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Abstract.

In this paper, we mainly make use of the probabilistic method to calculate several different moment
representations of the degenerate Daehee numbers of the third kind with degenerate log function. We
also obtain the moment expressions of the degenerate Daehee numbers of higher-order and degenerate
Daehee numbers of the second kind. When deriving the moment representations of degenerate Stirling
numbers and the degenerate Bernoulli numbers, we arrive at the combinatorial identities of
relationships of them and we prove them by the probabilistic method.
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1 Introduction

It is common knowledge that the Daehee numbers of order r, denoted by
DY), are defined by the generating function[2][3][9]:

t
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When r =1, DS) = [),, are called the Daehee numbers.

The degenerate Daehee polynomials of higher-order D (z|A) are intro-
duced as[4]:

log(1 + t) "
(log(l + /\r)x =2 D n" @)

n=>0

When = = 0, D (0|A) = D,Ef")(/\) are called degenerate Daehee numbers of
higher-order, which is defined by the following generating function:

( log(1+1t) ) ZD(T)()\)LH.

eloyia 3)
log(1 + A\t)* = n!
We note that limy_.q D,E:")(/\) = DI,
Recently, D.S. Kim et al. presented the degenerate Daehee numbers of the
second kind D, o(n) as follows[5]:

log(1+1) tn
=" Dya(n)—. 4
(1+Mog(1+1)* —1 ; r2 ()7 )

We note that limy_,o Dy 2(n) = D,,.
Now we consider the degenerate log function, denoted by logy(#), which is
defined by the following generating function|7]:

log (1) = 5 (¢ = 1), )

In this case, S.S. Pyo et al. defined the degenerate Dachee numbers of the
third kind D, 3(n) as follows[10]:

log, (1 + 1 1+t
Og)\(t ) _ A(( ZDAS

n=0 ”] ' (6)
We note that limy_,g Dy 3(n) = D
In this paper, we make use of the special combinatorial sequences of the de-
generate Bernoulli numbers /3, 5, which are defined by the following generating
function|1]:

L t ot
= = Djn_ — 7
ex(t) =1 1+ )F —1 D By (7)

The degenerate Stirling numbers of the first kind S7 \(n, k) are defined by
the generating fuction[6]:

11+ 8> — 1) .
%(]OgA(l 4 t))k _ (A((l + f) 1)) — Z Sl,)\('?'i‘vk):j' (8)

k!
n=k
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The degenerate Stirling numbers of the second kind S 5 (n. k) are defined
by the generating fuction|[6]:

%({A(t)—l) ((1+)\f A —1 ZSQA ", 'IL fn. (9)

n=k

If f and g are exponential generating functions, and

fo= (3 O3 ),

r=0 s=0

then the coefficients of % in fg are given by

m n
[n‘ [(fg) = Z Cj) apbp_y.

r=0

In this paper, we need the following notations: r.v denotes a random vari-
able, i.i.d shows that a sequence of random variables are independent identical-
ly distributed. The notation E denotes an expectation operator and definition
is as follows: When f(x) is a measurable function with continuous random
variables X and p(x) is a density function of X, we have

+oo
Ef(X)= / f(x)p(z)dx.

— o0

"™ ,we obtain the moment of n-th order £X™ of

Especially, setting f(z) = =
random variables.
Next we shall introduce several moment representations of some combina-

torial sequences used in this paper.

Lemma 1.1 [11] Suppose that r.v Li, Lo, -+, ii.d ~ L[0,1] and r.v L. =
D oks1 2&—?, then Bernoulli numbers B, satisfy the following moment represen-
tation,
1
B, =FE(iL. — E)n_._ n = 0. (10)

Lemma 1.2 [12] Suppose that r.vuy, ug, -« idi.d ~ U0, 1], I, I3, -+ Jid.d~
I'(1,1), u; and I'; are independent for all 7, j, when n,k > 1, then Stirling
numbers of the first kind have the following moment representation,

Sl(ﬂ.. ;\) = (— )n k (&)E(Hlfl + “QFQ +-et 'I.I-kfk)n—k. (11)
It is demanded that Si(n,0) = S1(0,k) =0, 51(0,0) = 1.

