies that (12) has no positive roots. The proof is complete. 

In view of (9), Lemmas 2 and 3 and Theorem 1, we have the first main result.  
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Theorem 4 If condition (5) holds, then (8) is oscillatory for 

0

, 0 1 / 2 ,

, 1 / 2 1,

w h e n
h

h w h e n





  
 

 

 

where 
0

h  is defined in (15). 

3 Asymptotic Behavior of Non-Oscillatory Solutions 

Lemma 4 ([14]) Let ( )N t  be a positive solution of (1), which does not oscillate about *
N , then 

*
lim ( ) .
t

N t N
 

  

From (1) and (6), we know that the non-oscillatory solution of (6) satisfies lim ( ) 0
t

x t
 

  if 

Lemma 4 holds. Next, we will prove that the numerical solution of (1) can preserve this property. 

Lemma 5 Let 
n

x  be a non-oscillatory solution of (7), then lim 0
n

n

x
 

 . 

Proof: Without loss of generality, we assume 0
n

x   for sufficiently large n . Then by (9) we get 

that 
1
( ) 0

i
f x   and 

2
( ) 0

i
f x   for sufficiently large i . Moreover, from (7) we have 

 
* *

1 2 1 2 1 1 1
( ) (1 ) ( ) ( ) (1 ) ( ) 0 ,

n n n m n m n n
x x h N f x h N f x h f x h f x         

    
                                                      

                                                                                                                                                 (18) 

hence 
1

0
n n

x x

  , then { }

n
x  is increasing. So there exists an 0   such that 

                           lim .
n

n

x 
 

                                                                                                     (19)      

Next we will prove 0  . If 0  , then there exists 
0

N  N  and 0   such that for 
0

n m N 

, 0
n

x        . Hence 
n m

x  


   and 
1n m

x  
 

  . So (18) yields      

            

* *

1 2 1 2

* *

1 2 2

*

1 2

0 ( ) (1 ) ( )

( ) (1 ) ( )

( ) ,

n n n m n m

n n

n n

x x h N f x h N f x

x x h N f h N f

x x h N f

    

        

   

   





    

      

   

 

which implies that 
1

0
n n

x x A

   , where 

*
(e x p ( ( )) 1) .A h N        Thus 

n
x    as 

n   , which is a contradiction to (19). This ends the proof. 

Therefore, the second main result is as follows. 

Theorem 5 Let 
n

N  be a positive solution of (8), which does not oscillate about *
N , then 

*
lim

n
n

N N
 

 . 
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4 Numerical Examples 

In this section, we will give four examples to illustrate the main results.  

Example 1 Consider the equation  

                  0 .5 ( 1 .8 )
'( ) ( ) 2 , 0

N t
N t N t e t

 
                                                                              (20)     

with initial value ( ) 2 .5N t   for 1 .8 0t   . In (20),
*

6 .1 5 2 5 1 / ,N e e
 

      so condition (5) 

holds true. That is, the analytic solutions of (20) are oscillatory. Let 1 8m   and 

0 .3 [0 ,1 / 2 ],    we draw the figures of the analytic solutions and the numerical solutions of 

(20) in Fig. 1. From this figure we can see that the numerical solutions of (20) oscillate about

*
1 .1 3N  , which coincides with Theorem 4. 

 

Fig. 1 The analytic solution and the numerical solution of (20) with 0 .3   and 1 8m  . 

Example 2 For the equation  

                   
0 .5 ( 2 .5 )

'( ) ( ) 2 , 0
N t

N t N t e t
 

                                                                         (21)     
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with initial value ( ) 0 .2N t   for 2 .5 0t   , it is easy to verify that condition (5) holds. That is, 

the analytic solutions of (21) are oscillatory. In Fig. 2, we draw the figures of the analytic 

solutions and the numerical solutions of (21), respectively. We set 5 0 , 0 .8 [1 / 2 ,1].m    So

*
1 .4 1 2 5 1N      and 

0
/ 0 .0 5 .h m h      From this figure, we can see that the 

numerical solutions of (21) oscillate about *
1 .1 3N  , which are in agreement with Theorem 4.  

 

Fig. 2 The analytic solution and the numerical solution of (21) with 0 .8   and 50m  .  

Example 3 We consider the equation  

                  
0 .5 ( 0 .7 )

'( ) ( ) 2 , 0
N t

N t N t e t
 

                                                                            (22)     

with initial value ( ) 1 .3N t   for 0 .7 0t   . In (22), it is not difficult to see that condition (5) is 

fulfilled. That is, the analytic solutions of (22) are oscillatory. In Fig. 3, we draw the figures of 

the analytic solutions and the numerical solutions of (22), respectively. Let 1 4 ,m 

0 .6 [1 / 2 ,1]   and 
*

0 .3 9 5 5 1 .N     So /h m
0

0 .0 5 0 .2 3 0 1 .h    We can see from 



 Journal of Progressive Research in Mathematics(JPRM) 

ISSN: 2395-0218   
 

 
 Volume 15, Issue 3  available at www.scitecresearch.com/journals/index.php/jprm                                                        2691| 

 

this figure that the numerical solutions of (22) oscillate about *
1 .1 3,N   which are consistent 

with Theorem 4. 

 

Fig. 3 The analytic solution and the numerical solution of (22) with 0 .6   and 1 4m  . 

