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Reaction-Diffusion with Linear Cross-Diffusion Systems.
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Abstract

In this paper, we consider a reaction diffusion system with linear cross-diffusion. We carry out the analytical
study in detail and find out that, when the diffusion coefficient is unity, Turing instability does not occur, but
with the introduction of cross-diffusion, the system exhibit Turing instability. The numerical results reveal that,
on increasing the value of, there is an occurrence of spatial patterns which conforms with the theoretical results.
The cross-diffusion coefficients really play a vital role on the parameter spaces and spatial patterns of our
system.

Keywords: Cross-diffusion driven instability, parameter space, spatial patterns, pattern formation, validation,
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1 Introduction

The formation of patterns is one of the vital areas of research in mathematical biology. The popular one that
mostly studied model for pattern formation is the reaction-diffusion which was proposed by Alan Turing in
1952 [37]. He demonstrated that a system of reacting and diffusing chemicals can evolve from initial near-
homogeneity into a spatial pattern of chemical concentration. To describe the interaction between species in the
areas of say, population dynamics, we usually investigate the general reaction-diffusion equations of the form

% = DVu + f(u), where D e B™*™ js a matrix of the diffusion coefficients and f is the reaction
term. Here, we introduce cross-diffusion coefficient to the system.

In recent years, they have studied the Turing patterns similar to our model but have not really considered the
negative diffusion, to see whether Turing patterns can occur outside the classical Turing parameter space. We
study both positive and negative cross-diffusion, thereby selecting a point outside the classical parameter space
to see whether there will be an emergence of spatial patterns, we then compare it with the theoretical analysis.
Our work is organized as follows. In Section 2, we analyze our model, here we study under what conditions on
the parameter values is the uniform steady state stable or unstable. We determine the parameter values that are
outside the classical Turing diffusion-driven instability parameter space that are likely to give rise to pattern. In
Section 3, this is where we derive the finite difference method that will be use for our numerical computations.
In Section 4, we perform our numerical simulations by using finite difference method derived in Section 3 and
the results are compare to the linear stability solutions, the whole process were implemented in MATLAB.

Finally, Section 5, is devoted to some discussions and conclusions.
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2 DModel equations on stationary domains

Let @ c B™ (m = 1,2,3) be a simply connected bounded stationary volume for all time t € [ =
[0,tp], tp = 0 and 992 be the surface boundary enclosing £2. Also let uw = (u(x,t) v (@, f}}T he a
vector of two chemical concentrations at position @ = (x,y, z) € {1 € B™. The evolution equations
for reaction-diffusion systems with cross-diffusion can be obtained from the application of the law
of mass conservation to yield the dimensional system.

refl, t=0,

(| uy = D,V2u 4+ D, Vv + fi(u,v),
v =D Vi + D, Vu+ folu,v),

! (2.1)
n-Vu=n-Vue=0, zondl, t =0,

| u(x,0) = ug(z), and v(x,0) = w(z), zonll, t =0,

where V2 is the Laplace operator on domains and volumes, D, > 0, D, > 0, D,, and D, are
diffusion and cross-diffusion coefficients respectively. Here, n is the unit outward normal to %L
Initial conditions are prescribed through non-negative bounded functions wg(z) and vg(x). In the
above, fi(u,v) and fi(u, v) represent nonlinear reactions given by

filu,v) = kiay — kau + kau®v, (2.2)
le:'ﬂ-.l UJ = kdbl — chuzv.l {23}

where ay, by, ky, ko, k3 and k; are all positive constants.
For simplicity, we nondimensionalise equation (2.1) with the following scaling:

u=U%, v=V*0, =L and t=T%,

where = denotes the non-dimensional variables. Substituting each of these variables into equation
(2.1) with activator-depleted reaction kinetics (2.2) and (2.3) and without loss of generality, we drop
the bars to obtain the following non-dimensional reaction-diffusion system with cross-diffusion of
the general form

'{ut =V?u+d, Vv + vf(a — u + u’v), ze t=0

v =dViv 4 duViu 4 vg(b — u’v),

J (2.4)
n-Vu=n -Ve=0, zondQ}, ¢ =0,

L u(x,0) = ug(x), and v(z,0) = vy(x), Tonfll, t =0,

where

21. k1a11fﬁ Ii‘:n'lbl'!l’klL
d:Dll:‘)ﬂ!duzﬂllﬂ‘du DuU,TZLLZ..ﬂ._ ka a:ndbz kEL
D, i, ko ks

D, D, "
We note that d is the ratio of the diffusion coefficients only (without cross-diffusion), and d,, and

d, are the ratios of the cross-diffusion and the diffusion coefficients, respectively. In the next
Subsection, we present a general linear stabilty analysis on cross-diffusion.

