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Abstract.

In the present article we construct symmetric multiwavelet sets of finite order in L%(R) and multiwavelet sets in
H?(R) by considering the geometric construction determining wavelet sets provided by N. Arcozzi, B. Behera
and S. Madan for large classes of minimally supported frequency wavelets of L(R) and H(R).
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1. Introduction and Preliminaries

The collection of all square integrable complex valued functions in R™, in which two functions are
identified if they are equal almost everywhere (abbreviated, a.c.), is denoted by L?(R™). With the

usual addition, the scalar multiplication and the inner product (f, ¢} of f,g € L*(R") defined by
(f.g9) :f fla)g(x) de,
RTL

L*(R™) becomes a Hilbert space. For a function f € L?(R"), the Fourier transform }E of fis
defined by

F© = | f@yemi=sr>dr,
-

and the inverse Fourier transform f of f is defined by

f0) = g [ FO¢ e

Let A denote an n x n expansive matrix, where n € Z and A* the transpose of A. By an
expansive matrix, we mean a matrix for which the modulus of each eigen-value is greater than 1.

In this paper, we assume that a is an integer such that |a| > 1, and that L is a natural number
for which L/(]a| — 1) is an integer, say, d. The symbols N, Z and R denote, respectively, the set
of natural numbers, the set of integers and the real line. By A, we denote an n x n expansive
matrix such that AZ™ C Z", where n € N. The transpose of A is denoted by A*. For a set E in
the Euclidean space R™, the Lebesgue measure of E is denoted by |E].

A finite set ¥ = {u!, ..., vF} © L*(R"), is called an orthonormal A-multiwavelet of order L, if

the system {v f;k :jeZ ke Z1=1,.. L} is an orthonormal basis for L2 (R"), where
Iﬁl'_g;!k (z) = |detA| 24 (AT — k). xe R

In case U consists of a single element, say 1>, we say ¢ to be an n-dimensional orthonormal A-

wavelet, or simply an A-wavelet. The following result characterizes an orthonormal A-multiwavelet.
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Theorem 1.1. [5,6,10,14] A subset ¥ = {«/1, ... F} of L2(R™) is an orthonormal A-multiwavelet
if and only if the following hold:

() S e [P (AYO2 =1,  ae, R,

(i) Yoy o2y VN AU (A (€ + 25m)) =0, ae., EER™, 5 € ZMNATL"

(i) |[{|| =1, forl=1...,L.

A method to obtain A-multiwavelets in L?(R") arises from the notion known as the A-
Multiresolution analysis of multiplicity d [2,8,13,15,16], which is described below:

Definition 1.2. An A-multiresolution analysis (A-MRA) of multiplicity d associated to the
lattice Z™ is a sequence of closed subspaces V;, j € Z, of L?(R™) satisfying

(a) Vi C Vjuy, for all jeZ;

(b) f(-) € V;, if and only if f(A) € V4., forall jc Z;
(c) NjezV; = {0k

(d) UjezV; = LAR™);

(e) There exist functions @1, pa....,pq € L?(R™) such that {p;(- — k) : k€ Z", i = 1,...d}

forms an orthonormal basis for 4.

The functions ¢1., @a. ..., pq are called scaling functions of the A-MRA, and the vector ®,e. =
(€1, .-, a)" is called a scaling vector for the A-MRA.

An A-multiresolution analysis of multiplicity d gives rise to an A-multiwavelet ¥ of order L,
where L = (|detA| — 1)d as described in [8].

It is well known that |supp LA|, where 1 is an n-dimensional orthonormal A-wavelet, is at least
(2m)™. An A-wavelet ¢ for which |supp LA‘| = (2m)", is said to be a minimally supported frequency
(MSF) A-wavelet [10-12]. Tt is also known that for an MSF A-wavelet ¢, there exists a measurable
set W of measure (2m)" such that |LA| = yw. We call the set W to be an A-wavelet set.

Based on the notion of multiwavelets [5,6,9,10,14], wavelet sets have been generalized into
multiwavelet sets by Bownik, Rzeszotnik and Speegle in [7]. The study related to wavelet sets and
also to multiwavelet sets has attracted attention of several workers [1,3,7,12,17-20].

The concept of an MSF A-wavelet has been generalized to that of an MSF A-multiwavelet of
order L [4,7] as follows:

Definition 1.3. An MSF A-multiwavelet of order L is an orthonormal A-multiwavelet U =

{41, ....¢F} such that |LA‘£‘ = yw,. for some measurable sets W; Cc R™, [ =1, ..., L.

