SCITECH

An Original note on Fermat numbers, on numbers of the form W_{n} and on numbers of the form $10 k+8+\mathrm{F} n$ [where
 $W_{n} \in\left\{22+F_{n}, 2^{n}+F_{n}\right\}, n$ is an integer ≥ 0, F_{n} is a Fermat number and k is an integer ≥ 0]

Ikorong Annouk,
Centre De Calcul; D'Enseignement Et De Recherche En
Mathematiques Pures. ikorong@ccr.jussieu.fr
Paul Archambault. Paul.Archambault@precisely.com

Abstract

Definitions. A Fermat number is a number of the form $F_{n}=2^{2^{n}}+1$, where n is an integer ≥ 0. A Fermat composite (see [1] or [2] or [4]) is a non prime Fermat number. Fermat composites and Fermat primes are characterized via divisibility in [4] and [5] (A Fermat prime (see [1] or [2] or [4]) is a prime Fermat number). It is known (see [4]) that for every $j \in\{0,1,2,3,4\}, F_{j}$ is a Fermat prime and it is also known (see [2] or [3]) that F_{5} and F_{6} are Fermat composites. In this paper, we show [via elementary arithmetic congruences] the following result (T.). For every integer $n \geq 2, F_{n}-1 \equiv 1 \bmod [j]$ (where $j \in\{3,5\}$). Result (T) immediately implies that for every fixed integer $k \geq 0$, there exists at most two primes of the form $10 k+8+F_{n}$ [in particular, for every fixed integer $k \geq 0$, the numbers of the form $10 k+8+F_{n}$ (where n is an integer ≥ 2) are all composites]. Result (T.) also implies that there are infinitely many composite numbers of the form $2^{n}+F_{n}$ and there exists no prime number of form $22+F_{n}$. Result (T.) coupled with a special case of a Theorem of Dirichlet on arithmetic progressions help us to explain why it is natural to conjecture that there are infinitely many Fermat primes. Keywords: Fermat number, F_{n}. AMS Classification 2000: $05 x x$ and $11 x x$

Theorem 1.1.
(T.). For every $n \geq 2, F_{n}-1 \equiv 1 \bmod [j]$ (where $j \in\{3,5\}$).
(T.1). For every fixed integer $k \geq 0$, there exists at most two primes of the form $10 k+8+F_{n}$.
(T.2). For every fixed integer $k \geq 0$, the numbers of the form $10 k+8+F_{n}$ [where n is an integer ≥ 2] are all composites.
(T.3). There are infinitely many composite numbers of the form $2^{n}+F_{n}$.
(T.4). There exists no prime number of the form $22+F_{n}$.

To prove Theorem 1.1, we need the following remarks.

Remark 1.0. Let n be an integer ≥ 3. If $2^{2^{n-1}} \equiv 1 \bmod [j]$ where $j \in\{3,5\}$, then $2^{2^{n-1}} \times 2^{2^{n-1}} \equiv 1 \bmod [j]$. (Proof. Immediate [via elementary arithmetic congruences]. \square)
Proposition 1.1. Let n be an integer ≥ 2, then $2^{2^{n}} \equiv 1 \bmod [j] ; j \in\{3,5\}$. (Proof. Otherwise

$$
\begin{equation*}
\text { let } n \text { be minimum such that } 2^{2^{n}} \not \equiv 1 \bmod [j] ; j \in\{3,5\} \tag{1.1}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
n \geq 3 \tag{1.2}
\end{equation*}
$$

(since $2^{2^{2}}=16$ and $16 \equiv 1 \bmod [j]$ where $j \in\{3,5\}$). It is immediate to see that

$$
\begin{equation*}
2^{2^{n}}=2^{2^{n-1}} \times 2^{2^{n-1}} \tag{1.3}
\end{equation*}
$$

Now using equality (1.3) and inequality (1.2), we easily deduce that (1.1) clearly implies that

$$
\begin{equation*}
2^{2^{n-1}} \times 2^{2^{n-1}} \not \equiv 1 \bmod [j], \text { where } j \in\{3,5\} \text { and where } 2^{2^{n-1}} \equiv 1 \bmod [j] ;(n \geq 3) \tag{1.4}
\end{equation*}
$$

(1.4) clearly contradicts Remark 1.0 . \square)

Remark 1.2. Let n be an integer ≥ 3. If $2 \times 2^{n-1} \equiv 0 \bmod [3]$, then $2^{n-1} \equiv 0 \bmod [3]$. (Proof. Immediate [via elementary arithmetic congruences and the fact that $2 \equiv 2 \bmod [3]]$.
Proposition 1.3. Let n be an integer ≥ 2; then $2^{n} \not \equiv 0 \bmod [3]$.
(Proof. Otherwise

$$
\begin{equation*}
\text { let } n \text { be minimum such that } 2^{n} \equiv 0 \bmod [3] \tag{1.5}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
n \geq 3 \tag{1.6}
\end{equation*}
$$

