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Abstract  

This study  

 

 

 

 

 

 

1. Introduction 
 

In 1976, a new instrument was born, which somehow remained almost unnoticed by most scientists [1]. This 

is the Lindblad equation, where the unknown quantity is the statistical operator 𝝔 .  In this equation, there is 

only one unknown term 𝑫 , which can be called a dissipative operator. Before you start solving the Lindblad 

equation, you need to find this operator. 

         In 1994, the author of this article derived an equation for the density matrix𝝔𝒏𝒏′  [2]. The following 

consequences are automatically derived from this equation: 1) the matrix 𝜸𝒏𝒎,𝒎′ 𝒏′ , which defines the 

structure of this equation, is uniquely related to the dissipative operator 𝑫  in the Lindblad equation, 2) when 

the density matrix has a diagonal form, this equation turns into a quantum kinetic equation for the 

probability 𝒘𝒏(𝒕), 3) the probability 𝒑𝒎𝒏 of the transition obeys an equation called the Fermi Golden rule. 

        I have sent my article to almost all physicists who should understand the simple language of quantum physics, 

but they are somehow silent. Only a few professors answered me. Among them there are even two academicians of 

the Russian Academy of Sciences. But it's been a quarter of a century since my article was published in the journal 

of  “Theoretical and mathematical physics”. And it's been almost half a century since Lindblad discovered his 

equation.         
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        I read a review by a scientist about a report at a conference. He did not specify his name, but he wrote the 

correct words: "There are no theories that would be accepted by all at once - such good times are long gone. 

Today, few people will understand a deep theory or model, and even more so, they will immediately accept it. 

It is usually necessary that entire generations of adherents of the old views die out. Therefore progress must 

be made in small steps … “ 

 

2. Liouville equation 
 

The Liouville equation describes the evolution in time of the distribution function in phase space. This is the 

fundamental equation of non-equilibrium statistical mechanics. 

 

 
 

Joseph Liouville (1809−1882) 

 

        Consider a dynamical system of N particles that have coordinates 𝑞𝑘  and conjugate pulses 𝑝𝑘 , where k = 1, ..., 

N . Then the distribution function 

 

f =f(t, q, p) , 

 

where q= 𝑞1, …, 𝑞𝑁;p= 𝑝1 , …, 𝑝𝑁 ; defines the number of dN particles in the system  

 

dN=f(t, q, p) dqdp, 

 

for which their 𝑞𝑘  coordinates and 𝑝𝑘  pulses will be located in a small volume 

 

dqdp=  d𝑞𝑘
𝑁
𝑘 = 1 d𝑝𝑘 . 

 

        The Liouville equation governing the evolution of the system will have the form𝜕𝑓 𝜕𝑡 +  

 

  (𝑁
𝑘 = 1 𝜕𝑓 𝜕𝑞𝑘 d𝑞𝑘 d𝑡 + 𝜕𝑓 𝜕𝑝𝑘 d𝑝𝑘 d𝑡 ) =0 ,                                     (2.1) 

 

where the functions 𝑞𝑘 = 𝑞𝑘(𝑡) and 𝑝𝑘 = 𝑝𝑘(𝑡) satisfy the Hamilton equations 

 

d𝑞𝑘 d𝑡 = 𝜕𝐻 𝜕𝑝𝑘  , d𝑝𝑘 d𝑡 = −𝜕𝐻 𝜕𝑞𝑘 ,                                              (2.2) 

 

H=H(t, q, p) is a Hamilton function. 

        Liouville's theorem States that the distribution function f =f(t, q, p) is constant along any trajectory in phase 

space. Since this equation demonstrates the conservation of density in phase space, we write the continuity 

equation:Since this equation demonstrates the conservation of density in phase space, we write the continuity 

equation: 

 

𝜕𝑓 𝜕𝑡 +   {𝑁
𝑘 = 1 𝜕(𝑓𝑞𝑘 ) 𝜕𝑞𝑘 + 𝜕(𝑓𝑝𝑘 ) 𝜕𝑝𝑘  } = 0  . 

 

Open the derivatives of the products 𝑓𝑞𝑘  and 𝑓𝑝𝑘 . We get 

https://ru.wikipedia.org/wiki/1809_%D0%B3%D0%BE%D0%B4
https://ru.wikipedia.org/wiki/1882_%D0%B3%D0%BE%D0%B4
https://ru.wikipedia.org/wiki/1882_%D0%B3%D0%BE%D0%B4
https://commons.wikimedia.org/wiki/File:Joseph_liouville.jpeg?uselang=ru
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𝜕𝑓 𝜕𝑡 +   (𝑁
𝑘 = 1 𝜕𝑓 𝜕𝑞𝑘𝑞𝑘 + 𝜕𝑓 𝜕𝑝𝑘𝑝𝑘 ) + 𝑓   {𝑁

𝑘 = 1 𝜕𝑞𝑘 𝜕𝑞𝑘 + 𝜕𝑝𝑘 𝜕𝑝𝑘  } = 0  . 

 

The last sum after substituting Hamilton's equations into it will be zero: 

 

  {𝑁
𝑘 = 1 𝜕𝑞𝑘 𝜕𝑞𝑘 + 𝜕𝑝𝑘 𝜕𝑝𝑘  } =   {𝑁

𝑘 = 1 𝜕2𝐻 𝜕𝑞𝑘𝜕𝑝𝑘 − 𝜕2𝐻 𝜕𝑝𝑘𝜕𝑞𝑘  } = 0 . 

 

When the Liouville equation is solved and the distribution function f =f(t, q, p) is found, then the total number of 

particles in the system can be calculated using the formula 

 

N=  𝑓(𝑡, 𝑞, 𝑝)dqdp                                                                                             (2.3) 

 

        In the simplest case, when a particle moves in space in a field of force 𝑭 with coordinates r and momentum p, 

Liouville's theorem can be written as 

 

𝜕𝑓 𝜕𝑡 + 𝒓 ∇𝑓 + 𝒑 ∇𝒑𝑓 =0 ,                                                                            (2.4) 

 

where 

 

𝒓 = 𝒗 ,       𝒑 = 𝑭 𝑚  .                                                                                  (2.5) 

 

          A generalization of the Liouville equation to systems with collisions is the Boltzmann equation and the chain 

of Bogolyubov equations. In plasma physics, this equation is called the Vlasov equation. 

3. Probability 

There are systems whose behavior cannot be described by the laws of dynamics alone. In such systems, processes 

occur that cannot be predicted exactly and are called random. 

         In some phenomena, randomness is present as a result of incomplete knowledge of the observer about all the 

details of the system under study, about its past and about the effects to which it is subjected. Other phenomena may 

be random because of their physical nature. In any case, statistical methods should be used to describe random 

events. In particular, this applies to macroscopic systems consisting of a very large number of particles. 