Stated below is a characterization of MSF A-multiwavelets:
Theorem 1.4. A set U = {1, .. «F} © L2(R") such that \LAE| = xw,, for 1 =1,..,L, is an
orthonormal A-multivavelet if and only if

(1) Dpezn xwi (€4 27k) - xw,, (£ + 27k) = 6im, ace, E€R™, Ibm=1,.. L,

(i) Zjez Zle Xwq (A*j'g) =1, ae, (€R™
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Definition 1.5. A set W C R" is an A-multiwavelet set of order L, ift W = |J,_, W, for some
measurable sets Wy, .... W, c R" satisfying

(1) Dpezn xwi (& +2km) - xw,, (§ + 2k7) = Oy, ae, E€R™ [m=1,.. L,

(i) 3oz Sy xw, (A =1, ae., {€R™

A characterization of A-multiwavelet sets of order L established in [7], is as follows:

Theorem 1.6. A measurable set W C R" is an A-multivavelet set of order L if and only if
(1) Dpezn xw(&+2km) =L, ae., {<R" and
(i) Y,z xw (A7) =1, ae. R

The notions of an orthonormal a-multiwavelet of order L, minimally supported frequency
multiwavelet, a-multiwavelet sets of order L, a-multiresolution analysis of finite muliplicity can be

defined for L?(R) from the results mentioned earlier.

The classical Hardy space H?*(R) defined by
H*R) = {f e L2R): f (&) =0, forae., < O}.

is a closed subspace of L2(R). A function ' € H?(R) is an orthonormal wavelet for H2(R) if the
system {1j : j,k € Z} is an orthonormal basis for II?(R). For simplicity, we call such a ¢’ an
H?-wavelet.

A finite set U = {1, ..., vF} € H?(R), is called an orthonormal a-multiwavelet of order L for
H?(R) if the system {L‘;k :j€ZkeZ,l=1,..L}is an orthonormal basis for H2(R), where

Uy (@) = a7t (a2 — k), xR

In case ¥ consists of a single element, say i), we say 1 to be an orthonormal a-wavelet, or
simply an a-wavelet for H?(R). The following result characterizes an orthonormal a-multiwavelet
for H2(R) analogous to that given in [5,6,9,14].

Theorem 1.7. A subset U = {!, ... ¢*} of H*(R) is an orthonormal a-multiwavelet if and only
if the following hold:

() Citt Tjez (@) = xm+($),  ae, EER,
(1) Sy 02 V(@)U (ad (€ +25m) =0, ae., E€R, s € Z\aL,
(iii) ¢! =1, forl=1,.. L.

Definition 1.8. An a-multiresolution analysis (a-MRA) of multiplicity d for H*(R) is a sequence
of closed subspaces Vj}, j € Z, of H(R) satisfying

(a) V; € Vijiq. for all j e Z,
(b) f(-) € Vj.if and only if f(a') € Vj41, forall j e Z,

() MjezV; ={0},

Volume 16, Issue 4 available at www.scitecresearch.com/journals/index.php/jprm 3124 |




Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

(d) UjerV; = H2(R),

(e) There exist functions 1. va, ..., 0q € H*(R) such that {p;(- —k): k€ Z, i =1,....d} forms

an orthonormal basis for Vj.

Analogous to definition of an MSF a-multiwavelet of order L for L?(R), we define an MSF
a-multiwavelet of order L for H?(R).
Definition 1.9. An MSF a-multiwavelet of order L is an orthonormal a-multiwavelet ¥ =
{apt, .. F} € H?(R) such that |LA‘E| = \w,, for some measurable sets W; C R* [ =1,... L, and
cach W; has minimal Lebesgue measure.

Stated below is a characterization of MSF a-multiwavelets for H?(R).
Theorem 1.10. A set U = {¢*, .. %} © H2(R) such that || = yw,. for 1 =1....L, is an
orthonormal a-multiwavelet for H*(R) if and only if

(1) Dorezxw, (§427k) xw,, (§ + 27mk) = 01,m, ae, CeER Im=1..L,
(11) ZJEZ Ef‘zl Xw, (ﬂ'jg) = XR+ (5)1 a.e, {€R.