2.1 Linear stability analysis

In this Subsection, we would like to study under what conditions on the parameter values is
the uniform steady state stable in the absence of diffusion and cross-diffusion and under what
conditions it is unstable when diffusion and cross-diffusion are introduced, thereby giving rise to
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the emergence of an inhomogeneous spatial structure [37, 32].
We proceed to investigate the possibility of cross-diffusion-driven by first expanding w(z, f} about
the spatially independent uniform steady state solution (u,,v,)7. Thus substituting
A= + N
w@mh) =us i) g e, (2.5)
v(x,t) = us + mP(a, t)

into system (2.4); on neglect of O(n*) and higher order terms, we obtain the following linearised
reaction-diffusion system with cross-diffusion, written compactly in vector form

U, =~1Jp¥ + DV, (2.6)

with

f(u,v) LN (e S 1 d, w

F = ' T =9 = D= d o = . (2.7
(g[u,v} < F gﬁ E?% Y . d, d A W (2.7)
where F' denotes the vector with reaction kinetics, J F denotes the Jacoblan matrix evaluated
at (ug,vs), I} denotes a matrix whose entries are the ratios of the regular diffusion and cross-
diffusion coefficients and ¥ denotes the vector of solutions to the linear system of partial differential

equations, respectively. We can solve analytically the linear system (2.6) using separation of
variables to obtain a power series solution of the general form

B

O(w,t) =Y b )iy (), (2.8)
ke

where for each k, ®, 1s the elgenfunction of the Laplace operator solving the Helmholtz equation

Vid, + B*d, =0 onf, 50
(nn-V)&r =0 on dil, (29)

where I is the wavenumber. For each k, we substitute each bke"":"‘z}@k into (2.6) to obtain
(AT —yJp + k*D) @b = 0, (2.10)

where I is an identity matrix. Since we require non-zero solutions, by and ®; are non-zero and
therefore the matrix multiplying these must be singular. This entails that

A—vfu+k?  —fu +dk®
- 2 = —
M -7 Jp +KD| = S Ak A g sk =0 (2.11)

Thus A(k?) satisfies the dispersion relation

A+ b(k*) A+ (k) =0 (2.12)

where
b(k?) = k* (1 4+d) — ¥ (fu + 90); (2.13)
c(k?) = (d — dudy )K" — vE*(dfy + gu — dufo — dugu) + 7 (Fugo — fogu), (2.14)

with u, v, f(u,v), glu.v) the scalar variables and kinetic functions in equation (2.4). The partial
derivatives are evaluated in terms of the uniform steady state (u,, vs). Solutions to the dispersion
relation (2.12) are given by

IA(K?) = —b(k?) £ /B2(KZ) — 4c(K2). (2.15)
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Taking k& = 0} we have the absence of diffusion and cross-diffusion and thus spatial homogeneity.
Requiring that for (u., v.) to be stable to the k = 0, spatially homogeneous, mode entails

Re[\(0)] = Re[ — b(0) £ +/5%(0) — 2e(0) ] < 0. (2.16)
This is guaranteed provided b(0) = 0 and {0) = 0 if and only if the following conditions hold

Trace(Jp) : = fu+g, <0, (2.17)
Det(Jp) = fugy — fogu =0 (2.18)

These two conditions are independent of the effects of cross-diffusion and hence are identical to
the conditions in the absence of cross-diffusion. The next three conditions highlight the differences
hetween classical diffusively-driven conditions in the absence of cross-diffusion to those when it 1s
present. In the presence of diffusion and cross-diffusion (k% = 0), we have

b(k*) = k*(1 +d) + b(0) = 0 (2.19)
since B(0} = 0. For {u,.v,} to become unstable, we require that
Re[A(k*)] > 0 for some k* non-zero, (2.20)

thereby requiring that ¢(k*) < 0 for some k* non-zero. By definition of ¢(k¥) we can further
re-arrange to obtain a quadratic polynomial in k? of the form

e(k?) = Pok* + PiE* + ¢(0) (2.21)
where
Py =d—d,d, := Det(D),
Py =q(dyfy +dygu — (dfu + 9.)),
(0) = v2(fugv — fogu) > 0.