         Theoretically, it is possible to write in symbolic form the equations of motion of all the particles that make up 

the macrosystem, taking into account all the forces acting on them. Therefore, for the quantitative description of 

multi-partial systems, we have to use a different mathematical apparatus based on the concept of probability. When 

applied to systems in which random processes occur, the laws of dynamics partially or completely lose their force 

and give way to laws of another property, called statistical. 

          An event that may or may not occur for reasons beyond the control of the observer is called a random event. 

A random process is a sequence of random events that occur in some physical system. It is not possible to make a 

complete deterministic description of the behavior of such a system. But even, it would seem, in a completely 

chaotic behavior is possible to distinguish certain patterns.  

        The main quantitative characteristic of a random event or random process is probability. Probability is a 

measure of the possibility of a random event occurring. In statistical physics, probability is determined using a so-

called statistical ensemble, which is a collection of a large number of imaginary or actual identical instances of the 

system under study. 

         Let the set of different States of the system under study be finite or countable, i.e. each state of the system can 

be put in one-to-one correspondence with a natural number i = 1, 2, 3,... Simply put, all system States can be 

renumbered. Such systems are called discrete systems. The set of internal States of atoms and molecules is 

countable. In physics, such States are called quantum States.                     
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         Consider a statistical ensemble consisting of N identical discrete systems, each of which has a random process. 

Let 𝑁𝑖(t) be among the systems of this ensemble in the state with number i at some time t. It is obvious that the sum 

of all these numbers is equal to the number of N systems in the ensemble:          

 

 𝑁𝑖 𝑡 = 𝑖 N(t) .                                                                                        (3.1)  

 

         The probability that one of the ensemble systems is in the i-th state at time t is called the value          

 

𝑤𝑖 𝑡 = lim𝑁 → ∞ 𝑁𝑖 𝑁 ,                                                                             (3.2) 

 

that is, the limit to which the ratio of the number 𝑁𝑖(t) to the number N(t) of systems in the ensemble tends, when 

the latter increases indefinitely. From definition (2.2), it follows that the probability can take any value from zero to 

one: 

 

                                                                      0 ≤ 𝑤𝑖 ≤1 . 

 

We sum up both parts of equality (2.2) for all possible values of the number i. Taking into account (2.1), we obtain 

the so-called probability normalization condition П росуммируемобечасти 

 

 𝑤𝑖 = 𝑖  1.                                                                                          (3.3)  

 

        The state of a real discrete system, except for the number I, is characterized by one or more quantities that have 

a certain physical meaning. For Example, each system consists of a certain number of particles and has some 

energy. Let’s denote one of these values by the letter x, and its value corresponding to the i-th state is 𝑥𝑖 . The set of 

values that the value E can take is discrete. Therefore, this value is called a discrete random variable. The sum of 

all values of the value E is called the spectrum of its values.     

        Let’s assume that for each of N systems of the ensemble, the values of the value x are measured at time t. The 

average value 𝑥  of this value is determined by the formula       

 

𝑥 =  𝑥𝑖  𝑤𝑖 𝑖 .                                                                                     (3.4) 

 

The task of statistical physics is to find the distribution function 𝑤𝑖 = 𝑤𝑖 (t) and use it to calculate the average values 

of physical quantities that characterize the system under study. 

 

4. Thermodynamics. Canonical Gibbs distribution 

 

 A substance is a collection of a colossal number of molecules. Such parameters of matter as volume, internal 

energy, and entropy require knowledge of probability for their determination. In other words, the state of a 

substance is determined by the distribution functions of molecules. For example, the internal energy and entropy 

will be equal 

 

U= U{𝑤𝑖 (t)}        and      S= S{𝑤𝑖 (t)}. 

 

         Consider a large chunk of matter that is in an equilibrium state. Then the probability will not depend on time 

and must have a structure common to all equilibrium systems. The type of this function was set by Gibbs: 

 

𝑤𝑖 = 𝜈 exp ( −𝛽𝐸𝑖 ) .                                                                          (4.1)  

 

This expression is called the canonical Gibbs distribution. It is of fundamental importance in the theory of 

equilibrium States of macroscopic systems.  
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Josiah Gibbs (1839–1903) 

 

        The equilibrium distribution function (4.1) depends on the energy of the system 𝐸𝑖  in state I and contains two 

parameters 𝜈 and β. The Formula (4.1) allows us to calculate the probability 𝑤𝑖  that the equilibrium system will be 

in the i-th state at some point in time. 

        The parameter β in formula (4.1) takes only positive values: β> 0. It can be shown that the parameter β is 

inversely proportional to the absolute temperature T: 

 

𝛽 = 1 (𝑘B  𝑇) ,                                                                    (4.2)  

 

where 𝑘B  is the Boltzmann continuous. 

Note: Currently a more General formula is used 

 

𝛽 = 1 ( ℏ 𝜔 +  𝑘B  𝑇)  , 

 

where ℏ  ω is the energy of radiation that is part of the thermostat. 

         To find the parameter 𝜈, we will refer to the probability normalization condition (3.3). Then we will have          

 

 𝑤𝑖 = 𝑖 𝜈  exp 𝑖  ( −𝛽𝐸𝑖 ) = 1. 

 

From here we get 

 

𝜈 = 1  exp 𝑖  ( −𝛽𝐸𝑖)  .                                                (4.3) 

 

5. Boltzmann Equation 

 

The Boltzmann equation, known as the kinetic Boltzmann equation, is named after Ludwig Boltzmann, who first 

considered it. It describes a statistical distribution 

 

f=f(t, r, p) 

 

particles in a gas or liquid and is one of the most important equations of physical kinetics. This is the field of 

statistical physics that describes systems in a state of thermodynamic equilibrium or far from equilibrium, for 

example, in the presence of temperature gradients and an electric field. 

 

https://ru.wikipedia.org/wiki/1839_%D0%B3%D0%BE%D0%B4
https://ru.wikipedia.org/wiki/1903_%D0%B3%D0%BE%D0%B4
https://ru.wikipedia.org/wiki/1903_%D0%B3%D0%BE%D0%B4
https://commons.wikimedia.org/wiki/File:Josiah_Willard_Gibbs_-from_MMS-.jpg?uselang=ru
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Ludwig Boltzmann (1844 −1906) 

 

         The physical meaning of the distribution function f = f (t, r, p) is that the number of dN particles that are in the 

volume dr= d𝑥dydz and have pulses ending in dp= d𝑝𝑥d𝑝𝑦d𝑝𝑧  will be equal to            

 

dN= f (t, r, p) drdp . 

