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Abstract

In this paper, the variational iteration method is applied to solve the partial differential equa-
tions with piecewise constant arguments. This technique provides a sequence of functions
which converges to the exact solutions of the problem and is based on the use of Lagrange
multipliers for identification of optimal value of a parameter in a functional. Employing this
technique, we obtain the approximate solutions of the above mentioned equation in every
interval [n, n + 1) (n = 0, 1, · · · ). Illustrative examples are given to show the efficiency of the
method.
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1. Introduction

The variational iteration method (VIM) was proposed originally by Ji-Huan He [1]. In recent years, the VIM
method has been used quite effectively for obtaining exact or approximate solutions for a wide spectrum of
linear and nonlinear equations without the tangible restriction of sensitivity to the degree of the nonlinear
term and also it reduces the size of calculations besides, its interactions are direct and straightforward.
The method provides an approximate analytical solution of differential equations in the form of an infinite
series [1]. The terms of the series are determined using correction functional that involves the Lagrange
multiplier [2], as a key element, identified using the calculus of variations theory. Generally speaking, one
or two iterations lead to high accurate solutions. Applications of the method have been increased due to its
flexibility, convenience and efficiency. The convergence of the method is systematically discussed in [3, 4, 5].
There are several modifications of He’s VIM method [6].

This method has been advantageously employed for solving various kinds of mathematical problems. For
example, it has been successfully applied to delay differential equation [7], Hilfer advection-diffusion equation
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[8], quadratic optimal control problem [9], time-fractional Fornberg-Whitham equation [10], differential-
algebraic equations [11], and other problems [12, 13].

Though a great deal of attention has been devoted to the study of the VIM, however, we did not witness
or observe enough exploration and analysis of the VIM to find the solution of differential equations with
piecewise constant arguments (EPCA). EPCA arises frequently in various applied areas [14, 15]. Up to now,
research for many properties including existence, uniqueness, stability and oscillation of EPCA becomes a
hot issue in the field of differential equations. Moreover, lots of numerical methods have been developed to
find the numerical solutions [16, 17, 18, 19, 20, 21]. The general theory and basic results for EPCA have
been thoroughly developed in the book of Wiener [22].

The main objective in this work is to effectively employ VIM to establish approximate solutions of partial
differential equations with piecewise constant arguments (PEPCA). Several examples are used to illustrate
this purpose.

The remaining of this paper is organized as follows. In Section 2, the basic theory of the VIM is presented.
In Section 3, we obtain the approximate solutions by applying VIM to PEPCA. In Section 4, we give some
examples and Section 5 includes a conclusion that briefly summarizes the results.

2. The VIM method

In this section, we briefly review the main points of the VIM method. Consider the differential equation

L[u(t)] +N [u(t)] = g(t), (1)

where L andN are linear and nonlinear operators, respectively and g(t) is an inhomogeneous term. According
to the method, the correction functional is considered

un+1(t) = un(t) +

∫ t

0

λ(L[un(s)] +N [ũn(s)]− g(s))ds, (2)

where λ is a general Lagrange multiplier, un is the nth-order approximate solution and ũn is a restricted
variation which means δũn = 0 [23, 24, 25].

In this method, first we determine the Lagrange multiplier λ that can be identified via variational theory,
i.e. the multiplier should be chosen such that the correction functional is stationary, i.e. δun+1(un(t), t) = 0.
Then the successive approximation un of the solution u will be obtained by using any selective initial function
u0 and the calculated Lagrange multiplier λ. Consequently u = lim

n→∞
un. It means that, by the correction

functional (2) several approximations will be obtained. Therefore, the exact solution emerges at the limit of
the resulting successive approximations.

In the next section, this method is successfully applied for solving the PEPCA.

3. Applications and analysis

The so-called PEPCA with delay term [t] reads ut(x, t) = a2uxx(x, t) + buxx(x, [t]), t > 0,
u(0, t) = u(1, t) = 0,
u(x, 0) = sin(πx),

(3)

where a, b are two real constants, [·] denotes the greatest integer function. According to the VIM, we
construct the correct functional as follows:

un+1(x, t) = un(x, t) +

∫ t

0

λ{(un(x, s))s − a2(ũn(x, s))xx − b(ũn(x, [s]))xx}ds, (4)
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(ũn(x, s))xx and (ũn(x, [s]))xx are both considered as restricted variations [1, 23, 24, 25], that is

δ(ũn(x, s))xx = 0, δ(ũn(x, [s]))xx = 0. (5)

Making the correction functional (4) stationary, by (5) we have

δun+1(x, t) = δun(x, t) + δ

∫ t

0

λ(un(x, s))sds,

with the help of integration by part, we obtain

δun+1(x, t) = δun(x, t) + λδun(x, s)|t0 − δ
∫ t

0

λ′un(x, s)ds,

which yields the following stationary conditions

1 + λ(s)|s=t = 0, λ′(s) = 0,

the Lagrange multiplier, therefore, can be readily identified

λ = −1.

