# Estimates of Fekete-Szegö Functional of a Subclass of Analytic and Bi-Univalent Functions by Means of Chebyshev Polynomials 

AYINLA, Rasheed O.<br>Department of Statistics and Mathematical Sciences, P.M.B 1530,<br>Kwara State University, Malete.<br>Email: rasheed.ayinla@kwasu.edu.ng

Received: November 18, 2020; Accepted: December 1, 2020; Published: February 24, 2021
Copyright (C) 2021 by author(s) and Scitech Research Organisation(SRO).
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/


#### Abstract

In this work, a new subclass $C_{\Phi}(\gamma, \sigma, n, t)$ of analytic and bi-univalent functions is defined by subordination principle and investigated. The initial coefficient bounds and the upper estimates of the Fekete-Szegö functional were obtained using Chebyshev polynomials.


## Keywords

Analytic functions, Salagean differential operator and Chebyshev polynomial.

## 1. Introduction

Let $A$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $E=\{z:|z|<1\}$ and satisfy the condition $f(0)=0$ and $f^{\prime}(0)=1$. Let $S$ denote the subclass of $A$ consisting of functions univalent in $E$. A funtion $f(z) \in S$ is said to be starlike in the unit disk if and only if

$$
\begin{equation*}
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0, \quad z \in E \tag{1.2}
\end{equation*}
$$

Also, a function $f(z) \in S$ is said to be convex in the unit disk if and only if

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0, \quad z \in E \tag{1.3}
\end{equation*}
$$

Cite this paper: AYINLA, Rasheed O. (2021). Estimates of Fekete-Szegö Functional of a Subclass of Analytic and Bi-Univalent Functions by Means of Chebyshev Polynomials. Journal of Progressive Research in Mathematics, 18(1), 48-54. Retrieved from
http://scitecresearch.com/journals/index.php/jprm/article/view/1979

A function $f(z)$ is subordinate to $g(z)$ in $E$, written as

$$
f(z) \prec g(z), \quad z \in E
$$

if there exists a Schwarz function $\omega(z)$, analytic in $E$ with

$$
\omega(0)=0 \quad \text { and } \quad|\omega(z)|<1, \quad z \in E
$$

such that

$$
f(z)=g(\omega(z)), \quad z \in E
$$

If the function $g$ is univalent in $E$,

$$
f(z) \prec g(z) \Rightarrow f(0)=g(0)
$$

and

$$
f(E) \subset g(E)
$$

It is well known (see Duren [6]) that every function $f \in S$ has an inverse map $f^{-1}$, defined by $f^{-1}(f(z))=z$, $z \in E$ and $f\left(f^{-1}(\omega)\right)=\omega,\left(|\omega|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)$, where

$$
\begin{equation*}
f^{-1}(\omega)=\omega-a_{2} \omega^{2}+\left(2 a_{2}^{2}-a_{3}\right) \omega^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) \omega^{4}+\cdots \tag{1.4}
\end{equation*}
$$

A function $f \in A$ is said to be bi-univalent in $E$ if both $f$ and $f^{-1}$ are univalent in $E$.
Let $\Phi$ denote the class of bi-univalent functions defined in the unit disk $E$. Lewin [9] for $f(z)$ of the form (1.1) showed that $\left|a_{2}\right|<1.51$ for every $f \in \Phi$. Brannan and Clunie [3] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$ for bi-starlike functions and $\left|a_{2}\right| \leq 1$ for bi-convex functions.
Also, Brannan and Taha [4] introduced certain subclasses of bi-univalent functions called bi-starlike function of order $\alpha$ denoted by $S_{\Phi}(\alpha)$ and bi-convex function of order $\alpha$ denoted by $C_{\Phi}(\alpha)$ corresponding to the classes of functions $S^{*}(\alpha)$ and $C(\alpha)$ respectively. For a further historical account of functions in the class $\Phi,($ see $[2],[5],[13]$ and [14]).
Let $D^{n}: A \rightarrow A$ be defined by

$$
\begin{aligned}
D^{0} f(z) & =f(z) \\
D^{1} f(z) & =z f^{\prime}(z) \\
D^{n} f(z) & =z\left[D^{n-1} f(z)\right]^{\prime}
\end{aligned}
$$

