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1. Introduction and Preliminaries

In [8], third-order Pell sequence{P,ga)}n-_zo and third-order Pell-Lucas sequence {Qr(ns)}nzo are defined by

the third-order recurrence relations

(L1) Py =2P%, + P+ PO, BP =0.P7 =1,F =2,
and
(12) Qs =20+ +0P, @ =301 =205 =6

respectively. In the rest of the paper, for easy writing, we drop the superscripts and write P, and @, for
PTES) and Qf), respectively. Note that P, is the sequence A077939 in [6] associated with the expansion of
1/(1 — 2z — 2% — 2%), Q,, is the sequence A276225 in [6]

Basic properties of third-order Pell and third-order Pell-Lucas sequences are given in [8]. The sequences

{P.}n=0 and {Q,}n>0 can be extended to negative subscripts by defining
Po==P q1)—2P (n 9y+P (n3

and

N _ B on®d 3)
Q*n o Qf(nfl) 2Q7(n7‘2) + Qf(n73)
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for n = 1,2,3,... respectively. Therefore, recurrences (1.1) and (1.2) hold for all integer n.

Table 1. The first few values of the special third-order numbers with positive and negative subscripts.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
F, 0 1 2 5 13 33 84 214 545 1388 3535 9003 22929 58396
P, 0 0O 1 -1 -1 4 -3 -6 16 -7 =31 61 —6 —147
Qn 3 2 6 17 42 107 273 695 1770 4508 11481 29240 74469 189659
@, 3 -1 -3 8 -3 -—-16 30 -1 -75 107 42 —331 354 350

For all integers n, third-order Pell and Pell-Lucas numbers (using initial conditions in (1.1) and (1.2))

can be expressed using Binet's formulas as

C\,’n+1 8??»+1 ,},n+1
(1.3) P, = + - + .
o @B G-DB-7 G-o0-5)
and
(1.4) Qn=0a" + 8" +7",

respectively. Here, a, 3 and ~ are the roots of the cubic equation 23 — 222 — z — 1 = 0. Moreover

1/3 1/3
2+ 61 N 29 N 61 29
o = — [ PR — -
3 54 36 54 36
1/3 1/3
5 2+w 61+ 29 Lo 61 /29
P73 54 36 “ \ 54 36
1/3 1/3
2+Q 61+ 29 /+ 61 29 /
= 4w | = — Wl — — /==
7 3 51 '\ 36 54 V36
where
w= 71+@\/§ = exp(2ri/3).
Note that
at+B+y = 2
af+ay+ 5y = -1,
afy = 1.

The generating tunctions for the third-order Pell sequence {F,},>q and third-order Pell-Lucas sequence
{@n}nzo are

. = x = 3 — 4z — 22

(L5) D T e e I D DU e e |

Note that the Binet form of a sequence satistying (1.3) and (1.4) for non-negative integers is valid for all
integers n. This result of Howard and Saidak [3] is even true in the case of higher-order recurrence relations

as the following theorem shows.
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THEOREM 1.1. [5/Let {wn} be a sequence such that
{wn} = cywn_q1 + awn_o + ... + apw,_g

for all integers n, with arbitrary initial conditions wp, w1, ...,wy_1. Assume that each a; and the initial

conditions are complex numbers. Write

(1.6) flz) = zF—az" ' —a®? — . —ap_1z —ap

= (z—a1)®(@—a)®..(z — ar)™

with dy +do + ... +dp, =k, and oy, a0, ..., o distinct. Then

(a): For alln,

k

(1.7) wn =Y N(n,m)(am)"
m=1
where
T —1

N(n,m)= Agm) + Agm)n + ..+ A?(f:)nrm_] = Z Ai(lﬂ_:)lnu
u=0

with each Agm) a constant determined by the initial conditions for {wy,}. Here, equation (1.7) is
called the Binet form (or Binet formula) for {w,}. We assume that f(0) # 0 so that {w,} can be
extended to negative integers n.

If the zeros of (1.6) are distinct, as they are in our examples, then
Wy = A1(a] )ﬂ + Ag(ag)n + ...+ Ak(ak)n.