So we have the following iteration formula

un+1(x, t) = un(x, t)−
∫ t

0

{(un(x, s))s − a2(un(x, s))xx − b(un(x, [s]))xx}ds. (6)

Taking into account of the existing of [·], we divide the whole interval [0,∞) into many little ones [n, n+1),
n = 0, 1, 2, · · · .

When t ∈ [0, 1), (6) gives

u0,n+1(x, t) = u0,n(x, t)−
∫ t

0

{(u0,n(x, s))s − a2(u0,n(x, s))xx − b(u0,n(x, 0))xx}ds. (7)

Select u0,0(x, t) = u(x, 0) = sinπx, then u0,0(x, 0) = sinπx, from (7) we have

u0,1(x, t) = u0,0(x, t)−
∫ t

0

(a2 + b)π2 sinπxds = − b

a2
sinπx+

(
sinπx+

b

a2
sinπx

)
(1− a2π2t),

u0,2(x, t) = − b

a2
sinπx+

(
sinπx+

b

a2
sinπx

)(
1− a2π2t+

1

2
(a2π2t)2

)
,

u0,3(x, t) = − b

a2
sinπx+

(
sinπx+

b

a2
sinπx

)(
1− a2π2t+

1

2
(a2π2t)2 − 1

3!
(a2π2t)3

)
,

u0,4(x, t) = − b

a2
sinπx+

(
sinπx+

b

a2
sinπx

)(
1− a2π2t+

1

2
(a2π2t)2 − 1

3!
(a2π2t)3 +

1

4!
(a2π2t)4

)
,

repeat this process, we have the following general result in the interval [0, 1).

Theorem 1. For t ∈ [0, 1), the n+ 1th-order (n = 0, 1, 2, · · · ) approximate solution of (3) can be given as

u0,n+1(x, t) = − b

a2
sinπx+

(
sinπx+

b

a2
sinπx

) n+1∑
l=0

(−1)l
(a2π2t)l

l!
, (8)

if −1/π < a < 1/π, then the series {u0,n+1(x, t)}∞n=0 converges to(
− b

a2
+ (1 +

b

a2
)e−a

2π2t

)
sinπx. (9)
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Proof. Obviously, when n = 1, (8) holds.
Assume that (8) is true when n = k, that is

u0,k+1(x, t) = − b

a2
sinπx+

(
sinπx+

b

a2
sinπx

) k+1∑
l=0

(−1)l
(a2π2t)l

l!
,

further we compute that

(u0,k+1(x, s))s = −a2π2

(
sinπx+

b

a2
sinπx

) k∑
l=0

(−1)l
(a2π2s)l

l!
,

−a2(u0,k+1(x, s))xx = −bπ2 sinπx+ (−a2π2 sinπx+ bπ2 sinπx)

k+1∑
l=0

(−1)l
(a2π2s)l

l!
,

−b(u0,k+1(x, 0))xx = bπ2 sinπx,

so (7) gives

u0,k+2(x, t) = − b

a2
sinπx+

(
sinπx+

b

a2
sinπx

) k+2∑
l=0

(−1)l
(a2π2t)l

l!
,

which means that (8) holds when n = k + 1.
On the other hand, (9) can be obtained directly from (8) under the condition −1/π < a < 1/π. The

proof is completed.

Next, we will consider the second interval.
When t ∈ [1, 2), (6) gives

u1,n+1(x, t) = u1,n(x, t)−
∫ t

1

{(u1,n(x, s))s − a2(u1,n(x, s))xx − b(u1,n(x, 1))xx}ds. (10)

Select

u1,0(x, t) =

(
− b

a2
+ (1 +

b

a2
)e−a

2π2t

)
sinπx,

then

u1,0(x, 1) =

(
− b

a2
+ (1 +

b

a2
)e−a

2π2

)
sinπx,

from (10) we have

u1,1(x, t) = u1,0(x, t)− (− b
a2 + (1 + b

a2 )e−a
2π2

)
∫ t
1
(a2 + b)π2 sinπxds

= (− b
a2 + (1 + b

a2 )e−a
2π2

)(− b
a2 sinπx+ (sinπx+ b

a2 sinπx)(1− a2π2(t− 1))),

u1,2(x, t) = (− b
a2 + (1 + b

a2 )e−a
2π2

)(− b
a2 sinπx+ (sinπx+ b

a2 sinπx)
(1− a2π2(t− 1) + 1

2 (a2π2(t− 1))2)),

u1,3(x, t) = (− b
a2 + (1 + b

a2 )e−a
2π2

)(− b
a2 sinπx+ (sinπx+ b

a2 sinπx)
(1− a2π2(t− 1) + 1

2 (a2π2(t− 1))2 − 1
3! (a

2π2(t− 1))3)),

continue this process we have

u1,n+1(x, t) =

(
− b

a2
+ (1 +

b

a2
)e−a

2π2

)(
− b

a2
sinπx+ (sinπx+

b

a2
sinπx)

n+1∑
l=0

(−1)l
(a2π2(t− 1))l

l!

)
.