 

The Boltzmann equation has the form 

 

𝜕𝑓 𝜕𝑡 + ∇𝑓 𝜕𝒓 𝜕𝑡 + ∇𝒗𝑓 𝜕𝒗 𝜕𝑡 = 𝜕𝑓 𝜕𝑡 | collisions ,                                  (5.1) 

 

where the right side of this equation describes the collisions of particles with each other and has yet to be 

determined. If you put it in this equation 

 

𝜕𝒓 𝜕𝑡 = 𝒗 ,𝜕𝒗 𝜕𝑡 = 𝑭 𝑚  ,                                                                        (5.2) 

 

then we will have  

 

𝜕𝑓 𝜕𝑡 + 𝒗 ∇𝑓 + 𝑭 𝑚 ∇𝒗𝑓 = 𝜕𝑓 𝜕𝑡 | collisions  .                                           (5.3) 

 

         The simplest description of a collision member is   

 

𝜕𝑓 𝜕𝑡 | collisions = − ( 𝑓 − 𝑓o) 𝜏 ,                                                                (5.4) 

 

where 𝑓o  is a function that is a solution of the Liouville equation 

 

𝜕𝑓 𝜕𝑡 + 𝒗 ∇𝑓 + 𝑭 𝑚 ∇𝒗𝑓 =0 .                                                                      (5.5) 

 

Now the equation takes the form 

 

𝜕𝑓 𝜕𝑡 + 𝒗 ∇𝑓 + 𝑭 𝑚 ∇𝒗𝑓 = − ( 𝑓 − 𝑓o) 𝜏   .                                             (5.6) 

 

Another more complex description of collisions of two particles is carried out using an integral, in which there is a 

product of two functions 𝑓1𝑓2 . 

6. Maxwell - Boltzmann Statistics 

 

We apply the Gibbs distribution to describe a particle of an ideal gas when it is in a state of thermal equilibrium. 

The energy of the particle is equal to  
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                                                                 E(r, 𝒗) = 𝑚𝑣2 2 + 𝑈(r) .                                                                      (6.1) 

 

Then the Gibbs distribution gives 

 

w(r, 𝒗)= 𝜈 exp { −𝛽 ( 𝑚𝑣2 2 + 𝑈(r)} .                                                          (6.2) 

 

It is not difficult to verify that this function satisfies the Liouville equation (2.4) or the Boltzmann equation (5.5), if 

we remember that   

 

𝑭 = −∇U.  

 

 

James Maxwell(1831−1879) 

 

7. Vlasov Equation 

 
Vlasov found that in the Boltzmann equation, the collision integral, which is determined by the paired interactions 

of molecules, only fits when the interaction forces of the particles act close enough to them. The proximity or 

distance of forces is characterized by the radius of their influence. Coulomb forces act between charged particles. 

The calculation of the radius of action of these forces showed that it is greater than the radius of influence of forces 

acting between uncharged molecules. Therefore, Coulomb forces are called long-range. Vlasov suggested that the 

influence of electromagnetic interaction between charged particles should not be carried out directly, but only by 

means of an electromagnetic field. 

         For plasma, which consists  of electrons and ions, Vlasov equations are used   

 

𝜕𝑓 𝑒 𝜕𝑡 + 𝒗∇𝑓 𝑒 −  𝑒 ( 𝑬 + [ 𝒗𝑩] 𝑐 ) ∇𝒑𝑓
(𝑒) =0 ,                                                   (7.1) 

𝜕𝑓 𝑖 𝜕𝑡 + 𝒗∇𝑓 𝑖 + 𝑒 ( 𝑬 + [ 𝒗𝑩] 𝑐 ) ∇𝒑𝑓
(𝑖) =0 ,                                                      (7.2) 

 

where 𝑓(𝑒) and 𝑓(𝑖) are the distribution functions of electrons and ions, e is the elementary electric charge, E is the 

electric field strength, and B is the magnetic field induction. These equations should be supplemented with 

Maxwell's equations of charge and current: 

 

rot 𝑬 =  − 1 c 𝜕𝑩 𝜕𝑡  ,       div 𝑬 = 4 𝜋𝜌 ,                                                                    (7.3) 

 

rot 𝑩 = 4 𝜋𝒋 c + 1 c 𝜕𝑬 𝜕𝑡  ,       div 𝑩 =0 ,                                                                (7.4) 

 

𝜌 = 𝑒  ( 𝑓(𝑖) − 𝑓(𝑒) ) d3𝑝 ,        𝒋 = 𝑒  ( 𝑓(𝑖) − 𝑓(𝑒) ) 𝒗d3𝑝 .                                    (7.5) 

 

If the magnetic field can be ignored in these equations, the resulting equations will be called Vlasov– Poisson 

equations: 

 

𝜕𝑓(𝛼) 𝜕𝑡 + 𝒗∇𝑓(𝛼) + 𝑞𝛼𝑬 ∇𝒑𝑓
(𝛼) =0 ,∇𝑬 = 4 𝜋𝜌 ,                                                  (7.6) 
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where 𝛼 = 𝑒 or i, 𝑞𝑒 = − 𝑒, 𝑞𝑖 = 𝑒. 
 

8. Bogolyubov's Equations 

 

Consider a system of N particles with a pair interaction located in an external field. Let 𝑞𝑖  and 𝑝𝑖  

be the generalized coordinates and pulses of the i -th particle, 𝛷𝑖 𝑞𝑖  be the interaction potential 

with the external field, and 𝛷𝑖𝑗 (𝑞𝑖 , 𝑞𝑗 ) be the potential energy of the interaction of particles. 

Distribution function of the complete system 

 

𝑓𝑁 = 𝑓𝑁( 𝑡, 𝑞1, … , 𝑞𝑁 , 𝑝1, … , 𝑝𝑁) 

 

satisfies the Liouville equation    

 

𝜕𝑓𝑁 𝜕𝑡 +  𝑞 𝑖
 𝑁
 𝑖 = 1 𝜕𝑓𝑁 𝜕𝑞𝑖 −   ( 𝑁

 𝑖 = 1 𝜕𝛷𝑖 𝜕𝑞𝑖 +  𝜕𝛷𝑖𝑗 𝜕𝑞𝑖  )  𝑁
 𝑗  = 1,𝑗  ≠ 𝑖 𝜕𝑓𝑁 𝜕𝑝𝑖 = 0  (8.1) 

 

Define the function 𝑓, which specifies only s pairs of numbers 𝑞𝑖  and 𝑝𝑖 , by the ratio            

 

𝑓𝑠 = 𝑓𝑠( 𝑡, 𝑞1, … , 𝑞𝑠 , 𝑝1, … , 𝑝𝑠) =  𝑓𝑁  𝑡, 𝑞1, … , 𝑞𝑁 , 𝑝1, … , 𝑝𝑁 d𝑞𝑠+1d𝑝𝑠+1 … d𝑞𝑁d𝑝𝑁 . 