In order to have a upward opening parabola (i.e. ¢(k?) < 0 for some non-zero k > 0), we require the
following condition on the relationship between diffusion and cross-diffusion coefficients to hold:

Det(D) = d — dyd, > 0. (2.22)

This 1s the first of the three conditions necessary for cross-diffusion induced driven-instability.
Now, in order for ¢(k?) < 0 for some k* non-zero, we require that P, < (. Therefore, the second
condition for diffusion-driven instability in presence of cross-diffusion is given hy

'jfu + gy — dufu - d‘ugu. > 0. [223}

For diffusively-driven instability to occur, we also require that there exists real k% such that
cl:.l.:i} = () and these can be easily shown to be given hy

—Py = /PT— 2c(0)(d — dudy)

S
= 2(d — dydv)

(2.24)

Thus, requiring ¢(k*) < 0 entails PZ — 4¢(0)(d — dyd,) > 0, thereby yielding the third and last

condition for cross-diffusion-driven-instahility

{dfu + Oy — du.fq.l - dv:gu}z - 4{d - dudﬂj[fugu - .fugu] = ﬂ [225}

The last condition can be obtained equivalently by imposing the requirement that c(k*) < 0 for
some k # 0, which is equivalent to requiring that the minimum ¢pin < 0. Differentiating c(k?)
with respect to k? and setting to zero yields

Ud — dydy )k — y(dfu + gy — dufo — dug) = 0. (2.26)
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Solving for k* we obtain

dfu + gv — du fo —d-ugu)
k= . 2.27
! ( 2(d — dudy) (227)
Substituting the above equation into ¢(k*) we have

2 [dfu + gv —dufu — dvgujz
in = 7 wlfv — Juvlu) — . 2.28
Thus, the condition that ¢(k?) < 0 for some non-zero k? is given by
d u + o _d-u L 'ju u :
[ f g f g :] = {fugq.' - fugu}! [Qgg}

Ad — dypdy)
to yield (2.25). We are now in a position to state the following theorem whose proof is given above:

Theorem 2.1 (Conditions for cross-diffusion driven instability]. The necessary conditions for
cross-diffusion driven instability are given by:

futa,<0, (2.30)

fugtl — fi,-gu = 'l, [231)

d— dyd, >0 (2.32)

dfu + v — ditfq.- — i'iirgu = D-, [233}

(dfu + go — dufo — duge)” — 4(d — dydy) ( fugo — fugu) > 0. (2.34)

In the above, the subscripts u, v denote partial differentiation, with the Jacobian components
fus fue gu and g, evaluated in terms of (u,,v.). The conditions (2.30) - (2.34) define a parameter
space, in which the uniform steady state (ua,ve) is linearly unstable.

Eigenfunctions in one dimension and two dimensions

We shall investigate typical solutions to equation (2.9), they solutions obtained will be used to
check the validity and consistency of our numerical technique. In order to determine the value
of k* in equation (2.9), we use the separation of variables to solve for an eigenfunction and a
wavenumber such that the eigenvalue problem is satisfied. The solution to equation (2.9) on the
one dimensional domain [0, 1] is given by

&, (xr) = cos(nmx), n=1,2... (2.35)

The wavenumbers here have the form k2 = n®7%. And the general solution is given by

U(z,t) =) by exp[A(n’7?)t] cos (nmz). (2.36)

We consider, for example the wavenumbers k¥ = 7%, k3 = 2%n%, k% = 3°7? and kf = 4°r% with
their corresponding eigenfunctions cos(mr), cos(2rx), cos(3nx) and cos(dmx) respectively. But in
two dimension, it is not possible to write a simple form of the eigenfunctions, unless the geometry
1s simple.

We consider a square domain defined by

R={(z,y)eR*:0<z<1,0<y <1}
The eigenfunctions are of the form
P nlx,y) = cos(mmz) cos(nmy), (2.37)

with wavenumbers
k,zn‘n = 7’ [mz - nzj..
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where m and n are integers. The general solution in this case is given by

Uz, yt)= Z b n exp[A(kZ, . )t] cos(mmx) cos(nmy). (2.38)

m,neH

In two dimension, we consider the wavenumbers kf ,, k3, k% ; and k3, with their corresponding
eigenfunctions cos(7r), cos(2rr). '
cos(3mx) and cos(4dmx) respectively. The plots are presented in Fig. 4 which we compare with the
numerical solutions.