This is referred to as Salagean differential operator [12]. Fekete and Szegö [7] introduced the generalised functional $a_{3}-\lambda a_{2}^{2}$, where $\lambda$ is a real number. Keogh and Merkes [8] studied the Fekete-Szegö problem for the classes $S^{*}$ and $K$. Ma and Minda [10] bring together various subclasses of starlike and convex functions for which either the quantity $\frac{z f^{\prime}(z)}{f(z)}$ or $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}$ has positive real part in the unit disk. The results of Ali et al. [1] generalized the results of Brannan and Taha [4] using subordination.
Chebyshev polynomials plays a considerable role in numerical analysis and mathematical physics. It is well-known that the Chebyshev polynomials are of four kinds, but in this paper the second kind shall be considered.

The second kind of Chebyshev polynomials is defined as

$$
\begin{equation*}
U_{n}(t)=\frac{\sin (n+1) \lambda}{\sin \lambda} \tag{1.5}
\end{equation*}
$$

$U_{n}(t)$ satisfies the recurrence relation

$$
U_{n}(t)=2 t U_{n-1}(t)-U_{n-2}(t), \quad n \geq 2
$$

Few examples of Chebyshev polynomials of the second kind are

$$
\begin{equation*}
U_{0}(t)=1, \quad U_{1}(t)=2 t, U_{2}(t)=4 t^{2}-1, \quad U_{3}(t)=8 t^{3}-4 t, \cdots[11] \tag{1.6}
\end{equation*}
$$

The generating function for $U_{n}(t)$ is given by

$$
\begin{equation*}
H(z, t)=\frac{1}{1-2 t z+z^{2}}=\sum_{n=0}^{\infty} U_{n}(t) z^{n}, \quad z \in E \tag{1.7}
\end{equation*}
$$

For $\gamma \in[0,1], \sigma \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right), \quad n \in \mathbb{N}_{0}$ and $t \in\left(\frac{1}{2}, 1\right)$, a function $f(z) \in \Phi$ given by (1.1) is said to be in the class $C_{\Phi}(\gamma, \sigma, n, t)$ if the following subordination holds for all $z, \omega \in E$

$$
\begin{equation*}
\left(1-e^{-2 i \sigma} \gamma^{2} z^{2}\right) \frac{D^{n+1} f(z)}{z} \prec H(z, t)=\frac{1}{1-2 t z+z^{2}} \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1-e^{-2 i \sigma} \gamma^{2} \omega^{2}\right) \frac{D^{n+1} g(\omega)}{\omega} \prec H(\omega, t)=\frac{1}{1-2 t \omega+\omega^{2}} \tag{1.9}
\end{equation*}
$$

where $g=f^{-1}$ is defined by

$$
f^{-1}(\omega)=\omega-a_{2} \omega^{2}+\left(2 a_{2}^{2}-a_{3}\right) \omega^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) \omega^{4}+\cdots
$$

If $t=\cos \lambda$ where $\lambda \in\left(\frac{\pi}{3}, \frac{\pi}{3}\right)$ then,

$$
\begin{align*}
H(z, t)= & \frac{1}{1-2 \cos \lambda z+z^{2}}=\left(1-2 \cos \lambda z+z^{2}\right)^{-1} \\
& =1+\sum_{n=1}^{\infty} \frac{\sin (n+1) \lambda}{\sin \lambda} z^{n}, \quad z \in E \\
H(z, t) & =1+U_{1}(t) z+U_{2}(t) z^{2}+U_{3}(t) z^{3}+\cdots \tag{1.10}
\end{align*}
$$

Also,

$$
\begin{equation*}
H(\omega, t)=U_{1}(t) \omega+U_{2}(t) \omega^{2}+U_{3}(t) \omega^{3}+\cdots \tag{1.11}
\end{equation*}
$$

## 2 Preliminary Lemmas

We need the following lemma to prove our results.
Let $P$ denote the class of Caratheodory functions. $p(z)=1+p_{1} z+p_{2} z^{2}+3_{3} z^{3}+\ldots \quad(z \in E)$ which are analytic and satisfy $p(0)=1$ and $\Re p(z)>0 \quad$ Let $p \in P$. Then

$$
\begin{equation*}
\left|p_{k}\right| \leq 2 \quad(k \in \mathbb{N}) \quad[6] \tag{2.1}
\end{equation*}
$$