 

This function will satisfy the equation   

 

𝜕𝑓𝑠 𝜕𝑡 +  𝑞 𝑖
 𝑠

 𝑖 = 1
𝜕𝑓𝑠 𝜕𝑞𝑖 −   (

 𝑠

 𝑖 = 1
𝜕𝛷𝑖 𝜕𝑞𝑖 +  𝜕𝛷𝑖𝑗 𝜕𝑞𝑖  ) 

 𝑠

 𝑗  = 1,𝑗  ≠ 𝑖
𝜕𝑓𝑠 𝜕𝑝𝑖 =  

 

=( N − s)  𝜕 𝜕𝑝𝑖  𝑠
 𝑖 = 1  𝜕𝛷𝑖𝑠+1 𝜕𝑞𝑖 𝑓𝑠+1d𝑞𝑠+1d𝑝𝑠+1 .        (8.2) 

 

Let's put in equation (7.2) the number s = 1, 2, ..., we will have 

 

𝜕𝑓1 𝜕𝑡 + 𝑞 1 𝜕𝑓1 𝜕𝑞1 − 𝜕𝛷1 𝜕𝑞1 𝜕𝑓1 𝜕𝑝1 = 
 

=( N −1) 𝜕 𝜕𝑝1  𝜕𝛷12 𝜕𝑞1 𝑓2d𝑞2d𝑝2 ,   (8.3) 

 

𝜕𝑓2 𝜕𝑡 +  𝑞 𝑖
 2

 𝑖 = 1
𝜕𝑓2 𝜕𝑞𝑖 −   (

 2

 𝑖 = 1
𝜕𝛷𝑖 𝜕𝑞𝑖 +  𝜕𝛷𝑖𝑗 𝜕𝑞𝑖  ) 

 2

 𝑗  = 1,𝑗  ≠ 𝑖
𝜕𝑓2 𝜕𝑝𝑖 =  

 

=( N −2)  𝜕 𝜕𝑝𝑖  2
 𝑖 = 1  𝜕𝛷𝑖 3 𝜕𝑞𝑖 𝑓3d𝑞3d𝑝3 , …              (8.4) 

 

All these equations are called the Bogolyubov chain of equations. To be more precise, they are 

called BBGKY-equations, where the abbreviation bbgki contains the names of scientists: N. 

Bogolyubov, M. Bourne, J. Green, J. Kirkwood and J. Yvon, who contributed to these equations. 

 

9. Fokker −Planck Equation 
 

Until now, probability has not been explicitly mentioned in all these equations. Now we will write down an 

equation that describes the time evolution of the probability of events occurring in the system under study.  

       Let the state of a certain system be determined by the set of numbers 𝑥1, 𝑥2 , …, 𝑥𝑁 , which change randomly 

over time. The probability density is used to describe such a system          

 

w= 𝑤(𝑡, 𝑥1, 𝑥2 , …, 𝑥𝑁) . 

 



                                                                                                                                        Journal of 

                                                                                                                                         ISSN  
 

Volume 18, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm                                                       9| 

Journal of Progressive Research in Mathematics 

                                          E-ISSN: 2395-0218 

If we know this function, the probability that the system parameters are in a small part of d𝑥1 d𝑥2 … d𝑥𝑁  is equal to 

 

dw= 𝑤(𝑡, 𝑥1, 𝑥2, …, 𝑥𝑁) d𝑥1 d𝑥2 … d𝑥𝑁 . 

 

The normalization condition will look like this 

 

 𝑤(𝑡, 𝑥1 , 𝑥2, …, 𝑥𝑁) d𝑥1d𝑥2 … d𝑥𝑁 =1                                                 (9.1) 

 

         The General form of the equation for the probability density is 

 

𝜕𝑤 𝜕𝑡 = −  𝜕( 𝑁
 𝑖 = 1 𝐷𝑖

(1)
 w ) 𝜕𝑥𝑖 +   𝜕2( 𝑁

 𝑗  = 1
 𝑁
 𝑖 = 1 𝐷𝑖𝑗

(2)
 w ) 𝜕𝑥𝑖 𝜕𝑥𝑗  ,                    (9.2) 

 

where 𝐷𝑖
(1)

 and 𝐷𝑖𝑗
(2)

 are unknown functions of variables t and 𝑥1, 𝑥2 , …, 𝑥𝑁 . This equation was written by scientists 

Adrian Fokker and Max Planck. In our literature, it is known as the Kolmogorov equation. 

        For the first time, the equation was used to statistically describe the Brownian motion of a particle in a liquid, 

when the motion can be described using the probability density:  

 

𝑤 = 𝑤( t,r, p ) . 

 

In this case, the probability  

 

dw= 𝑤(𝑡, 𝒓, 𝒑 ) d𝒓d𝒑                                                                                   (9.3) 

 

says that the particle at time t has vectors r and p that end in the volume drdp. Now the Fokker −Planck equation 

can have the form 

 

𝜕𝑤 𝜕𝑡 = − ∇( 𝑨1w )+ ∇( 𝑩1∇w ) − ∇𝒑( 𝑨2 w ) + ∇𝒑 𝑩2∇𝒑w   ,                                       (9.4) 

 

where the vectors 𝑨𝜶 and 𝑩𝛼  (α = 1, 2) depend on t, r, p. 

        Let's assume that  

 

𝑨𝟏 = 𝒑 𝑚 ,   𝑨𝟐 =F ,     𝑩𝛼 = 0 . 

 

Now the Fokker − Planck equation becomes the Boltzmann equation 

 

𝜕𝑤 𝜕𝑡 = − 𝒑 𝑚 ∇𝑤 − 𝑭 ∇𝒑𝑤 . 

 

10. Questions that classical physics could not answer 

 

Here are some of these questions. 

1. Atomic structure. It is impossible to explain from the point of view of classical physics why atoms there are 

consistently.  

2. Linear spectra of light emission and absorption by atoms. Classical theory cannot explain why light is emitted 

and absorbed by different atoms at discrete frequencies. In addition these spectra are expressed by simple algebraic 

relations.  

3. The radiation of a black body. No explanation of the dependence of the radiation intensity of a heated body on 

frequency and temperature. 