Definition 1.11. A set W < RY is an a-multiwavelet set of order L for H(R), it W = Ulel-ﬂ,

for some measurable sets Wy, ..., W Rt satisfyving
(1) Dpez xw (§+2k7m) xw,, (£ +2k7) =01, ae., E€R Lm=1,....L, and
(i) X jez ZEL=1 xwi (a7€) = xpi (§), ae., E€R

The following is an analogous characterization of a-multiwavelet sets of order L for H?(R) that
is established in [7] in case of L(R) .
Theorem 1.12. A measurable set W C RT is an a-multiwavelet set of order L for H*(R) if and

only if
(1) Spezxw (€ +2km) =L, ae., (R,
(i) 3,cz xw (@) = xg+(§), ae, R

A symmetric multiwavelet sets W is of the form W = W~ U W, where W is a subset of
R*, and W+ = —W~. In Section 2, we present a method to construct large families of symmetric

a-multiwavelet sets of order I, where
I“"I—_’_:I]_ UlhU... Lul,,

for n = 1 and the subsequent subsections 2.1 and 2.2 provide a family of symmetric six-interval
a-multiwavelet sets of order L and a family of symmetric four-interval a-multiwavelet sets of order

L with examples in L?(R). In Section 3 we obtain a-multiwavelet sets of order L in IT?(R).
2. A Geometric Construction of Symmetric Multiwavelet Sets in L*(R)

Let a be a real number with |a| > 1 and L be a positive integer. Consider the set D, in the

first quadrant of the Cartesian plane, of the points P such that
P=P[\m]=(a"* a"m).

where m € NU {0} and A € Z.

Volume 16, Issue 4 available at www.scitecresearch.com/journals/index.php/jprm 3125




Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

Let n € N and P; = P[\;,m;] = (a=,a=Ym;), for j = 1,2....,n. Define the points ¢;’s
7=0,1.2...,n—1, as follows

co =0, and

S R S
[a=rmy —a Mtimjag]

(a= — a=ri+r)

cj=— i=12..n-1

Clearly, ¢; is the negative of the slope of the straight line joining P; and Pjy; where j =
0.1,2..n—1.

The order sequence of points 2 = (Py, ..., P;) is said to be an MSF polygon for multiwavelet if
the points ¢, 7 = 0,1, 2..., n satisfy

L
0:(’[}<('1'--<C‘ﬂ_:§ (2.1)

and
M =0 and 2ami =a *[2m, + L]. (2.2)

Theorem 2.1. Let Q= (F,...,P,) be an MSF polygon for multiwavelet as described above. Let
I; = [2n(cj—1 + mj). 27 (c; + my)]. for j =1,2....n.

IfWt =1L uUulyu...Ul,, then W =Wt UW™ is a symmetric a-multiwavelet set of order L
for L3(R).
Proof. It is parallel to that in [1].

Denote K (£2) by a multiwavelet set associated to . If €1 and €25 are different MSF polygons,
then K (€;) £ K(€2).

Remarks 2.2.

(i) Geometrically, (2.1) says that the straight lines joining P; and Py, for j=1.2,...,n—1

must have negative decreasing slopes in (f% 0) .
(ii) (2.2) can be expressed in the following way. If we decompose my as follows:
2my =a®(2t+ L), s, t € NU{0},

then by (2.2), we have a®(2t + L) = 2m; = a~*"[L + 2m,]. Tt further implies that
A, = —s—1, and m,, = t. This shows that, there is a bijection between the values of 1,

and pairs (P1, FPy,).
2.1. Symmetric Six-interval a-Multiwavelet Sets of Order L

The following example provides a family of symmetric six-interval a-multiwavelet sets of order
L.
Example 2.1.1. Let n = 3. Consider

-]
A =0, m = %(Qt—f— L), do=—v, mo=0, \g=—s—1, m3 =1,
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where 5.t and v are non-negative integers such that s > 1.7+ > 1. Then we have
=P [O.%(Qt—l—[.)] = (1.%(2t+£-)) . Py = P[-0.0] = (a”,0),
and Py = P[—s— 1.1] = (a*t1, a®t1t).