(b): The Binet form for {wy,} is valid for all integers n.

Recently, there have been so many studies of the sequences of numbers in the literature that concern
about subsequences of the Horadam numbers and generalized third-order Pell numbers such as Fibonacci,
Lucas. Pell and Jacobsthal numbers: third-order Pell, third-order Pell-Lucas, Padovan, Perrin, Padovan-
Perrin. Narayana, third order Jacobsthal and third order Jacobsthal-Lucas numbers. The sequences of
numbers were widely used in many research areas, such as physics, engineering. architecture, nature and art.

On the other hand, the matrix sequences have taken so much interest for different type of numbers. For
matrix sequences of generalized Horadam type numbers, see for example [2,3,4,11,12,13,15.18], for matrix
sequences of generalized Tribonacci type numbers, see for instance [1,9.10,16,17] and for matrix sequence of
generalized Tetranacci type numbers, see for example [7].

In this paper, the matrix sequences of third-order Pell and third-order Pell-Lucas numbers will be
defined for the first time in the literature. Then. by giving the generating functions, the Binet formulas,
and summation formulas over these new matrix sequences, we will obtain some fundamental properties on
third-order Pell and third-order Pell-Lucas numbers. Also, we will present the relationship between these

matrix sequences,
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2. The Matrix Sequences of third-order Pell and third-order Pell-Lucas Numbers

In this section we define third-order Pell and third-order Pell-Lucas matrix sequences and investigate

their properties.

DEFINITION 2.1. For any integer n > 0, the third-order Pell matriz (P,) and third-order Pell-Lucas
matriz (Qy) are defined by

(2.1) Pn = 2Pn_1+Pno+ Pa_s,

(2.2) Qn = 20, 1+ Qn o+ Qs

respectively, with initiol conditions

1 0 0 2 11 5 3 2
Po=10 1 0 [,Pi=|1 00 [,Pa=]2 11
0 0 1 0 1 0 1 00
and
2 2 3 6 5 2 17 8 6
Qo = 3 4 -1 |,&1=|2 2 3 Q=] 6 5 2
-1 5 =3 3 —4 -1 2 2 3

The sequences {Pp }nzo and {9, }n>0 can be extended to negative subscripts by defining
Porn="P n1)—2P (n9)+P (ny3

and
Q n=-"Q m-1) — 2Q_(n_2) + Q_(n-3)
for n = 1,2, 3, ... respectively. Therefore, recurrences (2.1) and (2.2) hold for all integers n.

The following theorem gives the nth general terms of the third-order Pell and third-order Pell-Lucas

matrix sequences.
THEOREM 2.2. For any integer n > 0, we have the following formulas of the matriz sequences:

PnJr‘l Pn + Pnfl Pn
(23) Pﬂ = P P, 1+Pi 2 Pna
Po1 PootF3 Foo

Qn+1 Qn+ @n-i Qn
(2.4) G = Qn Qua+t@no Qn
Q-n,—l Qn—? + Q-n—ii Q-n,—Q
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Proof. We prove (2.3) by strong mathematical induction on n. (2.4) can be proved similarly.

If n =0 then, since Py =1, =2F=P_1=0,P =1, P 3= —1, we have

P FR+P, K 1 00
Po = F P,1+Py P, =101 0
Py Ps+P3 Py 0 0 1
which is true and
P, P+FR B 211
Pi=| P R+P, B =11 00
Fhb P1+P, P, 0 10

which is true. Assume that the equality holds for n < k. For n = k + 1, we have

Prer = 2P+ Pr_1 +Pr_s
2Pry1 2P+ 2F 2F; P. P+ FP—o Pr
= 2P, 2P 1+2P; 9 2P |t | Pe1 Peot P Pro
2P, 1 2P, 5+2P,_3 2P0 Pro Pr3+P_4 DPr3

Fpo v Poo+P,3 Pro
+ | Pio FPri3+Pis Fi3
Fp 3 P, 4+P.5 Py

2Py + Pr + Py 2P, + 3P, +2P,_o + Py_3 2P, + P 1+ Pi_o
= 2P+ P+ Peo 2P 1+ 3P 2+ 2P 3+ Py 2P 1+ Pr o+ Prs
2P 1 +Pro+FPr—3 2P 2+3F3+2Pca+PFPr s 2Pk 92+ FPr3+ Pra

Prio  Pp+ Prs Py
= FPoow F+F_, Py
B, Po1+Pio Py,

Thus. by strong induction on n, this proves (2.3).