 

11. Thermal radiation Photons 

 

Now it's time to talk about quantum mechanics, the Foundation of which was first laid by Max Planck. He studied 

the spectrum of thermal radiation, for the explanation and quantitative description of which he had to assume that 

light and electromagnetic radiation are a collection of particles. These particles are called quanta of light, or 

photons.  
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Max Planck (1858 –1947) 

 

          Like any other particle of matter, a photon has energy and momentum. The energy ε of a single photon is 

proportional to the frequency ω of the electromagnetic radiation of which it is a particle: 

 

𝜀 = ℏ𝜔,                                                                                                 (11.1) 

 

where the fundamental constant ℏ is called the Planck constant. The photon's pulse modulus is related to its energy 

by the ratio  

 

p= 𝜀 𝑐 ,                                                                                                  (11.2)  

 

where c is the speed of light. In vector form, this relation has the form 

 

p= ℏk ,                                                                                                   (11.3) 

 

k is the wave vector. Recall that a monochromatic electromagnetic wave is described by the  

function cos ( k r +𝜔𝑡+𝛼 ). This is how the idea of light as a wave, or as a particle, appears.  

         Calculations based on the photon hypothesis led Planck to the following dependence of the energy density of 

equilibrium thermal radiation on frequency and temperature: 

 

w(𝜔, T) = ℏ 𝜔3 { 𝜋2𝑐3 exp  𝛽 ℏ 𝜔 − 1   }  .                                                   (11.4)  

 

Here appeared the constant ℏ  that Planck found. This constant suggests that the equation where it appears belongs 

to quantum physics.  

 

12. Frequency spectrum of light emitted by hydrogen atom  

 

When observing the light emitted by individual atoms, it was experimentally established that the spectrum of this 

light has a linear character. And each atom has a spectrum inherent only to this atom. The easiest is the spectrum of 

the hydrogen atom. The first person to derive a formula for this spectrum was Niels Bohr. He proposed the so-called 

orbit quantization rule, which must be satisfied by the stationary orbits of electrons in an atom. According to this 

rule when an electron moves in a stationary orbit its moment of momentum L is equal to an integer number of 

Planck constants ℏ : 

 

L =nℏ ,                                                                                                  (12.1) 
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where the integer n = 1, 2, 3, ... is called a quantum number. 

         Bohr's theory has produced remarkable results when describing a hydrogen atom consisting of a proton with a 

charge of + e and an electron with a charge of −e. Therefore the electron from the core will be affected by the force 

of attraction  

of the Coulomb 

 

F= 𝑒2 (4 𝜋𝜀o𝑟
2) ,                                                                               (12.2) 

 

where r is the distance between the nucleus and the electron. 

 

 
 

Niels Bohr (1885– 1962) 

 

         Since the mass of the nucleus is much larger than the mass of the electron, the nucleus can be considered 

stationary, and the electron - moving around it. Consider the movement of an electron around the nucleus on a circle 

of radius r. Write down Newton's second law: 

 

𝑚 𝑣2 𝑟 = 𝑒2 (4 𝜋𝜀o𝑟
2) ,                                                                     (12.3)  

 

where m and 𝑣 are the mass of the electron and its velocity. 

The quantization rule (12.1) can now be written as follows: 

 

 m 𝑣 r=nℏ .                                                                                      (12.4)  

 

Equations (12.3) and (12.4) form a system with two unknowns 𝑣 and r. Now we find the velocity 𝑣 and the distance 

r from the electron to the nucleus: 

 

𝑣 = 𝑒2  4 𝜋𝜀o𝑛ℏ  ,   r=4 𝜋𝜀o𝑛
2 ℏ2 (𝑚 𝑒2)  .                                                 (12.5) 

 

As can be seen from this formula, the velocity 𝑣 and radius of the electron's orbit depend on the number n. 

Therefore, the number n is considered as the number of the orbit. The radius 𝑟B  of the first orbit, for which n =1, is 

called the Bohr radius. 

      The internal energy E of hydrogen is the total mechanical energy of an electron moving around a stationary 

nucleus. Coulomb interaction an electron with a nucleus corresponds to the potential energy 

 

𝑈 = −𝑒2 (4 𝜋𝜀o𝑟) . 

 

Therefore, the total mechanical energy of the electron according to the formula (6.1) will be equal to 

 

https://ru.wikipedia.org/wiki/1885_%D0%B3%D0%BE%D0%B4
https://commons.wikimedia.org/wiki/File:Niels_Bohr.jpg?uselang=ru
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E = 𝑚𝑣2 2 − 𝑒2 (4 𝜋𝜀o𝑟) .                                                       (12.6) 

 

Substituting the formulas (12.5) here leads to the value of the total energy of the hydrogen atom  

 

𝐸𝑛 = −𝑅ℏ 𝑛𝟐 ,                                                                              (12.7)   

 

where R is the Rydberg constant. 

         Bohr then suggested that an atom emits a photon when an electron moves from one orbit to another. In this 

case the energy lost by the electron is converted into the energy of the photon:  

 

𝐸𝑛2
− 𝐸𝑛1

= ℏ𝜔𝑛1𝑛2
,                                                                                    (12.8) 

 

where 𝑛2 > 𝑛1. Let's substitute the energy of an electron into this formula and we will have  

 

𝜔𝑛1𝑛2
= 𝑅( 1 𝑛1

2 − 1 𝑛2
2 ) .                                                                    (12.9) 

 

This formula accurately describes the spectrum of frequencies emitted by the hydrogen atom. At this point, a new 

theory begins, which became known as quantum mechanics. 

 

13. Schrödinger Equation 

 

 
 

Erwin Schrödinger (1887 – 1961) 

 

The Schrödinger equation is considered to be the basis of quantum mechanics. In this equation the unknown 

quantity is the so calledwave function 

 

𝜓=𝜓( t,q ) ,                                                                                 (13.1)  

 

where t is time, and q is a quantum variable that determines the state of the system. The meaning of the wave function 

is that the product 

 

𝜓∗( t, q ) 𝜓( t, q ) =w( t, q )                                                                     (13.2)  

 

it is possible to detect the system in state q at time t. The probability must meet the normalization condition: 

 

 𝜓∗( t, q ) 𝜓( t, q )dq =1 .                                                                       (13.3) 

 

        The Schrödinger equation itself can be written as follows 
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iℏ𝜕𝜓 𝜕𝑡 =𝐻 𝜓,                                                                                     (13.4) 

 

where 𝐻 =𝐻 (t, q) is the energy operator of the system. This operator explains what to do with the wave function 𝜓(t, 

q) so that it gives us the average energy E(t) of the system at time t: 

 

E(t) = 𝜓∗( t,q )𝐻 (t, q) 𝜓( t, q )dq .                                                            (13.5)                                     

 

From the Schrödinger equation, you can deduce everything that Bohr came up with, and much more. 