(since $2^{2}=4$ and $4 \not \equiv 0 \bmod [3]$). It is immediate to see that

$$
\begin{equation*}
2 \times 2^{n-1}=2^{n} \tag{1.7}
\end{equation*}
$$

Now using equality (1.7) and inequality (1.6), we easily deduce that (1.5) clearly implies that

$$
\begin{equation*}
2 \times 2^{n-1} \equiv 0 \bmod [3], \text { where } 2^{n-1} \not \equiv 0 \bmod [3] ; n \geq 3 \tag{1.8}
\end{equation*}
$$

(1.8) clearly contradicts Remark $1.2 . \square$)

Proposition 1.4. Let n be an integer ≥ 2 and let k be a fixed integer ≥ 0 [k is fixed once and for all, so k does not move anymore]. Then $10 k+8+F_{n} \equiv 0 \bmod [5]$ and $10 k+8+F_{n}$ is composite.
(Proof $(\mathbf{i}) .8+F_{n} \equiv 0 \bmod [5]$ and $8+F_{n}$ is composite. Clearly

$$
\begin{equation*}
\left(2^{2^{n}}+1\right)+8 \equiv 0 \bmod [5] \tag{1.9}
\end{equation*}
$$

[use Proposition 1.1 and elementary arithmetic congruences]. So $8+F_{n} \equiv 0 \bmod [5]$ and $8+F_{n}$ is composite [use congruence (1.9) and observe that $\left(2^{2^{n}}+1\right)+8=8+F_{n}$ and $8+F_{n}>5$ (note that $n \geq 2$)].
(ii). $10 k+8+F_{n} \equiv 0 \bmod [5]$ and $10 k+8+F_{n}$ is composite. Immediate (use (i) and observe that $10 k \equiv 0 \bmod [5]$). Proposition 1.4 immediately follows [use (i) and (ii)]).
Proposition 1.5. Let n be an integer ≥ 2. Then $22+F_{n} \equiv 0 \bmod [3]$ and $22+F_{n}$ is composite.
(Proof. Clearly

$$
\begin{equation*}
22+\left(2^{2^{n}}+1\right) \equiv 0 \bmod [3] \tag{1.10}
\end{equation*}
$$

[observe that $2^{2^{n}} \equiv 1 \bmod [3]$ (use Proposition 1.1) and use elementary arithmetic congruences]. So $22+F_{n} \equiv 0 \bmod [3]$ and $22+F_{n}$ is composite [use congruence (1.10) and observe that $22+\left(2^{2^{n}}+1\right)=22+F_{n}$ and $22+F_{n}>3($ note that $\left.n \geq 2)\right]$. Proposition 1.5 immediately follows).
Proposition 1.6. Let n be an integer ≥ 3 and let $B_{n}=2^{n}+F_{n}$; then there exists $j \in\{0,1\}$ such that B_{n+j} is composite.
(Proof. (\mathbf{i}^{\prime}). If $2^{n} \equiv 2 \bmod [3]$, then the number B_{n+j} is composite, where $j=1$. Indeed if $2^{n} \equiv 2 \bmod [3]$, clearly

$$
\begin{equation*}
2 \times 2^{n} \equiv 1 \bmod [3] \tag{1.11}
\end{equation*}
$$

[use elementary arithmetic congruences] and so

$$
\begin{equation*}
2^{n+1} \equiv 1 \bmod [3] \tag{1.12}
\end{equation*}
$$

[use (1.11) and observe that $2 \times 2^{n}=2^{n+1}$]. Observe (via Proposition 1.1) that

$$
\begin{equation*}
2^{2^{n+1}} \equiv 1 \bmod [3] \tag{1.13}
\end{equation*}
$$

and so

$$
\begin{equation*}
2^{2^{n+1}}+1 \equiv 2 \bmod [3] \tag{1.14}
\end{equation*}
$$

[use (1.13) and elementary arithmetic congruences]. Clearly

$$
\begin{equation*}
2^{n+1}+\left(2^{2^{n+1}}+1\right) \equiv 0 \quad \bmod [3] \tag{1.15}
\end{equation*}
$$

[use (1.12) and (1.14) and elementay arithmetic congruences]. Clearly

$$
\begin{equation*}
2^{n+j}+F_{n+j} \equiv 0 \bmod [3] \text { where } j=1 \tag{1.16}
\end{equation*}
$$

[use (1.15) and observe that $2^{n+1}+\left(2^{2^{n+1}}+1\right)=2^{n+j}+F_{n+j}$, where $j=1$] and so B_{n+j} is composite, where $j=1$ [use (1.16) and observe that $B_{n+1}=2^{n+1}+F_{n+1}$ and $B_{n+1}>3$ since $n \geq 3$].
(ii'). If $2^{n} \not \equiv 2 \bmod [3]$, then the number B_{n+j} is composite, where $j=0$. Indeed if $2^{n} \not \equiv 2 \bmod [3]$, then

$$
\begin{equation*}
2^{n} \equiv 1 \bmod [3] \tag{1.17}
\end{equation*}
$$

[use Proposition 1.3, by observing that $2^{n} \equiv k \bmod [3]$ if and only if $k \in\{0,1,2\}$]. Now observe (by Proposition 1.1) that

$$
\begin{equation*}
2^{2^{n}} \equiv 1 \bmod [3] \tag{1.18}
\end{equation*}
$$

and so

$$
\begin{equation*}
2^{2^{n}}+1 \equiv 2 \bmod [3] \tag{1.19}
\end{equation*}
$$