## 3 Main Results

Let $f(z) \in C_{\Phi}(\gamma, \sigma, n, t), \quad \gamma \in[0,1], \sigma \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right), n \in \mathbb{N}_{0}$ and $t \in\left(\frac{1}{2}, 1\right)$. Then

$$
\begin{align*}
& \left|a_{2}\right| \leq \sqrt{\frac{t^{2}\left(2 t+\gamma^{2}\right)}{\left|3^{n+1} \cdot t^{2}-2^{2 n}\left(4 t^{2}-1\right)\right|}}  \tag{3.1}\\
& \left|a_{3}\right| \leq \frac{t^{2}}{2^{2 n}}+\frac{2 t}{3^{n+1}} \tag{3.2}
\end{align*}
$$

Proof
Let the function $f(z) \in \Phi$ given by (1.1) be in the class $C_{\Phi}(\gamma, \sigma, n, t)$.
From (1.8) and (1.9)

$$
\begin{equation*}
\left(1-e^{-2 i \sigma} \gamma^{2} z^{2}\right) \frac{D^{n+1} f(z)}{z}=1+U_{1}(t) r(z)+U_{2}(t) r^{2}(z)+\cdots \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1-e^{-2 i \sigma} \gamma^{2} \omega^{2}\right) \frac{D^{n+1} g(\omega)}{\omega}=1+U_{1}(t) s(z)+U_{2}(t) s^{2}(\omega)+\cdots \tag{3.4}
\end{equation*}
$$

For some analytic functions $r(z)$ and $s(\omega)$

$$
\begin{align*}
& r(z)=c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots \quad z \in E  \tag{3.5}\\
& s(\omega)=d_{1} \omega+d_{2} \omega^{2}+d_{3} \omega^{3}+\cdots \quad z \in E \tag{3.6}
\end{align*}
$$

such that $r(0)=s(0)=0, \quad|r(z)|<1$ and $|s(\omega)|<1$. It is well known that if $|r(z)|<1$ and $|s(\omega)|<1$ then

$$
\begin{equation*}
\left|c_{j}\right| \leq 1 \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|d_{j}\right| \leq 1 \tag{3.8}
\end{equation*}
$$

But,

$$
\begin{align*}
& \left(1-e^{-2 i \sigma} \gamma^{2} z^{2}\right) \frac{D^{n+1} f(z)}{z}=1+2^{n+1} a_{2} z+\left(3^{n+1} a_{3}-e^{-2 i \sigma} \gamma^{2}\right) z^{2}+ \\
& \left(4^{n+1} a_{4}-2^{n+1} e^{-2 i \sigma} \gamma^{2} a_{2}\right) z^{3}+\cdots \tag{3.9}
\end{align*}
$$

From (3.3),3.4),(3.5) and (3.6)

$$
\begin{align*}
&\left(1-e^{-2 i \sigma} \gamma^{2} z^{2}\right) \frac{D^{n+1} f(z)}{z}=1+U_{1}(t) c_{1} z+\left[U_{1}(t) c_{2}+U_{2}(t) c_{1}^{2}\right] z^{2} \\
&+\left[U_{1}(t) c_{3}+U_{2}(t) 2 c_{1} c_{2}+c_{1}^{3}\right] z^{3}+\cdots  \tag{3.10}\\
&\left(1-e^{-2 i \sigma} \gamma^{2} \omega^{2}\right) \frac{D^{n+1} g(\omega)}{\omega}=1+U_{1}(t) d_{1} \omega+\left[U_{1}(t) d_{2}+\right.\left.U_{2}(t) d_{1}^{2}\right] \omega^{2} \\
&+\left[U_{1}(t) d_{3}+U_{2}(t) 2 d_{1} d_{2}+d_{1}^{3}\right] \omega^{3}+\cdots \tag{3.11}
\end{align*}
$$

Equating coefficients in (3.9) and (3.10) give

$$
\begin{align*}
2^{n+1} a_{2} z & =U_{1}(t) c_{1}  \tag{3.12}\\
3^{n+1} a_{3}-e^{-2 i \sigma} \gamma^{2} & =U_{1}(t) c_{2}+U_{2}(t) c_{1}^{2} \tag{3.13}
\end{align*}
$$

and

$$
\begin{align*}
-2^{n+1} a_{2} & =U_{1}(t) d_{1}  \tag{3.14}\\
3^{n+1}\left(2 a_{2}^{2}-a_{3}\right)-e^{-2 i \sigma} \gamma^{2} & =U_{1}(t) d_{2}+U_{2}(t) d_{1}^{2} \tag{3.15}
\end{align*}
$$