We now give the Binet formulas for the third-order Pell and third-order Pell-Lucas matrix sequences.

THEOREM 2.3. For every integer n, the Binet formulas of the third-order Pell and third-order Pell-Lucas

matriz sequences are given by

(2.5) Pn = A]O{n —|—B1:3n +O1"}n,
(2.6) Q, = Asa™+ By" + Con™.
where
A aPy+ ala—2)P, + Py B BPs+B(8—-2)P1+ Py C APa + (v —2)P1 +Po
1 3 1= L1 =
ale— @7 FE- G- TG-80-a)
A — aQs +oala—2)Q1 +Q B _ BQ+pB(B-2)Q+Q ., 7 +v(v—2)Q1+ Qo
? ala—y)(@—p) 7? BB-—B-—a) 7 v =B (y—a)
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Proot. We prove the theorem only for n > 0 because of Theorem 1.1. We prove (2.5). By the assumption,

the characteristic equation of (2.1) is 2% — 222 — x — 1 = 0 and the roots of it are a, 8 and 4. So it’s general

solution is given by
P, = Aa™ + Blﬁn + Cy".

Using initial condition which is given in Definition 2.1, and also applying linear algebra operations, we ohtain
the matrices Ay, By, Cy as desired. This gives the formula for P,.

Similarly we have the formula (2.6).

The well known Binet formulas for third-order Pell and third-order Pell-Lucas numbers are given in
(1.3) and (1.4) respectively. But, we will obtain these functions in terms of third-order Pell and third-order
Pell-Lucas matrix sequences as a consequence of Theorems 2.2 and 2.3. To do this, we will give the formulas
for these numbers by means of the related matrix sequences. In fact, in the proof of next corollary, we will

just compare the linear combination of the 2nd row and 1lst column entries of the matrices.

COROLLARY 2.4. For every integers n, the Binet's formulas for third-order Pell and third-order Pell-

Lucas numbers are given as

CETH—] BﬂJrl ,.Yn—o—l
P, = + ' + )
(@=y)(@=8) B-7B-a) (-5(O-a
Qn = a"+8"+9"
Proof. From Theorem 2.3, we have
P, = A" +313n+01’)‘n
aPotala—2YP1+Py ., BPa+B8(B-2)P1+Po n
= o+ 8
a(a—7)(a—5) BB=7)(B-a)

YPy+ (v =2)P1 +Po_,
Ty =8 (y—a)

202 +a+1 a(a+1) o?

_ an—l 9 1
CERICEE) " e
o ala—2) 1
1 28°+8+1 B(B+1) B
i
R a2 )
HCESICErS ’ gt 0
5 B2 1
1 29 +y+1 A(y+1) A
™ 2 , ,
TH-AG-a) i b

gl y(y=2) 1
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By Theorem 2.2, we know that

Pn+l Pn + Pn—] Pn
PTL - Pn, Pn—l + P‘n—? Pn—'l
Pn—l Pn—Q + Pn—3 Pn—2
Now, if we compare the 2nd row and 1st column entries with the matrices in the above two equations, then

we obtain

. _ anfl Q{Q N .Sn_l.'ﬁg ,},nfl,},Q
" T a-e=-5 " E-G-a)  G-AG-a)
anJrl ;3n+1 ,},n+1

(@=1@=8) " G-7B-a)  G-HO-a)

From Theorem 2.3. we obtain

Qn = Asa™ + Bo" + Coy"
o tala—2)Q1 + Qoaﬂ B9+ B(B—2)21 + Qo 4
cla—(a-p) FE-1B—a)