Example 4 For the equation 

                
1 .6 ( 0 .5 )

'( ) ( ) 0 .3 , 0
N t

N t N t e t
 

                                                                           (23)     

with initial value ( ) 5N t   for 0 .5 0t   , it is easy to see that 
*

N e
 

   0 .2 8 0 9 1 / ,e   so 

condition (5) is not satisfied. That is, the analytic solutions of (23) are non-oscillatory. In Fig. 4, 

we draw the figures of the analytic solutions and the numerical solutions of (23), respectively. In 

this figure, we can see that 
*

( ) 0 .2 1 3N t N   as t    and the numerical solutions of (23) 

also satisfy 
*

0 .2 1 3
n

N N   as n   . That is, the numerical method preserves the asymptotic 

property of non-oscillatory solutions of (23), which coincides with Theorem 5. 
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Fig. 4 The analytic solution and the numerical solution of (23) with 0 .2   and 2 0m  . 

Moreover, we can see from these figures that the  -methods preserve the oscillation of 

(20)-(22) and the non-oscillation of (23), respectively. 

Acknowledgements 

This research is supported by the Natural Science Foundation of Guangdong Province (No. 

2017A030313031). 

References 

[1] I.P. Stavroulakis, “Oscillation criteria for delay and difference equations with non-monotone 

arguments,” Appl. Math. Comput. 226 (2014) 661-672. 

[2] B. Karpuz, “Sufficient conditions for the oscillation and asymptotic beaviour of higher-order 

dynamic equations of neutral type,” Appl. Math. Comput. 221 (2013) 453-462. 

[3] Q.X. Ma, A.P. Liu, “Oscillation criteria of neutral type impulsive hyperbolic equations,” 

Acta. Math. Sci. 34 (2014) 1845-1853. 



 Journal of Progressive Research in Mathematics(JPRM) 

ISSN: 2395-0218   
 

 
 Volume 15, Issue 3  available at www.scitecresearch.com/journals/index.php/jprm                                                        2693| 

 

[4] B. Abdalla, T. Abdeljawad, “On the oscillation of Caputo fractional differential equations 

with Mittag-Leffler nonsingular kernel,” Chaos Soliton Fract. 127 (2019) 173-177. 

[5] D. Efimov, W. Perruquetti, A. Shiriaev, “On existence of oscillations in hybrid systems,” 

Nonlinear Analysis: HS 12 (2014) 104-116. 

[6] Y. Muroya, “New contractivity condition in a population model with piecewise constant 

arguments,” J. Math. Anal. Appl. 346 (2008) 65-81. 

[7] E.M. Bonotto, L.P. Gimenes, M. Federson, “Oscillation for a second-order neutral 

differential equation with impulses,” Appl. Math. Comput. 215 (2009) 1-15. 

[8] C.H. Zhang, R.P. Agarwal, T.X. Li, “Oscillation and asymptotic behavior of higher-order 

delay differential equations with p-Laplacian like operators,” J. Math. Anal. Appl. 409 

(2014) 1093-1106.  

[9] M.Z. Liu, J.F. Gao, Z.W. Yang, “Oscillation analysis of numerical solution in the  -methods 

for equation 
1

'( ) ( ) ([ 1]) 0x t a x t a x t    ,” Appl. Math. Comput. 186 (2007) 566-578.  

[10] M.Z. Liu, J.F. Gao, Z.W. Yang, “Preservation of oscillations of the Runge-Kutta method for 

equation 
1

'( ) ( ) ([ 1]) 0x t a x t a x t    ,” Comput. Math. Appl. 58 (2009) 1113-1125. 

[11] Q. Wang, Q.Y. Zhu, M.Z. Liu, “Stability and oscillations of numerical solutions for 

differential equations with piecewise continuous arguments of alternately advanced and 

retarded type,” J. Comput. Appl. Math. 235 (2011) 1542-1552. 

[12] J.F. Gao, M.H. Song, M.Z. Liu, “Oscillation analysis of numerical solutions for nonlinear 

delay differential equations of population dynamics,” Math. Model. Anal. 16 (2011) 365-375. 

[13] M. Wazewska-Czyzewska, A. Lasota, “Mathematical problems of the dynamics of the red 

blood cells system,” Annals of the Polish Mathematical Society, Series III, Appl. Math. 17 

(1988) 23-40. 

[14] I. Gyori, G. Ladas, “Oscillation theory of delay differential equations with applications,” 

Oxford: Academic Press, 1993. 

[15] G.R. Liu, A.M. Zhao, J.R. Yan, “Existence and global attractivity of unique positive 

periodic solution for a Lasota-Wazewska model,” Nonlinear Analysis: TMA 64 (2006) 1737-

1746. 

[16] J. Mallet-Paret, R.D. Nussbaum, “Global continuation and asymptotic behaviour for 

periodic solutions of a differential-delay equation,” Ann. Mat. Pura Appl. 145 (1986) 33-128. 



 Journal of Progressive Research in Mathematics(JPRM) 

ISSN: 2395-0218   
 

 
 Volume 15, Issue 3  available at www.scitecresearch.com/journals/index.php/jprm                                                        2694| 

 

[17] H. Zhou, Z.F. Zhou, Q. Wang, “Positive almost periodic solution for a class of Lasota-

Wazewska model with infinite delays,” Appl. Math. Comput. 218 (2011) 4501-4506. 

[18] L. Wang, M. Yu, P.C. Niu, “Periodic solution and almost periodic solution of impulsive 

Lasota-Wazewska model with multiple time-varying delays,” Comput. Math. Appl. 64 

(2012) 2383-2394. 

[19] W.T. Li, S.S. Cheng, “Asymptotic properties of the positive equilibrium of a discrete 

survival model,” Appl. Math. Comput. 157 (2004) 29-38. 

[20] M.H. Song, Z.W. Yang, M.Z. Liu, “Stability of  -methods for advanced differential 

equations with piecewise continuous arguments,” Comput. Math. Appl. 49 (2005) 1295-

1301. 

 