The next step is to determine the parameter values that will satisfy conditions ((2.30)-(2.34)).

2.1.1 Determination of parameter values

In order to compare the linear stability results with the numerical solutions, it is important to
identify the parameter values, these parameter values must satisfy the inequalities [2.30)-(2.34).
Therefore, we select these parameter values such that they belong to the cross-diffusion induced
driven instability region and lie outside the classical Turing diffusion-driven instahility parameter
space. The theoretical details of how these spaces are obtained are given in [25]. To this end, we
consider the following cases:

case 1

s Reaction diffusion system in the presence of cross-diffusion in both u and v components (that

isd,=1andd, =1) (blue),

s [Reaction diffusion system in the absence of cross-diffusion (that is dy, = 0 and d, = 0)
(green).
For illustrative purposes, we fix d = 10 and for each case, we plot the parameter spaces on
the same diagram in order to show the emergence of cross-diffusion parameter spaces. Fig.
1, demonstrate the classical Turing diffusion-driven parameter spaces (shown in green) and
those induced by cross-diffusion on both components (shown in blue). Our intension is to

Parameter space: d=10

+ du = dv=1
* du=dv=0

Figure 1: Plots demonstrating classical Turing parameter spaces with those induce by cross-
diffusion. The green space is the classical Turing parameter region while the hlue is the space
induced by cross-diffusion.

compute patterns outside the classical Turing parameter space. Now, it is possible to select
a=10.2 and b = 0.4, a point outside the classical Turing parameter space (blue).
Case 2

o We take d = 1, and in the absence of cross-diffusion, the classical Turing diffusion driven-
instability parameter space will not vield any patterns for all values of a and b (see Fig. 2
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o The case when one of the eross-diffusion coefficient is absent that is d,, = 0, we take d, = 0.8
and d =1 (see Fig. 2 (a) ),

e The case when one of the cross-diffusion coefficient is negative, that is negative cross-diffusion
induced parameter spaces. Here, we take dy, = —0.8, dy, =1 and d =1 ( see Fig. 2 (b) ) and

e The case when dy, =1, dy = 0.8 and d =1 (see Fig. 2 (c) ).

0.4

03

o 0.2

0.1

0.8

0.6

0.2

Parameter space: d=1, d'=0.B, du= 0

0.05 0.1 0.15 0.2
(a)

Parameter space: d=1,d=1and d =08

(c)

1.5

0.5

=

0.8

0.6

0.4

0.2

o

Parameter space: d=1, ql=1, du= -0.8

—

045 02 025
(b)

Parameter space: d =1, d|_I = d‘f =0

(d)

Figure 2: Plots demonstrating classical Turing parameter spaces with those induced by cross-
diffusion, (a) when one of the cross-diffusion coefficient is absent 1.e d, =0, d, = 0.8 and d = 1,
(b) when one of the cross-diffusion coefficient is negative 1.e d, = —0.8, d, =1 and d = 1, (c)
dy,=1,d, =08 and d =1 and (d) when both cross-diffusion coefficients are absent with d = 1.

We are now in a position to select parameter values a = 0.15 and b = 0.18 from the space shown
in Fig. 2 (a), a = 0.15 and b = 0.2 from the space shown in Fig. 2 (b), @ = 0.2 and b = 0.4 from
the space shown in Fig. 2 (c) to obtain cross-diffusion induced patterns in Figs. 4 and (d) no
parameter value is selected since there is no parameter space seen.

The next step, we outline the finite difference method used to compute numerical simulations.
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3  Finite difference method

Generally, numerical methods are use to compute the solutions of nonlinear or complicated ordinary
differential equations. There are several numerical methods for solving differential equations, but
here we use finite difference method to solve our system. Nowadays, numerical solutions are
usually caleulated on computers and the use of this method require an efficient use of programming
languages and techniques. There are several of this languages presently in use, but in this research,
we restrict ourself to Matlab because it is more suitable for graphing and is usually sufficient to
illustrate the use of a numerical technigues.

We first consider the u-component of equation (2.4) of the form

wg = Viu+ dp, Vi + 7 f(u, v). (3.1)

We partition the domain in space using a mesh g, z;,...,2; and in time using a mesh tg,t;, ..., ty,
and we assume a uniform partition for both time and space.