Adding (3.12) and (3.14) give

$$
\begin{gather*}
2^{n+1} a_{2}+\left(-2^{n+1} a_{2}\right)=U_{1}(t) c_{1}+U_{1}(t) d_{1}  \tag{3.16}\\
\Rightarrow c_{1}=-d_{1}  \tag{3.17}\\
c_{1}^{2}=d_{1}^{2} \tag{3.18}
\end{gather*}
$$

Squaring (3.12), (3.14) and adding the new equations and simplifying give

$$
\begin{equation*}
a_{2}^{2}=\frac{U_{1}(t)\left(c_{1}^{2}+d_{1}^{2}\right)}{2^{2 n+3}} \tag{3.19}
\end{equation*}
$$

Also, adding (3.13),(3.15) and simplifying give

$$
\begin{equation*}
a_{2}^{2}=\frac{U_{1}^{3}(t)\left(c_{2}+d_{2}\right)+2 U_{1}^{2}(t) e^{-2 i \sigma} \gamma^{2}}{2 \cdot 3^{n+1} U_{1}^{2}(t)-2^{2 n+3} U_{2}(t)} \tag{3.20}
\end{equation*}
$$

Applying (1.6) in (3.20) and simplifying gives

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{t^{2}\left(2 t+\gamma^{2}\right)}{\left|3^{n+1} \cdot t^{2}-2^{2 n}\left(4 t^{2}-1\right)\right|}} \tag{3.21}
\end{equation*}
$$

Subtracting (3.15) from (3.13) gives

$$
\begin{equation*}
a_{3}=a_{2}^{2}+\frac{U_{1}(t)\left(c_{2}-d_{2}\right)}{2 \cdot 3^{n+1}} \tag{3.22}
\end{equation*}
$$

putting (3.19) in (3.22) gives

$$
\begin{equation*}
a_{3}=\frac{U_{1}^{2}(t)\left(c_{1}^{2}+d_{1}^{2}\right)}{2^{2 n+3}}+\frac{U_{1}(t)\left(c_{2}-d_{2}\right)}{2 \cdot 3^{n+1}} \tag{3.23}
\end{equation*}
$$

Applying (1.6),(3.6),(3.7) in (3.23) gives

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{t^{2}}{2^{2 n}}+\frac{2 t}{3^{n+1}} \tag{3.24}
\end{equation*}
$$

which coincides with the result in [5].
Remark. For $n=0$ and $\gamma=1$, the following consequence is given as follow
Corollary 1. For $t \in\left(\frac{1}{2}, 1\right)$. Let the function $f \in \Phi$ given by (1.1) be in the class $C_{\Phi}(\gamma, \sigma, n, t)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{t \sqrt{2 t+1}}{\sqrt{\left|1-t^{2}\right|}} \tag{3.25}
\end{equation*}
$$

Corollary 2. For $n=0$

$$
\begin{equation*}
\left|a_{3}\right| \leq t^{2}+\frac{2 t}{3} \tag{3.26}
\end{equation*}
$$

which coincides with the result in [5]. Let $f(z) \in C_{\Phi}(\gamma, \sigma, n, t), \gamma \in[0,1], \sigma\left(\frac{-\pi}{2}, \frac{\pi}{2}\right), n \in \mathbb{N}_{0}$ and $t \in\left(\frac{1}{2}, 1\right)$. Then for any real number $\mu$

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{cc}
2|1-\mu|_{\left.\mid 3^{n+1} \cdot t^{2}-t^{2 n} \gamma^{2}\right)}\left(4 t^{2}-1\right) \mid & \text { if } \quad|1-u|_{\left\lvert\, \frac{3 t^{n+1}}{} \frac{\left(2 t^{3}+t^{2} \gamma^{2}\right)}{} \geq \frac{2 t}{3^{2}-2^{2 n}\left(4 t^{2}-1\right) \mid} \geq \frac{2 t}{3^{n+1}}\right.}^{\frac{4 t}{3^{n+1}}}
\end{array}\right.
$$