Lemma 1.3 [8] Suppose that rv u ~ U[0,1], I' ~ I'(1,1), u and I' are

independent, then Daechee numbers have the following moment representation,

Dy = (=1)"E(ul’)", n > 0. (12)
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Lemma 1.4 [8] Suppose that r.v wuy, ug, -+, i.i.d ~ U[0,1] for all i, when
n. k > 1, then Stirling numbers of the second kind have the following moment
representation,

2

Sa(n, k) = (L)E(Ul +ug 4 ug) (13)
It is demanded that Sa(n,0) = Sa2(0, k) = 0, S2(0,0) = 1.

Lemma 1.5 [8] Suppose that r.v uy,ug, -+ ,ii.d~U[0,1], I, o, -+ ,ii.d~
I'(1.1), u; and I'; are independent for all 7. j, when n.k > 1, then Stirling
numbers of the first kind have the following moment representation,

D) = (=1)"E(uy Iy + -+ upl%)™. (14)

2 Moment Representations of the Degenerate Daehee Sequences

In this section, we use probabilistic method to derive several moment
representations about the degenerate Daehee numbers of higher-order and
the degenerate Daehee numbers of the third kind. On the foundation of the
moment representations of the degenerate Daehee numbers of the third kind,
we conclude moment representations of the degenerate Stirling numbers of the
first and the second kind, the degenerate Daehee numbers of the second kind
and degenerate Bernoulli numbers.

Theorem 2.1 Suppose that r.v uy, ug, -+ ,iid ~ U[0,1], I, I, -+ ,ii.d ~
I'(1.1), u; and I'; are independent for 7,j = 1.2...., r.v Xj ~ I'(u.1), u ~
U, lJandrv I ~I'(r—n+1,1)andr—n+1>0,forre Ny, ne N, A e C
and A # 0, the degenerate Daechee numbers of higher-order D,EJ") (\) satisfy the
following moment representation:

DY (A) = (~1)"E(ualy + - - + u, T 4+ Ar Xy — AD)™. (15)

Proof From the generating function of the degenerate Daehee numbers of
higher-order, we replace t by —it in Eq.(3),

> DM f - - q lo(gl(l__,\_f)) I

n>0 v og it (16)
_Jog(1—it),. =Nt L
=) (log(l—/\-it) ) (LA

Suppose that r.v wy,ug, -+ ,id.d ~ U[0,1], 'y, [o, -+ ivdd ~ T'(1,1), uy
and [ are independent for for i, j = 1,2, ..., for the right side of the Eq.(16),

(log(l— it) Z (sf)m _ Z Eu™(it)™)

m 1
+ m=0
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=N Y BueBu(it)"

n>=0mi+---+mr=n

n _ it)™
= E E Eul" - Eulmq!- - my! (i)
M1, My n!

n>=0mi+---+mr=n

- Z Z " Eul" - EuEN™ .. B —— ()"
Mi, -+, My T ! n!

0mi+---4+m,.=n

n _ oo (i)™
u )™ _rrr My
Z (1'1'3.1. e _-.?'n-r) (1) (ur ™) n!

n>0 my+-tme=n

= Z E(ulfl 4+t "'-f-rfr)n (""t)

n!
n=0

I
1 &
s

Suppose that r.v X1 ~ I'(u, 1), r.v u ~ U|0, 1], the characteristic function
of r.v X1 denoted by

, . 1

X _'ti 2 T
EBetX = B{E[Y| )

S| —it 1 (it)"

= Tdr = = EXT
/0 g2l e T HZW I
so we have
—\it (Ait)™
EY?’T&

(log(l —Ait) 1 — /\zf mZ;D m! A

=5 SUD DI (R Vs cace
My, - My 7!

n=0mi+---+mr=n

= 3 Eex) 2 = 3 poex)n

n=0 n=0

Suppose that rv ' ~ I'(r —n+1,1) and » —n+ 1 > 0, Eq.(16) can be
expressed by

Z D(r) )1

nz=0
-y ()" (=Aat)"
=D Bluly+ -+ up )" ZE(A X)) D ()
n=0 n=0 n=0

— Z Z (E)E(-lilfl NI .u_rfr)kE(/\-er)”_k (”),
nev=e n!
(i

n!

X Z(—/\)” <r—-n+1>,

n=0
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t T f T
= E(uilt+--+uly + /\?-Xl)”% S (—NET ( )'
730 ! "0 !
- n sk n—k (Zt)n
— Z Z . E(uln + -+ u Ly + ArXq)"E(=A)" -
n>0k=0 “ n
4 n (Zf)n
= Z E(u Iy + -+ up Dy + M X, — AI) — (17)
n>0 -

(@‘t)’u

By comparing the coefficients “—— in both sides, we arrive at the moment

expression of degenerate Dachee number of higher-order D.i:") (A).