From these, we obtain

L as(2t+ L) tast!

e 1= . d =
9 T v 1) M 2T

co = 0._ 3 = m

Clearly, ¢1 > 0. That ¢1 < e provides
L < 2t(a—1). (2.3)
Further, that ¢y < 3 implies
a*t1(2t + L) < La". (2.4)
With (2.3) and (2.4), Q = (P, P, P3) forms an MSF polygon for multwavelet. Now,

I =[2mcp, 2mer] + 2mma
[ TastU(2t + L)]
(av —1)
I, =[2mcy, 2mes] + 2mimsg
[ma*(2t+L)  2wta*t! ]
(a? —=1) " (a¥ —astl) |’

= |ma®(2t + L),

and

I35 =[2meg, 2wes] + 2wy
2mta”
=|——F,7(2t+ L)| .
(av — ast1) w2+ )}
Then W = W+ U W=, where W+ = I; U I, U I3 is a symmetric a-multiwavelet set of order L
consisting of six disjoint intervals, where s, and v are non-negative integers such that s > 1,7 > 1
satisfying (2.3) and (2.4).

Example 2.1.2. To get a symmetric six-interval 3-multiwavelet set of order 2, we select non-
negative integers s,f and v ast =1, s = 1 and v = 3 in Example 2.1.1. Clearly, s.t and v satisfy
(2.3) and (2.4). We get

1627 6m
Il = |:]_27f. 13:| s IQ = |:13._'JT:| R Ig = [3?(,47?].

with [[1| = %2, |Io| = 2% and |I5| = 7. It follows that [W*| = 27.
Hence, W = W+ U W~, where

Wt = [?g 7T:| U [3m, 4] U [IQW.

1627
13

is a symmetric 3-multiwavelet set of order 2 consisting of six disjoint intervals.

Volume 16, Issue 4 available at www.scitecresearch.com/journals/index.php/jprm 3127




Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

The following example provides a family of symmetric six-interval a-multiwavelet sets of order
L, which is different from that we obtained in Example 2.1.1.
Example 2.1.3. Let n = 3. Consider

1
M =0, m = §a.s+1L: Ao =u, mo=v.A3=—5—2, mg =0,
where s, w and v are non-negative integers such that s > 0,u > 1. Then, we have

pP=r [0, %aSHL

= (1_._ %asﬂl) , Py =Plu,v] = (a7, va™"),

and Py = P[5 —2.0] = (a**2.0).

This gives
0 L 2u — gstutlp d v
cp=4U, tq = —, ] = ————. 4all o —= —mm——,
0 O3 1 2av —1) 2 (as+ut2 — 1)
Because ¢ < ca,
((LS"'“"'Q — 1)(Ls+1L-

v o) (2.5)
Further, since ¢y < ¢3,
20 < (a*T*T2 — 1)L, (2.6)
and 0 < ¢; implies that
20 > a* L (2.7)

Clearly, (2.5) implies (2.6). Combining (2.5) and (2.7), we get

((¢E+“'+2 - l)as"' lr,

as T < 9 <
(ast2 —1)

(2.8)

With (2.8), Q = (Py. P, P3) forms an MSF polygon for multiwavelet. Now,

I =[27ep, 2mer] + 2
I Py (20 — (LS+1L)
T (ar—1)
Is =[27mey, 2mea] 4+ 2mme

(20 —a*t1L)a* 2mvastut?
(av — 1) T(asTut2 — 1) |

and
Iz =[27meg, 2mes] + 2mms
2mv
— {7((13“&2 1y WL} .

Then W = WT UW~, where W+ = [; U I U I3 is a symmetric a-multiwavelet set of order L
consisting of six disjoint intervals, where s, v and v are non-negative integers such that s > 0, v > 1
satisfying (2.8).
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Example 2.1.4. In order to get a symmetric six-interval 2-multiwavelet set of order 3, we select
non-negative integers s, u and v as s =0, v = 2, and v = 13 in Example 2.1.3. Clearly, s, v and v
satisfy (2.8). We get

207 80r 4167 2067
Il—[ﬁ?r_. 3 ]: Ig—[ R ] 13—[15.37r}:

with [I1| = 2%, |Io| = 2&, and [Is| = L. Tt follows that [IWF| = 3.
Hence, W = W+ U W, where

267 20 807 4167
W+ — [1—f37] U [671_ TT] U { il T} .

5 37 15

is a symmetric 2-multiwavelet set of order 3 consisting of six disjoint intervals.
2.2. Symmetric Four-interval a-Multiwavelet Sets of Order L

The following example provides a family of symmetric four-interval a-multiwavelet sets of order
L.
Example 2.2.1. If we select s = 0 in Example 2.1.1, we get symmetric four-interval a-
multiwavelet set of order L.