[use (1.18) and elementary arithmetic congruences]. Clearly

$$
\begin{equation*}
2^{n}+\left(2^{2^{n}}+1\right) \equiv 0 \quad \bmod [3] \tag{1.20}
\end{equation*}
$$

[use (1.17) and (1.19) and elementay arithmetic congruences]. Clearly

$$
\begin{equation*}
2^{n+j}+F_{n+j} \equiv 0 \bmod [3] \text { where } j=0 \tag{1.21}
\end{equation*}
$$

[use (1.20) and observe that $2^{n}+\left(2^{2^{n}}+1\right)=2^{n+j}+F_{n+j}$, where $j=0$] and so B_{n+j} is composite, where $j=0$ [use (1.21) and observe that $B_{n}=2^{n}+F_{n}$ and $B_{n}>3$ since $n \geq 3$]. Proposition 1.6 immediately follows [use (i') and (ii')]).

Remark 1.7. There are infinitely many composite numbers of the form $2^{n}+F_{n}$ or there are infinitely many prime numbers of the form $2^{n}+F_{n}$. (Proof. Immediate).

Having made the previous Remarks and Propositions, then Theorem 1.1 becomes immediate to prove.

Proof of Theorem 1.1.
(T.). Immediate [use Proposition 1.1, and observe that $2^{2^{n}}=F_{n}-1$].
(T.1). Immediate [observe that $10 k+8+F_{0}=10 k+11$ and $10 k+8+F_{1}=10 k+13$; and use Proposition 1.4].
(T.2). Immediate [use Proposition 1.4].
(T.3). Immediate [use Proposition 1.6 and Remark 1.7].
(T.4). Immediate [observe that $22+F_{0}=25$ and $22+F_{1}=27$; and use Proposition 1.5]

Now using Result (T.), then we end this note by looking at Fermat primes.

Observation. It is natural to conjecture that there are infinitely many Fermat primes.

Indeed observing [via Result (T.) of Theorem 1.1] that

$$
\begin{equation*}
F_{n}-1 \equiv 1 \bmod [3] \text { and } F_{n}-1 \equiv 1 \bmod [5] \text { for every integer } n \geq 2 \tag{1.22}
\end{equation*}
$$

clearly

$$
\begin{equation*}
F_{n} \equiv 2 \bmod [5] \text { and } F_{n} \equiv 2 \bmod [3] \text { for every integer } n \geq 2 \tag{1.23}
\end{equation*}
$$

[use (1.22) and elementary arithmetic congruences].
Now let $A_{2.5}=\{e ;$ e is prime and $e \equiv 2 \bmod [5]\}$ and let $A_{2.3}=\left\{e^{\prime} ; e^{\prime}\right.$ is prime and $\left.e^{\prime} \equiv 2 \bmod [3]\right\}$. Since it is immediate that

$$
(2,5)=1 \text { and }(2,3)=1[\text { i.e. }(2,5) \text { and }(2,3) \text { are two couple of positive coprime integers }]
$$

then using (1.24) coupled with a special case of a Theorem of Dirichlet on arithmetic progressions, it follows that

$$
\begin{equation*}
\operatorname{card}\left(A_{2.5}\right) \text { is infinite and card }\left(A_{2.3}\right) \text { is infinite } \tag{1.25}
\end{equation*}
$$

Now using (1.23) and (1.25) and the fact that for every $n \in\{0,1,2,3,4\} F_{n}$ is prime and $F_{n} \in A_{2.5} \cup A_{2.3}$ [use Abstract and definitions for F_{n} and (1.23) and the definition of $\left(A_{2.5}, A_{2.3}\right)$] , then it becomes naturel to conjecture the following.
Conjecture. $\quad A_{2.5} \cup A_{2.3}$ contains infinitely many $F_{n}\left(A_{2.5}\right.$ and $A_{2.3}$ are defined via the Observation placed just above).

Observing that $A_{2.5}$ and $A_{2.3}$ are two infinite set of prime numbers, then
the previous conjecture immediately implies that there are infinitely many Fermat primes.

References

[1] Dickson. Theory of Numbers (History of Numbers. Divisibity and primality) Vol 1. Chelsea Publishing Company. New York, N.Y (1952). Preface.III to Preface.XII.
[2] G.H Hardy, E.M Wright. An introduction to the theory of numbers. Fith Edition. Clarendon Press. Oxford.
[3] Paul Hoffman. Erdös, l'homme qui n'aimait que les nombres. Editions Belin, (2000). 3049.
[4] Ikorong Annouk. Placed Near The Fermat Primes And The Fermat Composite Numbers. International Journal Of Research In Mathematic And Apply Mathematical Sciences; Vol3; 2012, 72-82.
[5] Ikorong Annouk. Then We Characterize Primes and Composite Numbers Via Divisibility. International Journal of Advanced In Pure Mathematical Sciences; Volume 2, no.1; 2014.