Whenr.v Iy, I, -+ ,idi.d ~ I'(1,1), we obtain that [1+1o+- -+ 1, _p11 ~
I'ir—n+11),(r—n+1>0)and E(I1+1a+ -+ 1r—ps1)" =< r—n+1 >,,
so we get the following theorom.

Theorem 2.2 Under the condition of Theorem 2.1, for all i.j > 1, we get
the moment representation of the degenerate Daehee numbers of higher-order

D (\):

r r—mn4+1

DN = (-1)"EQ) (wili+AX1) =X > )™ (18)
j=1

i=1

Suppose r.v Xg ~ ['(—xz,1) and = < 0, the characteristic function of r.v

X2 denoted by

EetX = (1—it)~ ) = Z EXT (?' . -

n>0 '
So we can easily obtain the following corollary.

Corollary 2.3 Under the condition of Theorem 2.1 and Theorem 2.2, suppose
r.v Xog ~ ['(—x,1) and « < 0, we can easily obtain the moment representation

of the degenerate Daehee polynomials of higher-order D,Elr) (z|\):

DI (x|A) = (—1)"E(utly + -+ up I+ Ar Xy — AL+ Xo)™. (20)

r r—n+1
D[N = (-D)"EQ (il +AX1) = A Y Ij+X2)"  (21)
j=1

i=1

Theorem 2.4 Suppose that r.v u ~ U[0,1], I'" ~ '(A—n,1), (A—n > 0), u
and I'" are independent, then for n € N we get the first moment representation
of the degenerate Daehee numbers of the third kind D) 3(n):

Dy 5(n) = E(ul")". (22)
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Proof In light of the Eq.(6) we have

n 1 A n
ZDA 3(n ! = A((1+f) D = %Z(/\)n%

n=>0 n>1
S = Do : -3 (A - R o
= —Ll)n—-1—"7— n - n
n>1 n=0 ( +1 n=0 ( + 1)]
<A=—n>pt
_y Aol _shp nEm E(ur)"! 23
DT T Z u 2;0 ()" — (23)

- - ™
By comparing the coefficients %, we conclude the proof.

When r.v Iy, I, -+ ,iii.d ~ ['(1,1), we obtain that I + 124+ 1h_n ~
I'(A—n,1), (A —=n > 0), we get the following theorem.

Theorem 2.5 Under the condition of Theorem 2.4, we get the second mo-
ment representation of the degenerate Daehee numbers of the third kind

Dy 3(n):

DA,g('I'I.) = E['U-(fl + et f)\_n)]n. (24)

Corollary 2.6 For r.v uy,ug,--- ii.d ~ U0, 1], [7, I, -+ ,i.i.d ~ I'(1, 1),
we get

Dia(n) = (~1)" DG, (25)

Corollary 2.7 For r.v uy,ug,--- ii.d ~ U0, 1], I, T2, -+ ii.d~ T'(1,1),

we get
DA,3 (-n.) = E(ulfl + -+ 'U)\_.n_f)\_ﬂ_)n (26)
n n
Dy a(n) = Z (—1) ( . )Dil Dy (27)
. . ""1:' T, E'A—?I.
t1+-tin—n=n
Theorem 2.8 Suppose that r.vuy, ug,--- ,i.i.d ~ U[0,1], I, 7. I}, --- id.d~

I'(A —n,1), u; and fjjf are independent for 7,j = 1,2, ..., then for n > k we
obtain the moment representation of the degenerate Stirling numbers of the

first kind Sy a(n, k):

Sl,)\(-n.T k.) — (:) E(-z_g.lf{ + e+ 'I.i.kf,:)ﬂ'_k. (28)
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Proof According to the Eq.(8) we have
k! ] mn k
8170 ) = 7] Qogy (1+ 1)

_ [tn—k](w)k _ [t-n.—k](z E(urf)mg)k

2
m=0

K n tn
= [tn k] Z E( Z ( - ) ('ulf{)ml - (.U_kr}’;)?nk)j
n>0 mi4--—-+mep=n mi, -+, Mg 1!

n

. t
= ["F) Bl 4+ u )" —

n!’
n=0
This concludes the proof.