Proof. Substituting (3.22)

$$
a_{3}-\mu a_{2}^{2}=a_{2}^{2}+\frac{U_{1}(t)\left(c_{2}-d_{2}\right)}{2 \cdot 3^{n+1}}-\mu a_{2}^{2}
$$

Applying (3.20) and simplifying further give

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{U_{1}(t)\left(c_{2}-d_{2}\right)}{2 \cdot 3^{n+1}}+(1-\mu) \frac{\left[U_{1}^{3}(t)\left(c_{2}+d_{2}\right)+2 U_{1}^{2}(t) e^{-2 i \sigma} \gamma^{2}\right]}{2 \cdot 3^{n+1} U_{1}^{2}(t)-2^{2 n+3} U_{2}(t)} \tag{3.27}
\end{equation*}
$$

Applying (1.6) in (3.27) gives

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2 t}{3^{n+1}}+|1-\mu| \frac{t^{2}\left(2 t+\gamma^{2}\right)}{\left|3^{n+1} \cdot t^{2}-2^{2 n}\left(4 t^{2}-1\right)\right|} \tag{3.28}
\end{equation*}
$$

If

$$
|1-\mu| \frac{t^{2}\left(2 t+\gamma^{2}\right)}{\left|3^{n+1} \cdot t^{2}-2^{2 n}\left(4 t^{2}-1\right)\right|} \geq \frac{2 t}{3^{n+1}}
$$

then

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq 2|1-\mu| \frac{t^{2}\left(2 t+\gamma^{2}\right)}{\left|3^{n+1} \cdot t^{2}-2^{2 n}\left(4 t^{2}-1\right)\right|} \tag{3.29}
\end{equation*}
$$

Also, if

$$
|1-\mu| \frac{t^{2}\left(2 t+\gamma^{2}\right)}{\left|3^{n+1} \cdot t^{2}-2^{2 n}\left(4 t^{2}-1\right)\right|} \leq \frac{2 t}{3^{n+1}}
$$

then

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{4 t}{3^{n+1}} \tag{3.30}
\end{equation*}
$$

## References

[1] Ali, R.M., Lee, S.K. Ravichandran, V. \& Supramaniam, S. (2012). Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Applied Mathematics Letters, 25(3), 344-351.
[2] Altinkaya, Ş. \& Yalçin, S. (2017). On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions. Gulf Journal of Mathematics, 5(3), 34-40.
[3] Brannan, D.A. \& Clunie J.G. (1980). Aspects of contemporary complex analysis. Proceedings of the NATO Advanced Study Institute, New York
[4] Brannan, D.A. \& Taha, T.S. (1986). On some classes of bi-univalent functions. Studia Universitatis Babes-Bolyai Mathematica, 31(2), 70-77.
[5] Bulut, S., Magesh, N. \& Balaji, K. (2017). Initial bounds for analytic and bi-univalent functions by means of Chebyshev polynomials. Journal of Classical Analysis, 11(1), 81-89.
[6] Duren, P.L. (1983). Univalent Functions. New York: Springer-Verlag,Inc.
[7] Fekete, M. \& Szegö, G. (1933). Eine Bermerkung übe ungerade schlichte functionen. Journal of London Mathematical Society, 8, 85-89.
[8] Keogh, F. R. \& Merkes, E.P. (1969). A coefficient inequality for certain classes of analytic functions, Proceedings of America Mathematical Society, 20, 8-12.
[9] Lewin, M. (1967). On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society, 18, 63-68.
[10] Ma, W. \& Minda, D. (1994). A unified treatment of some special classes of univalent functions. Proceedings of the International Conference on Complex Analysis, Nankai Institute of Mathematical International Press China, 157-169.
[11] Mason, J.C. \& Handscomb, D.C. (2003). Chebyshev Polynomials. New York: McGraw-Hill Inc.
[12] Sǎlǎgean, S. (1983). Subclasses of univalent functions.Lecture notes in Mathematics, 1013, 362-372.
[13] Strivastava, H.M., Mishra, A.K. \& Gochhayat, P. (2010). Certain subclasses of analytic and bi-univalent functions, Applied Mathematics Letters, 23, (10), 1188-1192.
[14] Yousef, F., Frasin, B.A. \& Al-hawary, T. (2018). Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials. Faculty of Sciences and Mathematics, University of Nis, Serbia, 32(9) 3229-3236.