We first discretize the Laplacian VZu for the case of one dimensional space 1D as follows: We let
u = u(x) so that, on expanding in Taylor series around a point z = a, we have

ula+ Azx)=u(a) +u'(a)Az + %u"{a]i‘.xz + O(Az%), (3.2)
u(a — Az) = u(a) — u'(a)Az + %u"[a]i‘.xz + O(AzY). (3.3)
For the ease of our computer program, we hereby change our notation by replacing u(a) by u(i).

u(a + Ax) by u(i + 1) similarly, u(a — Az) by u(i — 1). By adding (3.2) and (3.3) and neglecting
the terms with O(Az?), we have

_u(i41) — 2u(i) + u(i — 1)

(i) = . 3.4
(i) N (34
Similarly for v-component we have
oo vli+1)—2v(i) +v(i —1)
= 3.5
(i) - (35)
and the discretization of the time derivative is simply
w(i, 7+ 1) —wuli,j
By substituting equations (3.4) - (3.6) into {3.1) we have
Uyt = tin + .-’_".t';rfl:u.,v] 4 Af [Hl + g — EUD] 4+ Atd, [1’1 + U — Qi’u] {3?)

h® ’

where we denote u(i,j 4+ 1) = upp1, uli, j) = v, u{i — 1) = uy,uli + 1) = ug, uli) = up,v(i — 1) =
vy, (i + 1) = va,v(i) = vp, Az® = h? which we refer to as the step size and At is the time step,
these are all evaluated at the main time stepping loop.

Similarly, for the v-component we have

Atd [v1 + va — 2up] + Atdy, [ug + uz — 2ug]
hZ ’

Unt1 = Vp + Atyglu,v) + (3.8)
Thus, we use equations (3.7)-(3.8) for our numerical computations in one dimensional space (117).
The next step, we consider the case of two dimensional space, that is VZu = tze + tyy, we then
discretize the Laplacian as follows: Here, we let u = u(x, y), where (z, y) are two dimensional area
which are divided up using a Cartesian grid and we use two indices to indicate where a quantity
is being evaluated. this 1s similar to the case of one-dimensional space, the only difference is that,
here we have two variables. Now we first consider the z-direction and then the y-direction as
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follows:

In the z-direction, Ax = x(i + 1. j) — z(i. j) = z(i,j) — z(i — 1, j) and

in the y-direction we have, Ay =x(i,j + 1) — (i, j) = x(i,j) — =(i,j — 1).
Using Taylor series around a point (i, j) yields

u(i+1,5) = u(i,j) + ug(i, j) Az + %uu(tw 7)Az? + O(Az?), (3.9)
w(i—1,7) =uli,j) — u(i,j)Ax + %uﬂﬂi,j]&f + O(Azx?), (3.10)
(i, 7+ 1) = u(i, 1) + uy (5, 1) Ay + 3ty (1.5 A7 + O(A9P), (3.11)
(i — 1) = u(i, ) — uy(i, 1) Ay + Ty (i-1) A6 + O(AY). (3.12)

By adding equation (3.9) to (3.10) and (3.11) to (3.12) and neglecting the term with O(Az?).., we
have approximations to our derivatives as

u(i+1,7) +uli—1,7) —Qu[t’..j}‘

i,j) = 3.13
HII[-!' j) ﬂ.rz [ }
: u[i:-j+1}+H{i1j_1}_gu[i1j} ;

Uy (i, ) = N : (3.14)

Adding equation (3.13) to (3.14) gives
o _ i+ L) +uli—1,7)—2u(i,j)  wlij+1)+uli,j—1)—2ufij) a1k
Vou= Az + Ay . (3.15)

For convenience sake, we take Ar = Ay = h, this becomes

U2y — u(i +1,7) +uli—1,7) —I—u{:zj + 1) +uli,j—1)— 4‘&[1,_})‘ (3.16)

Similarly for the v-component we have
2y — vii+ 1) +v(i—1j7)+v(i,j+1)+v(i,j—1)— 4U{L‘J}. (3.17)

K2

Substituting (3.16) and (3.17) into (3.1) just the same way we did for one-dimensional case we

have

At [uy +ug + ug +ug — duy | + Atd,, [vg + v +vg + vy — 4]
h2

Ups1 = Up + Aty flu,v) + . (3.18)

And for the v-component we follow the same procedure above, this gives

..ﬁ.tl'j [Ul + U - Vg - vy — 41'“] - aﬁ.tdu ['i'..f-]_ + U + Uz - Uy — 4?.1.“]
h?2 '

Unt1 = Un + Atyglu,v) +
(3.19)

where we denote u(i,j + 1) = uppr.u(i,j) = tp,u(i — 1,7) = up,u(i+ 1,j) = we,u(i,j—1) =
g, uli.j+ 1) =ug,v(i,j) =, v{i—Ljj=vn.v(i+ Lj)=wmv(i.j—1)=w,v(i,j+1)=v h
and At are step-size and time-step respectively.