Now, we get

L= [rr(Qt—i—L). Ta (2t+L)] L= |:7T(2f'+L) 2wta ] ‘

(av —1) (av —1) " (a? — a)

and

I — [W:ﬂ(QtJrL)] .

(a” — a)

Since c¢1 +m1 = 3 +mg = w(2t + L), we have

[=Lul— [ rta Wa'(Qt—i—L)}

(a¥ —a)” (a®—1)
Then W = W+ U W™, where WT = [ U I, is a symmetric a-multiwavelet set of order L
consisting of four disjoint intervals, where ¢t and v are non-negative integers such that ¢ > 1

satisfying
L <2t(a—1). and a(2t+ L) < La". (2.9)

Example 2.2.2. To obtain a symmetric four-interval 3-multiwavelet set of order 2, we select
non-negative integers t and v ast =1, s = 1 and » = 2 in Example 2.2.1. Clearly, ¢t and v satisfy

(2.9). We get
O s
I:|:37T,2:|.IQZI:2:,’:|_._

with || = 3—;, and |I| = Z. Therefore, [W*| = 27.

Hence, W =W+ U W, where
7+ — E %
W+ = [Q:W] U {3?{. 2]

is a symmetric 3-multiwavelet set of order 2 consisting of four disjoint intervals.
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3. A Geometric Construction of Multiwavelet Sets for H*(R)

In this section, we extend the geometric construction determining symimetric multiwavelet sets
for L?(R) given in Section 2 to obtain some a-multiwavelet sets of order L for H?(R).

Consider the set D, in the first quadrant of the Cartesian plane, of points P such that
P=P[Am]=(a"" a " m),

where m € NU{0} and A € Z. Let n € Nand P; = P[\;,m ] = (a=,a"%m;), j = 1,2....n with
mj # mjs1.mg # my + L, and Q, = P[A, +1,m,, + L]. Without loss of generality, we can take
A1 =0, and mn; = 0. Define the points ¢;’s, for j = 0,1,2...,n as follows:

My + L
Co =7~ 73 -
(aPnt1 — 1)
— X\ —As;
a” Mmg —a” Mthms g .
o= laTmy il e at,

(a= —a=Mt1)
and ¢, =co + L.

Clearly, ¢p is the negative of the slope of the straight line joining P; and @, and for j =
0,1.2...n — 1, ¢; is the negative of the slope of the straight line joining P; and F;4;. The order
sequence of points = (P, ..., P,,) is said to be an H2-MSF polygon if the points ¢;, j = 0,1,2...,n
satisfy

O<ep<ey - <ep=co+ L.

Theorem 3.1. Let Q = (Py.....P,) be an H?>-MSF polygon as described above. Let
1; = 2mej_q, 2me;] + 2mmy, j=1,2..n.

Then W = 1 U Ty U ... U Ty is an a-multiwavelet set of order L for HQ(R).
Denote the multiwavelet set associated with by K (). If Q; and €, are different H2-MSF
polygons, then K (€1) # K ().

Example 3.2. Let n = 2. Consider \; = 0,mq = 0, Ay = r,my = k, where r is an integer and
ke N {0}. Then we have
Py =(1.0), Py=(a"",a""k) and Qs = (¢~ "tV o= +U(L 4+ L)).

This gives

o = k+ L ¢ = i and c¢o = ktatlL
NPT s R LL PT }) 2T (o)
Further, the condition 0 < ¢p < 1 < 2 is equivalent to
(a" = 1)L a(a” — 1)L
- kg —-—"" 3.1
a’(a—1) e (a—1) (3-1)

If » = 0, then inequality (3.1) gives k& is negative number, which is not possible. Hence r > 1.

Now,

Iy =[2mco, 2meq] + 27

=[27eo, 2meq ]
2m(k+ L) 2xk
(amt1 = 1) (a” — 1)
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and
I, =[27¢1, 27es] + 2mma
[ 2ma"k 27a"t(k+ L)
Cl(am—1)" (amtl 1) |
Then

m(k , ke Ta’lk : r+1(]. _
WUl — [Q’r{ﬁ +L) 27k ] g [ 2ra"k  2ma" Yk + L)

(a7t = 1) (am = 1) (am—=1)" (a1 =1)
is an a-multiwavelet set of order L for H?(R) consisting of two disjoint intervals, where k and r
are natural numbers which satisfy (3.1).
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