122 +v(v—2)21+ 20 »
Ty =8 (y—a)

6a’ 4+ Hha + 2 502 —2a 42 202 4+ 20 + 3

an—'l
= m 202 + 20+ 3 202 + v — 4 302 — 4o — 1
302 —4da—1 —4a’+10a+5 —a®+5a—3
] 682+58+2 582-28+2 232+28+3

g

4157§M67a) 287 +28+3 28°+8-4 382-45-1
382 —48-1 —4824+108+5 —p>453-3
. 672 +57+2 592 —294+2 292 42943
+T;j%ﬂ;tzﬁ 224+ +3  2%4v-4  32—dy—1

3V —4y—1 —4424+10v+5 —2+57-3
By Theorem 2.2, we know that

Qn+1 Qn + Qn-1 Qn
Qn = Qn  Gn1+Q@no Qna
anl Qn72 + QTL*S anﬁ

Now, it we compare the 2nd row and 1lst column entries with the matrices in the above last two equations,
then we obtain

0 47a“fw2a24—2a—k3)+_6"7%282ﬂ—25—k3) A1 (292 4+ 29+ 3)
T (a=)(a—B) (B=7(8~a) (v=8)(y—a)
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Using the relations, o« + 8 + v = 2, afvy = 1 and considering «, 8 and ~ are the roots the equation
23 — 222 — 2z — 1 =0, we obtain

202 +2a+3 202 +2a+3 a (20 +2a+3)
(@a—(@a—8)  a’—af—av+8y aa’+a(—B—1)+8y
(202 +2a + 3)a (202 + 2a + 3)
a3+a2(a—2)+1:2a372a2+1a

(202 +2a + 3)
2(2a2+a+1)—2a2+1a:

28° +28+3 5
B=1(B—-a)
292 + 2y +3 _

W -B-a) "

Finally, we conclude that

Qn=0a"+ ;Sn +"

as required.

Now, we present summation formulas for third-order Pell and third-order Pell-Lucas matrix sequences.

THEOREM 2.5. Let m and j be integers. Then we have

n—1
- . Pmn+m+j + Pmn—m-i—j + (]- - Qm)Pmn+j r}'—)m+_7 + Pj—m + (]- - Qm)PJ
2.7 Prosss = _
( ) ; i Qm - Q—m Qm - Q_m
and
(2.8) = o Egr-mn+-m+j + Q—mn—m—o—j + (1 - Qm)gmnﬂ' _ Q-m+j + Q—j—m + (1 - Qm)gjl
: e Qm - Qfm Qm - Qfm

Proof. Note that

n—1 n—1
Z pmi+j - Z(A] a’"”i + B] 5mi+j + ()‘] ,},miJrj)
1=0 =0

S fa™ —1 gt —1 M1
= A (e (o oy (=

and

3
L
3
L

Omiv; = (A2a™7 + By 4 Copy™ 1)

o™ — 1 g —1 Ay — 1
= A ([ ) 4B (L) o ().
w(T=t) e (F=n) ror (=)

Simplitying and rearranging the last equalities in the last two expression imply (2.7) and (2.8) as required.

‘.,
Il
o
-
Il
o

As in Corollary 2.4, in the proof of next Corollary, we just compare the linear combination of the 2nd

row and lst column entries of the relevant matrices.

Volume 16, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm 2868 |




Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

COROLLARY 2.6. Let m and j be integers. Then we have

n—1 ; :
(2.9) S Py = Printm+j + Pron—m+j + (1 = Qm)Pmntj  Pmtj+ Pi—m + (1 — Qm)P;
=0 Qm - Q—m Qm - Q—m

and

(2‘10) nz_‘i Qm1,+j _ an+m+j + an—m+j + (1 - Qm)an—f—j _ Qm+j + Qj—m + (1 - Qm)Qj
1=0

Qm - Q—m Qm - Q—m

Note that using the above Corollary we obtain the following well known formulas (taking m = 1,7 =0):

—1 ;
“ZR_: Prpt —Bat Poa —1 Zn:Pi: Poi1 +2P, + Po_y — 1
1=0 3 1=0 3

and
n

n—1
ZQE _ @nti *Qn; Qn_1+2 - ZQi _ Qni +2Qr%+ Qni +2.
i=0 i=0

We now give generating functions of P and Q.