Corollary 2.9 Suppose that r.v uy,ug, - ,i.i.d ~U[0,1], I, T3, --- ,ii.d~
I'(A—n,1), u; and fjjf are independent for 7, j = 1,2, ..., then for n > k we get

Sia(nk) = (:) D ( n=k )DA,s.('il) - Dys(in).  (29)

1, " ik
irtetig=n—k N1 R

Next we discover the relationship of generating functions of the degenerate
Daehee numbers of the third kind Dy 3(n) and Stirling numbers of the first
find Sy(n, k), and derive the third moment representation of the degenerate
Daehee numbers of the third kind Dy 3(n) in the following theorem.

Theorem 2.10 Suppose that r.vuy, ug, -+ ,ii.d ~ U0, 1], 'y, [o, -+ id.d~
I'(1,1), then for n € N we have

m

1 n
D)\,g(-n.) = - (H ) (_l)n—mE(_ulfl 4 _U_mrm)n—m()\ - 1)m..
=0
(30)

Proof The level generating function of the Stirling numbers of the first kind
S1(n, k) is denoted by

() = Z Si(n. k)x*. (31)
k=0

Thus it follows from the proof of theorem 2.4 and Eq.(32),

x40 -1
HZZO DA’S(”)E N t

T

tm - m t
— Z(/\ — 1)71(]??71)r = Z Z Si(n,m)(A—1) 1)

n=0 n=0m=0
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t?‘l
(n+ 1)

= Z (:;) (=) "ME(u I+ - Fugp L))" (A=1)™

n=>0m=0

By comparing the coefficients % therefore we derive the Eq.(30).

Now we obtain the forth moment representation of the degenerate Daechee
numbers of the third kind D) 3(n) according to the relationship between the
Daehee numbers D,, and the Stirling numbers of the second kind Sy (n, k) in
the following theorem.

Theorem 2.11 Suppose that r.v w, uy,ug, -+ ,idid~U[0, 1], ", T{, T35, - .
iiid~T(AN=n,1), (A—=n>0), I1 ~I'(1,1), then for n € N we have:

ors1 5235 (1) () ettt

k=0 1=0
X E(uy I} + - +up, I )"k (32)

Proof The generating function of the Stirling numbers of the second kind
Sa(n, k) is denoted by

et 1)k n th
LigL:Z:(nt. (33)

k=0

Thus from the proof of theorem 2.4, we have

_ﬂ_§KH4V—U
Z}nﬂmﬁ_ ;
n=0

log(ex((1+D*=1) _1 4 1)

=3 DY Salm D (5141~ )"

=0 mz=l

k
_ Z D, Z So(m, f)%(fz E(.z_sz)k%)m

>0 m>l1 Y k>0

T t‘n:'
= D;So(m, l[)—
Z Z L 2(?”"' )-]r'n.'
m=0 1=0
T

n t
X Z 12 Z (&?1. e km) (un I)™ - (um Iy ) n!

n=0 ki+---+kn=n
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= Z( 1) E(ur)f( )E(Ul NI u_l)m._;%
m=>0 =0 T
nf—?'&
: _nzm E(uly+ - +umly) n!
ke |
= Z ZZ ( ) (3)(—1)@(;5;)@(”1 e g)E
2 A
X E('I.I-lr{ + o+ um.r?;l_)n_kt—'._
n.

By comparing the coefficients 21—7: therefore we derive the Eq.(32).

Theorem 2.12 Suppose that r.vuy, ug, -+ ,ii.d ~ U[0,1], X1, Xo, -+ ,idd ~
f(% —n,1), (% —n > 0), u; and X; are independent for 4,j = 1,2, ..., then
for n > k we obtain the moment representation of the degenerate Stirling
numbers of the second kind Ss \(n, k):

Sar(n.) =3 )mexl X (34)
Proof By setting ¢ to At and A to % in Eq.(8), we have
. (A" _ (AL + 2> — 1))k
Z bl,%(ﬂ': ;‘) ol x = )\k Z SQ A(H ;\, (35)
n>k n>k

By comparing the coefficients % in Eq.(35), we have
Soa(n, k) = A"7ES) 1(n, k).

According the moment representation of S; »(n, k), we have

*52 )\(n Jlt) =A\"" k( )E(ltl)&l + - _’__Uk)(k)n—k‘

here r.v uy, ug, -+ i.i.d ~ U[0,1], and r.v X7, Xo, -+ Jiiid ~ f(% —n, 1), and
1
x—n>0.