Thus, we use equations (3.18)-(3.19) for our numerical computations in two dimensional space

(2D).
4 Numerical solutions

In this Section, we compute numerical simulations of the spatial model (2.4) in both one and two
space dimensions, and the qualitative results are shown here.

Volume 16, Issue 3 available at www.scitecresearch.com/journals/index.php/jprm 2994 |




Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

4.1 Numerical solution in 1D

We perform extensively numerical solution in one-dimensional space. All our numerical simulations
emply the zero-flux boundary conditions, the number (N} of points is 100, with a space stepsize
h= ﬁ and a small time stepsize At = h?. Other parameters are set as in Table 1. The numerical
solution here, is computed using the finite difference method. All numerical tests were carried out
by means of MATLAB. Fig. 3 (left and right) are solutions predicted by linear stability theory
and numerical solutions respectively.

Figure i b d]| dy | dy y initial condition
Figs.{ 3and4) (b) |02 |04 | 1| 1 08| 8 [ 0.6+0.1%cos(x)
Figs.( 3and 4) (d) |02 |04 | 1| 1 [ 08| 20 [ 0.6+ 0.1 cos(x)
Figs.(3and 4) (f) (02|04 | 1] 1 [ 08| 45 | 0.6 + 0.1 % cos(x)
Figs.( 3and 4) (h) |02 |04 | 1| 1 | 08 [ 105 [ 0.6 + 0.1 % cos(x)

Table 1: Parameter values used for numerical solution in both 1.0 and 210

4.2 Numerical solution in 2D

In this Subsection, we consider system (2.4) in a square domain and solve it on a grid of 100:100
sites, the spacing between the lattice points and the parameter values use here is defined as in 1.
We plot only u, the spatial profiles of v are 180° out of phase with those of u. We present both the
mumerical and theoretical solutions side by side to see whether the two solutions conform to each
other. The parameter values used for Figs. [4 are the same as in 3]. Similarly in 2D, Figs. (4)
are the same presentation as in Table 1. We compared the numerical solutions to those obtained
by the linear stability theory and we observed that, the two solutions are in close agreement with
each other.
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Figure 3: Linear stability solutions (left) with numerical solutions (right) in 1, with parameter
valuesa = 0.2,b = 04,d = 1,d, = 0.8,d, = 1. [(bd,f and h), v = 8,20,45 and 105 respectively].
These shows that the numerical solutions (right) validate the theoretical results (left).
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Figure 4: Linear stability solutions (left) with numerical solutions (right) in 2D, with parameter
valuesa = 0.2,b=04,d = 1,d, = 0.8,d, = 1. [(b,d,f and h), v = 8,20,45 and 105 respectively].
These shows that the numerical solutions (right) validate the theoretical results (left).
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5  Conclusion

We have succeeded in deriving the necessary conditions for cross-diffusion-driven instability (also
known as Turing cross-diffusion-driven instability) and the detailed linear stability analysis for
reaction-diffusion systems with cross-diffusion were presented. We equally showed in details the
finite difference method use in our numerical simulations, and to demonstrate the validity of our
theoretical results, we solved mumerically the model equations using finite difference method. We
then use the numerical simulations to verify the theoretical results, and find that the numerical
results are in close agreement to those predicted by the linear stability theory as we vary +. Based
on our results, we can conveniently state that, when the cross-diffusion coefficients are both absent
that 1s d, = d,, = 0 and the diffusion coefficient 1s unity 1.e d = 1, the emergence of spatial pattern
is completely absent, see Fig. 2(d). But with the introduction of cross-diffusion coefficient, inspite
the fact that the diffusion coefficient is unity 1.e. d = 1, there is an occurence of Turing space, see
Figs.[ 2 (a), (b) and (c)].
The most important observation here is that, cross-difusion terms are necessary for the oceurence
of Turing instability and spatial pattern in the model. More precisely, with the help of the cross-
diffusion coefficient along the u-component (d, ).

Finally, the solutions obtained shows that cross-diffusion plays an important role on the pa-
rameter spaces and spatial patterns,

Work is ongoing on the incorporation of domain growth, to see how the system will hehave.
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