THEOREM 2.7. The generating function for the third-order Pell and third-order Pell-Lucas matriz se-

quences are given as

1 2+ x
= 1
I R S _ 2
;an R — z 1-2z x
22 z—222 —2?—-2z+1
and
- 322 +22+2 —da?4+ax+2 —a?-4z+3
) 1
Yot =———5——| 2 42+3 52241024 3224501
— 1—-2z—2°>—=
322 + 5z -1 b5z2 14z +5 8z 5x—3
respectively.

Proof. We prove the third-order Pell case. Using the Definition 2.1 and substracting 2z > oo Ppz™,

22300 o Prz™ and 22 307 ( Paa™ from Yoo Pnra™ we obtain
oo o0 oo o0 0
(1 -2z —2® —27%) Z Ppz™ = Z Ppz™ — 2z Z Ppz™ — Z Ppx™ — 23 Z Ppx™
n=>0 n=0 n=>0 n=0 n=>0
o0 00 oo .
— Z pnl_n 92 Z rl[)n:c'n+1 o Z ann+2 o Z Pn$n+3
n=0 n=>0 n=0 n=>0

= D Ppaz" =2 Pnoiz" Y Paoz"™ Y Pu_sa"
n=>0 n—=1 n=2 n—3
= (Po+ Piz + Paz?) — 2(Pox + P1z°) — Poz’
+ 3 (Pn = 2Pn_y — Pa_y — Pn_s)z"
n—=3

= Py + Prz+ Pox? — 2Pyz — 2P12° — Py’

= Py+ (P1 — Q’PU)J: + (PQ — 2P — 'Po)il:g.
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Rearranging above equation, we obtain

. Po+ (P —2Py)z+ (Py — 2P — Po)z?
Z Prx™ = - .
1—2z—2? -7
n=0
This completes the proof. Third-order Pell-Lucas case can be proved similarly.
The well known generating functions for third-order Pell and third-order Pell-Lucas numbers are as in
(1.5). However, we will obtain these functions in terms of third-order Pell and third-order Pell-Lucas matrix

sequences as a consequence of Theorem 2.7. To do this, we will again compare the the 2nd row and 1st

column entries with the matrices in Theorem 2.7. Thus we have the following corollary.

COROLLARY 2.8, The generating functions for the third-order Pell sequence { Py, }n>o and third-order

Pell-Lucas sequence {Qy }n>o are given as

> T ad 3 —dr — 22
ZPR.’L‘R =3 and Z Q" = [ P p—
n=0 n=0

1-2z—z2—x — 2z — 22— 23
respectively.
3. Relation Between third-order Pell and third-order Pell-Lucas Matrix Sequences

We can give a few basic relations between {FP,} and {Q,}.

LEnmnA 3.1, The following equalities are true:

Qn = 8P,y —19P, 53— 3P, .o,
(3.1) On 3P+ 5Pnto + 8Pyt
(3.2) Qn = —Fnio+5Py —3F,,
(33) Qn = 3Pui1—4Py— Py 1,
(3.4) Qn = 2P, +2Pp_1 +3Pu_2,
and
(3.5) 8TFP, = 2Qnys —18Qn13 + 37TQn+0,
(3.6) 8TPy = —14Q,45+39Qn . +2Qu.1,
(3.7) 8TF, = 11Q,:0 —12Q,1 — 14Q,,
(3.8) 8TP, = 10Q,+1 —3Q, + 110, 1,
(3.9) 87Pn = 17Qn +21Qn_1 + 10Qn_o,

Proof: It is given in [8].
The following theorem shows that there always exist interrelation between third-order Pell and third-

order Pell-Lucas matrix sequences.
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THEOREM 3.2. For the matriz sequences {Pn}n>0 and {Qn}n>0, we have the following identities.