 

14. Eigenfunctions and eigenvalues of energy 

 

The total energy operator 𝐻  is equal to the sum of the kinetic and potential energy operators. For an electron in a 

hydrogen atom it is equal to  

 

𝐻 = −ℏ𝟐 (2 𝑚) ∇𝟐 − e𝟐 𝑟 .                                                                (14.1) 

 

The function ψ can be represented as 

 

𝜓( t,r ) = 𝜑(r) exp (− i 𝜔 𝑡) ,                                                                         (14.2) 

 

where ω is a constant having the dimension of frequency. Setting this function in the Schrodinger equation gives 

 

𝐻 𝜑= E𝜑,                                                                                                   (14.3) 

 

where E is the electron energy. Equation (14.3) is called the stationary Schrodinger equation. This equation is called 

the equation for eigenfunctions φ of the Hamiltonian 𝐻 , and the energy E is called the eigenvalue of this operator. 

       Substitute the Hamiltonian (14.1) in equation (14.3). Receive 

 

{ − ℏ𝟐 (2 𝑚) ∇𝟐 − e𝟐 𝑟  } 𝜑= E𝜑 .                                                                          (14.4) 

 

Surprisingly, this equation has a solution not for any negative values of energy E, but only for some quantum values. 

So the wave function depends on three indexes 

 

𝜑𝑛𝑙𝑚 = 𝜑𝑛𝑙𝑚 (r) .                                                                                  (14.5) 

 

The number n takes the values 1, 2, 3, ... and is called the main quantum number. For a given value n, the number l, 

called the orbital number, takes one of the n values 0, 1, 2,..., n−1. Finally, the magnetic quantum numberm takes 

the values −l, −l+ 1, ..., −1, 0, 1, 2, ..., l−1, l. In total, for a given value of l, the number m takes 2 l + 1 values. The 

main quantum number n determines the possible values of the electron energy in the hydrogen atom: 

 

𝐸𝑛 = − 𝑅ℏ 𝑛𝟐 ,                                                                              (14.6) 

 

All eigenvalues of the total energy operator 𝐻  for which these equations have a solution form the so-called energy 

spectrum, or the spectrum of possible values of the particle's energy. Among the possible values of the particle's 

energy, there is always the smallest. The wave function corresponding to the lowest energy value describes the so-

called ground state of the particle. 

        After that, the eigenvalues of the energy of other atoms were calculated using approximate methods from the 

Schrodinger equation. The approximate formula will look like 

 

𝐸𝑛 ≅ − 𝑍 𝑅ℏ 𝑛𝟐 ,                                                                                (12.7) 
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where Z is the number of electrons in an atom. The light spectrum is determined by the formula (12.9). This spectrum 

is consistent with the observed spectrum. This is how the Schrodinger equation appeared, which is still considered the 

main equation of quantum mechanics. 

 

15. Coordinate and wave representation of quantum particle 

 

Physicist Louis de Broglie proposed to consider a quantum particle not only as a point particle, but also as a wave, 

which is characterized by a vector 

k= 𝒑 ℏ  .                                                                                                                            (15.1) 

 

 

 

Louis de Broglie (1892-1987) 

 

          In the coordinate representation the coordinate operators 𝒓  and momentum 𝒑  will be equal 

 

𝒓 = 𝒓,   𝒑 = −iℏ∇ .                                                                                 (15.2) 

 

But in the wave representation these same operators will be equal 

 

𝒓 = − i∇𝒌,      𝒑 = ℏk .                                                                             (15.3) 

 

Let's find out how these representations are related. To do this, assuming that the operators act on the same function 

U =U(k, 𝒓), equate the right parts of the results of the operators actions: 

− 

i∇𝒌𝑈 = 𝒓U ,−i∇𝑈 =k U . 

 

These equations have the same solution: 

 

𝑈~ exp(ik𝒓) . 

 

The function U is called unitary. 

        The transition from the coordinate representation of a particle to the wave representation and the reverse 

transition are performed using the unitary matrix𝑈𝒌𝒓, which is defined by the relation 

 

 𝑈𝒌𝒓𝒌 𝑈𝒌𝒓′
∗ = 𝛿𝒓𝒓′ ,                                                                                      (15.4) 
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where 𝛿𝒓𝒓′  is the Kronecker symbol. The simplest unitary matrix is  

 

𝑈𝒌𝒓 = A exp ( i𝒌 𝒓 ) .                                                                         (15.5) 

 

There are other rare types of unitary matrix.  

 

16. Statistical operator and density matrix 

 

In addition to the wave function ψ, which describes the state of a quantum system, J. von Neumann came up with 

another more General way of describing it – the statistical operator 

 

𝜚 = 𝜚 (q, t) .                                                                                            (16.1)  

 

The statistical operator is related to the density matrix 𝜚𝑛𝑛 ′ (t) (t) by the formula 

 

𝜚𝑛𝑛 ′ (t) = 𝜑𝑛
∗ (q, t) 𝜚 (q, t) 𝜑𝑛 ′ (q, t) dq .                                                           (16.2)  

where the functions 𝜑𝑛 (q, t) can be found from the Schrödinger equation. Formula (16.2) sets the density matrix 

𝜚𝑛𝑛 ′ (t) in the n-representation. The diagonal element 𝜚𝑛𝑛 ′  of the density matrix is the probability 𝑤𝑛=𝑤𝑛 (t) that the 

system is in state n: 

 

𝜚𝑛𝑛 (t) =𝑤𝑛 (t) .                                                                                                (16.3) 

 

          If the statistical operator is equal to 

 

𝜚 (q) =𝛿( q–𝑞o) ,                                                                                            (16.4) 

 

where 𝛿( q–𝑞o) is the Dirac Delta function, and 𝑞o  is a constant. Then the state of the system is called pure. Formula 

(16.2) gives 

 

𝜚𝑛𝑛 ′ (t) =𝜑𝑛
∗ ( 𝑞o ,t )𝜑𝑛 ′ ( 𝑞o ,t ) .                                                                           (16.5) 

 

Otherwise, the system state is called mixed. 

For the statistical operator, the equation was derived from the Schrödinger equation 

 

iℏ𝜕𝜚 𝜕𝑡 = [ 𝐻 𝜚 ] ,                                                                                                   (16.6) 

 

which is called the Liouville – von Neumann equation. 