(11)
Using the same method in Theorem 1, we can prove that (11) is true.
Therefore, we can get the following result in general sense.
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Theorem 2. For t ∈ [i, i + 1) (i = 0, 1, 2, · · · ), the n + 1th-order (n = 0, 1, 2, · · · ) approximate solution of
(3) can be given as

ui,n+1(x, t) =

(
− b

a2
+ (1 +

b

a2
)e−a

2π2

)i(
− b

a2
sinπx+ (sinπx+

b

a2
sinπx)

n+1∑
l=0

(−1)l
(a2π2(t− i))l

l!

)
,

(12)
if −1/π < a < 1/π, then the series {ui,n+1(x, t)}∞n=0 converges to(

− b

a2
+ (1 +

b

a2
)e−a

2π2(t−i)
)i+1

sinπx.

Proof. Obviously, when i = 0, 1, (12) holds.
Assume that (12) is true when i = k, then

uk,n+1(x, t) =

(
− b

a2
+ (1 +

b

a2
)e−a

2π2

)k(
− b

a2
sinπx+ (sinπx+

b

a2
sinπx)

n+1∑
l=0

(−1)l
(a2π2(t− k))l

l!

)
.

(13)
When t ∈ [k + 1, k + 2), we have

uk+1,n+1(x, t) = uk+1,n(x, t)−
∫ t

k+1

((uk+1,n(x, s))s − a2(uk+1,n(x, s))xx − b(uk+1,n(x, k + 1))xx)ds. (14)

Let

uk+1,0(x, t) = lim
n→∞

uk,n+1(x, t) =

(
− b

a2
+ (1 +

b

a2
)e−a

2π2(t−k)
)k+1

sinπx,

then

uk+1,0(x, k + 1) =

(
− b

a2
+ (1 +

b

a2
)e−a

2π2

)k+1

sinπx,

so (14) gives

uk+1,1(x, t) = (− b

a2
+ (1 +

b

a2
)e−a

2π2

)k+1(− b

a2
sinπx+ (sinπx+

b

a2
sinπx)(1− a2π2(t− (k + 1)))),

uk+1,2(x, t) = (− b
a2 + (1 + b

a2 )e−a
2π2

)k+1(− b
a2 sinπx+ (sinπx+ b

a2 sinπx)
(1− a2π2(t− (k + 1)) + 1

2! (a
2π2(t− (k + 1)))2)),

uk+1,3(x, t) = (− b
a2 + (1 + b

a2 )e−a
2π2

)k+1(− b
a2 sinπx+ (sinπx+ b

a2 sinπx)
(1− a2π2(t− (k + 1)) + 1

2! (a
2π2(t− (k + 1)))2

− 1
3! (a

2π2(t− (k + 1)))3)),

in the same way, continue this proceed we have

uk+1,n+1(x, t) =

(
− b

a2
+ (1 +

b

a2
)e−a

2π2

)k+1
(
− b

a2
sinπx+ (sinπx+

b

a2
sinπx)

n+1∑
l=0

(−1)l
(a2π2(t− k − 1))l

l!

)
.

(15)
By Theorem 1 we know that (12) holds when i = k + 1. The proof is finished.

4. Test examples

To demonstrate our theoretical result, some test examples are adopted in this section.

104



Q. Wang

Firstly, in order to describe the error, we introduce the following concept. For t ∈ [i, i + 1), we define
the error function which means the difference between the nth-order and n + 1th-order approximations as
follows

gi,(n+1)n(x, t) = ui,n+1(x, t)− ui,n(x, t),

then

gi,(n+1)n(x, t) =

(
− b

a2
+ (1 +

b

a2
)e−a

2π2

)i(
1 +

b

a2

)
(−1)n+1

(n+ 1)!
(a2π2(t− i))n+1 sinπx. (16)

Consider the following problem ut(x, t) = 1
16uxx(x, t) + 1

16uxx(x, [t]), t > 0,
u(0, t) = u(1, t) = 0,
u(x, 0) = sin(πx).

(17)

According to Theorem 2, when t ∈ [i, i+1) (i = 0, 1, 2, · · · ), the n+1th-order (n = 0, 1, 2, · · · ) approximate
solution of (17) can be given as

ui,n+1(x, t) =
(
−1 + 2e−

π2

16

)i(
−1 + 2

n+1∑
l=0

(−1)l

l!

(
π2

16
(t− i)

)l)
sinπx, (18)

and the series {ui,n+1(x, t)}∞n=0 converges to (−1 + 2e−
π2

16 (t−i))i+1 sinπx.
On the other hand, we can get the error function from Definition 4

gi,(n+1)n(x, t) =
2(−1)n+1

(n+ 1)!
(−1 + 2e−

π2

16 )i
(
π2

16
(t− i)

)n+1

sinπx.
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Fig. 1. The error function of (17) in [0, 1).
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Fig. 2. The error function of (17) in [1, 2).
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In Figs.1-4, we draw the error figures for the approximate solutions in different interval. It is easy to see
that the values of gi,(n+1)n(x, t) are close to zero with the increasing of n. That is, the approximate solutions
are converge to the exact solutions.

5. Conclusions

In this paper, we applied the VIM in finding the approximate solution for the PEPCA. By this method a
rapid convergent sequence is produced. The numerical results showed that the VIM performed well for the
PEPCA. In the future work, we will consider multi-dimension and stochastic case.
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