Qn = 8Pnis—19Pu3 —3Pnso,
(3.10) Qn = —3Pni3+5Pnio+8Pni1,
(3.11) Qn = —Pny2+5Pny1 —3Px,
(3.12) Qn = 3Ppi 4P, —Pu_i,
(3.13) Qn = 2P +2Py 1+ 3Py 0.
and
(3.14) 87P, = 2Q,.4—18Q,.3+37Qp 0,
(3.15) 8TPn = —14Q,43+ 390,09+ 20,11,
(3.16) 8TP, = 11Qn49— 120,41 — 140Q,,
(3.17) 8TPn = 10Qn41 =3 +11Q, 1,
(3.18) 8TP, = 17Q, +21Q, 1+ 10Q, o,

Proof. Proots of the identities follow from Lemma 3.1.

LenmniA 3.3, For all non-negative integers m and n, we have the following identities.
(a): QOPn - P’nQO - Q'n«
(b): PoQn = QnPo = Qp.
Proof. Identities can be established easily. Note that to show (a) we need to use some of the relations
which is given in Lemma 3.1.

To prove the following Theorem we need the next Lemma.

LEnnA 3.4, Let Ay, B1,Ch; As, Bo,Co as in Theorem 2.3. Then the following relations hold:

A% = A1! -812:3130]2:(}]1
Ai1Bh = BiA1=A1Ci=CiA1 =C1B1 =B :(O),
AsBy = BgAg = AyCy =CyAs = CyBy = BoCy = (0) .

Proof. Using a+8+v =2, af+av+ B8y =—1 and afy = 1, required equalities can be established by
matrix calculations.
THEOREM 3.5. For all non-negative integers m and n, we have the following identities.
(a): PPy =FPrmyn =Py P

(C): Qm Qn = Q'n, Qm - 9Pm+ﬂ+? - 24‘Pm+7’1+] -+ 10’)Dm+n + 8pm+n—] =+ ’)Dm-Q—n—Q-
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(d): QmQn = QnCQm = 4Pmsn + 8Prin—1 + 16Pmin—2 + 12Pnin—3 + 9Pmyn—a.
() OmOn = 9nQm = Pmanta —10Pnine3+31Pnonio — 30Pnint1 +9Pmsn.
Proof.
(a): Using Lemma 3.4 we obtain
PmPn = (A1a™ + B18™ +C1y™)(Ara™ + B18™ + C1y™)
=A™ 4 BI™T" 4+ O 4+ A1 B1a™B™ + Bi A 8™
+A.C1a™ A" + C1A1 Q™™ + B1C1 A 4+ C1B 8™
= A ™ 4L B AT 4 Oy
= Pmin.
(b): By Lemma 3.3, we have
PrQn = PrPrQo.
Now from (a) and again by Lemma 3.3 we obtain P,,, @, = PininQo = Cmin-
It can be shown similarly that QnPm = Qmn.
(¢): Using (a) and Theorem 3.2 (a) we obtain
QmQn = (3Pnyr1 —4Pn — Pu1)(3Pmat1 — 4Ps — Pr—1)
= AP Pm—1 —12Py Pt + 4P Prn1 — 12P 5 Prs
F16P Pr + Pt Pr1 — 3Pm—1 Pt — 3P 1Pt + 9P 1Pt
= APmin-1— 12Pnin+1 + 4Pmin—1 — 12Pmint1 + 16Pp1p
+Pmin—2 = 3Pmin = 3Pmin + Pminio

- 9Pm+n+‘2 - 24Pm+n+] + 10Pm+n + 8’Pm+'n,71 + ’)Dm+n7‘2-

It can be shown similarly that Q,, @, = YPinio —24P 01 +H10P e n +8Pmin—1+Pmin—o-
The remaining of identities can be proved by considering again (a) and Theorem 3.2.

Comparing matrix entries and using Teorem 2.2 we have next result.