Theorem 2.13 Suppose that r.vu, uq, ug, - -+ ,i.i.d ~ UJ0, 1] IN.I5. - idd~
ray, r~rA—n1l), Xy, Xo, -+ iviid ~ f(% —n, 1), (I —n > O) u; and
I'j, X; are independent for 7, j = 1,2, ..., then for n € N we obtain the moment
representation of the degenerate Bernoulli numbers 3, :

- - T m - - n—m

Bor = Zﬂ (m) EI")" EINur X1 + - - + 1t Xon) "™, (36)
. " /n . . N
Bun=3Y" (_?_H)E(-ufl 4o ul )M EN i Xy A -+ 1w X )P (37)

m=0 '
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Proof According to Eq.(7), we have

S {n t CHa+a+ax - )*—1)
T (L anF - (1+ \)F —
(14 A)x = 1)7 t”
— Z D},T3(Tn.) * : Z Dy 3(m) Z Saa(n,m) -
m=>0 e m=>0 n=m 1
t?l
=) Z E(ul”)™ "~ ( | ) (W1 X1+ 4 Uum X)) " —
n=0m=0 e

Thus, comparing the coefficients % gives the Eq.(36). Eq.(37) can be directly
obtained by Theorem 2.5.

We investigate the relationship of the degenerate Bernoulli numbers /3,
and the degenerate Stirling numbers of the first kind S; (7, k), we arrive at
the fifth moment representation of the degenerate Daehee numbers of the third
kind Dy 3(n) in the following theorem.

Theorem 2.14 Suppose that r.v w, uy, ug, -+ ,idi.d ~ U[0,1], T, fl Iy, -,
ivid~T'(A—n,1)and A—n >0, X1, Xo, -+ ,iid ~ f( —n, 1) and x—n>0

then for n € N we have:

Daat) =303 ( )( )E(ur)mE[A<ulA1+ U X))

1=0 m=0
x E(u I} + - 4+, 1)) (38)

Proof According to Eq.(6), we have

" L(1+nr-1) S(L+0)*—1)
Z D)\:3(n.).—] = — 1 3 T
L t (1+)\(X((1+f-) —))F -1
(@ +r=1))
=Y fia 0 = Aa ) Sianl) I
1>0 1>0 n>1
n )
= Z ( { )E('Ur;).mE[/\(ulJXrl + -+ 'U--m}(m)]z_
n>0 =0 m=0 m

f.?!.

X ('I;I)E(-u-lff coa )" —-
n!

By comparing the coefficients 21—7: therefore we derive the Eq.(38).
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Theorem 2.15 Suppose that r.v u,uy, ug, -+ ,idi.d ~ U0, 1], I'" ~ I'(A —
n,1)and A\—n > 0, X1, Xo, -+ ,iid ~ f(% —n, 1) and % —n>0,17.15, -
i.i.d ~ I'(1,1), then for n € N we obtain the moment representation of the
degenerate Dachee numbers of the second kind Dy o(n):

mn m I m
T m —m I NI — Tn—1r
Dralm =2 ) () ( z )(—1)” Bl B Xy B(Y 1)
m=0 [=0 i=1 j=1
(39)

Proof For Eq.(6), we replace t to (1 + Alog(1 + 1‘))% —

1+ Mog(1+1#))% — 1)
5 D NCRRL-CRA) L)

§((1 + (14 Mog(L+1)x —1)* —1)
(14 Aog(1+t)x —1

log(1+1) B oL
~ g0 =1~ 2 Daal)’. (40)

Then we have

Z Dy s(1) ((1+ /\log(lu_|_ £)* — 1)t

1>0

- Z D 5(1) Z Sy x(m, 1) ——— (log(1 +1))™

m!
1>0 m>l

=Y Das(l)>_ San(m,1) Y Si(n, m-);

=0 m=l n=m

) Z Z Z Dy 3(1)Sa,x(m, 1) Sy (n, .;-;z-)%

n>0m=0 1=0

= Z Z Z E(-u.ff)g (?;-@)E[/\(UI}(I 4. 'I.i-g)&rg)]m_l

n>0m=0 1=0

t?l

x (=1)"~ 'm( )E(ulfl +o U )" T — (41)

n!’

By comparing the coefficients 21—, of Eq.(40) and Eq.(41), we arrive at the
Eq.(39).
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