 

17. Liouville – von Neumann equation and density matrix in coordinate and wave 

representations 

 

For the density matrix, equation (16.6) will look like this 

 

iℏ 𝜕𝜚𝑛𝑛 ′ 𝜕𝑡 =  (𝑚 𝐻𝑛𝑚 𝜚𝑚𝑛 ′ –𝜚𝑛𝑚 𝐻𝑚𝑛 ′  ) ,                                                                 (17.1) 

 

where 𝐻𝑛𝑛 ′  are matrix elements of the Hamiltonian 𝐻  of the system. By analogy with the formula (16.2), we write 

 

𝐻𝑛𝑛 ′ (t) = 𝜑𝑛
∗ (q, t) 𝐻 (q, t) 𝜑𝑛 ′ (q, t) dq .                                                                 (17.2)  

 

          If it turns out that the matrix elements 𝐻𝑛𝑛 ′  are diagonal, i.e. they have the form 
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𝐻𝑛𝑛 ′ (t) =𝜀𝑛 (t) 𝛿𝑛𝑛 ′ ,                                                          (17.3) 

 

where 𝜀𝑛  are the eigenvalues of the system's energy, and 𝛿𝑛𝑛 ′  are the Kronecker symbols. Then equation (17.1) takes 

the form 

 

iℏ𝜕𝜚𝑛𝑛 ′ 𝜕𝑡 = { 𝜀𝑛 (t) − 𝜀𝑛 ′ (t) }𝜚𝑛𝑛 ′ .                                                                       (17.4) 

 

For 𝑛 = 𝑛′  we get 

 

𝜕𝜚𝑛𝑛 𝜕𝑡 = 0       or𝜕𝑤𝑛 𝜕𝑡 = 0 .                                                                              (17.5) 

 

Were obtained from the Liouville – von Neumann equation of the density matrix in coordinate and wave 

representations. So in coordinate representation the density matrix for a free particle has the form 

𝜚(𝑡, 𝒓, 𝒓 ′)= (𝛼 𝜋 )3 2  exp{ −𝛼 [( 𝒓 +  𝒓 ′) 2 − 𝒓o − 𝒗o𝑡 ]2 } ∙ 

                                                     ∙ exp⁡{ − i𝑚𝒗o( 𝒓 – 𝒓 ′) ℏ  } .                                                                             (17.6) 

 

This function describes the free particle that started its movement at the point 𝒓o  and continues to move at the speed 

𝒗o . 

In wave representation, the free particle is described by a density matrix of the form 

 

𝜚(𝒌, 𝒌′ ) = exp{ −i ℏ 𝑚 (k−𝒌′ ) } 𝛿{(𝒌 + 𝒌′) 𝟐 − 𝒌o } ,                                              (17.7)  

 

where 𝛿(𝒌)is the Delta-function. 

 

18. Lindblad Equation 

 

A quantum system that is in contact with other systems around it is called an open system. The equation describing 

the state of such a system was discovered by Lindblad:  

 

iℏ𝜕𝜚 𝜕𝑡 = [ 𝐻 𝜚 ] +iℏ𝐷 ,                                                                                                 (18.1) 

 

where 𝜚  is the statistical operator, 𝐻  is the Hamiltonian of the system, and 𝐷  is the dissipative operator, which is 

equal to 

 

𝐷 = 𝐶𝑗𝑘𝑗𝑘 { 2 𝑎 𝑗𝜚 𝑎 𝑘
+ − 𝑎 𝑘

+𝑎 𝑗𝜚 − 𝜚 𝑎 𝑘
+𝑎 𝑗 } ,                                                             (18.2)  

 

𝐶𝑗𝑘  is some matrix, and 𝑎 𝑗  is an unknown operator that still needs to be found. 

The Lindblad equation opens up new possibilities in the future of quantum physics. 

 

19. Equation for density matrix 

 

In [2], the motion of a non-equilibrium quantum system S that is in contact with an equilibrium heat reservoir R 

was considered. the equation for the density matrix 𝜚𝑛𝑛 ′  of the system S was derived 

 

iℏ 𝜕𝜚𝑛𝑛 ′ 𝜕𝑡 =   ( 𝑚 𝐻𝑛𝑚 𝜚𝑚𝑛 ′ − 𝜚𝑛𝑚 𝐻𝑚𝑛 ′ ) +iℏ𝐷𝑛𝑛 ′  ,                                        (19.1) 

 

where 𝐻𝑛𝑚  are the matrix elements of the Hamiltonian 𝐻 , 𝐷𝑛𝑛 ′  is a dissipative matrix that is equal to 
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𝐷𝑛𝑛 ′ =  𝛾𝑛𝑚 ,𝑚 ′ 𝑛 ′ 𝑚  𝑚 ′ 𝜚𝑚𝑚 ′ − 1 2   ( 𝑚 𝛾𝑛𝑚  𝜚𝑚𝑛 ′ +𝜚𝑛𝑚 𝛾𝑚𝑛 ′ )  ,                              (19.2) 

 

𝛾𝑛𝑚 ,𝑚 ′ 𝑛 ′ − some matrix, 

 

𝛾𝑛𝑛 ′ =  𝛾𝑚𝑛 ′ ,𝑛𝑚 𝑚 .                                                                                           (19. 3) 

 

Here the number n denotes the quantum state of the system S in some n-representation. 

 

20. Quantum kinetic equation 

Let it turn out that the density matrix has a diagonal form: 

 

𝜚12= 𝑤1𝛿12  ,                                                                                                    (20.1) 

 

where 𝑤1 = 𝑤𝑛1
 is the probability that system S is in the state 𝑛1, 𝛿12 is the Kronecker symbol. Then equation 

(19.1)  

 

turns into a quantum kinetic equation 

 

𝜕𝑤1 𝜕𝑡 =   {𝑛2
𝑝12𝑤2– 𝑝21𝑤1} ,                                                                                   (20. 2) 

 

where 

 

𝑝12 = 𝑝𝑛𝑚 = 𝛾𝑛𝑚 ,𝑚𝑛 =  2 𝜋 ℏ   |𝑣𝑛𝑁,𝑚𝑀  | 𝑁𝑀
2  𝑊𝑀  𝛿( 𝜀𝑛 − 𝜀𝑚 +𝐸𝑁 − 𝐸𝑀 )         (20. 3) 

 

there is a probability of transition of the system S in a unit of time from the state m to the state n, 

 

𝑊𝑁 = 𝜈exp(− 𝛽𝐸𝑁) 

 

– the probability that the equilibrium system R is in the state N with energy 𝐸𝑁 , ν is the normalizing factor, 

𝛽 = 1 (𝑘B𝑇)  is the inverse temperature of the thermostat; 𝑣𝑛𝑁,𝑚𝑀  is matrix elements of the Hamiltonian of the 

interaction of the system S with the thermostat R. the Formula (20.3) is the Golden rule of Fermi. 

 

21. Connection of dissipative operator and dissipative matrix 

 

Formulas (18.2) and (19.2) establish the relationship between the dissipative operator and the dissipative matrix 

 

𝛾𝑛𝑚 ,𝑚 ′ 𝑛 ′ = 2 𝐶𝑗𝑘𝑗𝑘  𝑎𝑛𝑚 ,𝑗𝑎𝑚 ′ 𝑛 ′ ,𝑘
+ ,                                                        (21.1) 

 

where 𝑎𝑛𝑚 ,𝑗  are matrix elements of the operator 𝑎 𝑗 . 