COROLLARY 3.6. For third-order Pell and third-order Pell-Lucas numbers, we have the following iden-
tities:
(a): Poan = PPy + Py (P11 + Poyo) + P11 Py
(b): Qmin = Prn@Qni1 + Qn (Pt + Pr—2) + Qn_1Fp_1.
(€): QmQni1 + Qn (Qm-1+ Qm—2) + Qm-1Qn_1 =9Pmini2 —24Pn_ni1 + 10Pnin +8Pmin_1+

Pm+n—‘2 .
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(d)' Qan+l + Qn (Q'm—1 + QM—Q) + Qm—lQn—l — 4Pm+ﬂ, + 8Pm+n—‘] + 16Pm+n—2 + 12Pm+n—3 -+
ng+'n—4-

(e): Qan+] +Qn (me'l + Qm72) +Qm7‘lQn71 - Pm+n+4 - 10Pm+n+3+31pm+n+2 - 30P’m+n+‘l +
9P, in.

Proof.

(a): From Theorem 3.5 we know that P, P, = Ppirn. Using Theorem 2.2, we can write this result as

Pm+'l Pm+Pm—1 Pm Pn+'l Pn+Pn—'l P'n,
Pm Pm—‘1+Pm—Q Pm—'l Pn Pn—l+Pn—2 Pn—'l
Pm—'l Pm—? + Pm—3 Pm—? Pn—'l Pﬂ.—Q + Pﬂ,—3 Pn—?
Pm+n+'l Pm+n + Pm+n7‘1 Pm+n
= Pm+n Pm+n—1 + Pm+n—2 Pm+n—1

Pm+n—1 Pm+n—2 + Pm+n—3 Pm+n—2

Now. by multiplying the lett-side matrices and then by comparing the 2nd rows and 1st columns
entries, we get the required identity in (a).

The remaining of identities can be proved by considering again Theorems 3.5 and 2.2.
The next two theorems provide us the convenience to obtain the powers of third-order Pell and third-
er Pell-Lucas matrix sequences.
THEOREM 3.7. For non-negatif integers m,n and r with n > r, the following identities hold:

(a): P = Pon,
(b): 7 ?2:—] = PI"Prn,
(€): PoerPryr = P2 — Pg.

n

Proof.

(a): We can write PI* as

P = PpPr.. Py (m times).
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Using Theorem 3.5 (a) iteratively, we obtain the required result:

Pro= PaPp. Py
\.—Y—/
m times
= PorPrPn.. P,
_l',
m—1 times
= P PuPr.. Py,
\—\,—/

m—2 times

- P(m—])npn

= Pun-
(b): As a similar approach in (a) we have
Py?-q-] = ‘Pn-ﬁ—'l -Pn+'l ---Pn+1 = ’Pm(n+1) = PmPmn = P1Pm_1Pmn.

Using Theorem 3.5 (a). we can write iteratively Pp, = P1Pm—1, Pm—1 = P1Pm_s. .... Py = P1P1.
Now it follows that

pﬁ:,n+1 = P1P1.. P1Pmn = P{“Pmn
S——

m times

(¢): Theorem 3.5 (a) gives
‘Pn—rfpn+r - PQn — ’pnPn - ’PTQI

and also

Pr—rPatr = Pon = PoPa...Po = Py
N ot

n times

We have analogues results for the matrix sequence Q,,.

THEOREM 3.8. For non-negatif integers m,n and r with n > r, the following identities hold:

(a): Q?I.fTQR+T = Qi,

Proof.
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¢

(a): We use Binet's formula of third-order Pell-Lucas matrix sequence which is given in Theorem 2.3
So

Qn—rQuir — Q1

= (Aa™ T+ By T + Coy™ ) (Aa™ T + BoBNTT 4 Coy™ )
—(Aga™ + Byff™ 4 Cyy™)?

—  AsBaa™ AV — BT)2 4 AsCaa™ Ty (0 — A7)
FBoyCy BT (3T — 472

=0

since Ao By = AyCy = Co By (see Lemma 3.4). Now we get the result as required.

(b): By Theorem 3.7, we have

m times m times

When we apply Lemma 3.3 (a) iteratively, it follows that

This completes the proof.
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