 

22. Dissipative diffusion and attenuation operators 

 

In [3], two operators were introduced  

 

𝒂 =𝒑 + iℏ𝛽 𝑭 4  ,    𝒃 =𝒓 + iℏ𝛽 𝒑  4 𝑚   ,                                                         (22.1) 

 

where 𝒓 , 𝒑  and F are the coordinate, momentum, and force operators, and m is the mass of the particle. These 

operators are called dissipative diffusion and attenuation operators. Let's put them in the Lindblad equation 
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iℏ𝜕𝜚 𝜕𝑡 = [ 𝐻 𝜚 ] + 

 

+ i𝐷 ℏ { 2𝑎 𝜚 𝑎 + −[ 𝑎 +𝑎  , 𝜚 ]+ } + 

 

+ i𝛾 ℏ { 2𝑏 𝜚 𝑏 + −[ 𝑏 +𝑏  , 𝜚 ]+ } ,                                      (22.2)  

 

where 

 

𝐻 =𝒑 2 (2 𝑚) +𝑈                                                                                                                                                      (22.3) 

 

− the Hamiltonian of a particle, 𝑈  is its potential energy, D is the diffusion coefficient, and 𝛼 = 𝛽 𝛾 is the 

coefficient of friction. We assume that the force and potential energy satisfy the relation 

 

F = −∇U .                                                                                                                                                           (22.4) 

 

Substituting the operators (22.1) in equation (22.2), we get  

 

iℏ𝜕𝜚 𝜕𝑡 = [ 𝐻 𝜚 ]  

 

−i𝐷 ℏ { [𝒑 [ 𝒑 𝜚 ] ] +iℏ𝛽 2 [ 𝒑 [ 𝑭 𝜚 ]+ ]+ (ℏ 𝛽 4 )2[ 𝑭 [ 𝑭 𝜚 ] ] } − 

 

− i 𝛾 ℏ { [𝒓 [ 𝒓 𝜚 ] ] +iℏ𝛽 (2  m) [ 𝒓 [ 𝒑 𝜚 ]+ ] + ℏ 𝛽 (4 𝑚   }2[ 𝒑 [ 𝒑 𝜚 ] ] } .                                              (22.5) 

 

In this equation, we discard the summands containing 𝛽2. To do this, add operators  

 

𝒂 1=−iℏ𝛽 𝑭 4  ,       𝒃 1=−iℏ𝛽 𝒑 (4 𝑚) . 

 

Then equation (22.5) takes the form 

 

iℏ𝜕𝜚 𝜕𝑡 = [ 𝐻 𝜚 ]                                                                                                                                                    (22.6) 

 

−i𝐷 ℏ { [𝒑 [ 𝒑 𝜚 ] ] +iℏ𝛽 2 [ 𝒑 [ 𝑭 𝜚 ]+ ]} − 

 

− i 𝛾 ℏ { [𝒓 [ 𝒓 𝜚 ] ] +iℏ𝛽 (2  m) [ 𝒓 [ 𝒑 𝜚 ]+ ]} . 

 

 

23. Equation for density matrix in coordinate representation 

 

The coordinate representation is characterized by operators  

 

𝒓 = 𝒓,   𝒑 = −iℏ∇ . 

 

In this representation, equation (22.5) takes the form  

 

iℏ𝜕𝜚 𝜕𝑡 =−ℏ2 (2 𝑚)  ( ∇2 − ∇ ′ 2
)𝜚+( U− U ′ ) 𝜚 + 

 

+ iℏ 𝐷{ (∇ + ∇ ′)2𝜚 − 𝛽 2  ( ∇ + ∇ ′ ) ( F + 𝑭 ′ )𝜚 } − 

 

− i 𝛾 ℏ { (𝒓 − 𝒓 ′)2𝜚 + ℏ𝟐 𝛽 (2  m) ( 𝒓 − 𝒓 ′ ) ( ∇ − ∇ ′ ) 𝜚} ,                      (23.1)       

 

where 𝜚=𝜚( t, r, 𝒓 ′ ) . 
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24. Quantum equation for density matrix and Wigner equation 

 

To understand the meaning of dissipative operators, we write equation (23.1) for the Wigner function 

 

w(t, r, p) =1 (2 𝜋 ℏ)3  𝜚(t, r + 𝒓′ 2 , r −𝒓′ 2 ) exp( − i p 𝒓′ ℏ ) d𝒓′ ,                       (24.1) 

 

which is the quantum analog of the classical distribution function. Using the function (24.1), we find that for F = 

const we have the equation  

 

𝜕𝑤 𝜕𝑡 = −𝒑 𝑚 ∇𝑤 –F∇𝒑w +                                                                                                                    (24.2) 

D(∇ − 𝛽F )w +𝛾∇𝒑 ( ∇𝒑 +  𝛽 𝑚 𝒑)w , 

 

This equation is the Fokker −Planck equation for a Brownian particle. This establishes the relationship between 

the quantum equation (22.6) and the classical statistical equation (24.2). 

 

25. Equation for system of identical particles 

 

In [4], an equation was derived for the density matrix 𝜚𝑛𝑛 ′ (t), which describes the behavior of a system of identical 

particles. Based on the statistical operator of this system, a hierarchical sequence of operators 𝜚 (1), 𝜚 (2), … and so 

on can be constructed [5, 6]. The operator 𝜚 (1) has a trace equal to the number N particles in the system: 

 

Tr 𝜚 (1) =N .                                                                                      (25.1) 

 

        The main property of the operator 𝜚 (2) can only be written if it is expressed in terms of the corresponding 

density matrix 

 

𝜚(𝛼1 , 𝛼2;  𝛼1
′ , 𝛼2

′ )≡ 𝜚𝛼1 ,𝛼2; 𝛼1
′ ,𝛼2

′ ≡ 𝜚12,1′ 2′ . 

 

Here the value α is a quantum variable that characterizes the state of a single particle in some representation. For 

example, in the coordinate representation, the value of α is equal to the sum of four numbers: 𝛼 = {x, y, z,𝜉}, where 

ξ is the spin of the particle. For particles that are either bosons or fermions, this property looks like this   

 

𝜚12,1′ 2′ = ±𝜚21,1′ 2′ = ±𝜚12,2′ 1′ = 𝜚21,2′ 1′ .                                                   (25.2) 

 

Here the sign + corresponds to bosons, and the sign −to fermions. If we are interested in only one density matrix 

𝜚11′ , then the second density matrix will be: 

 

𝜚12,1′ 2′ ≅ 𝜚11′ 𝜚22′ ± 𝜚12′ 𝜚21′ .                                                                      (25.3) 

 

This matrix will exactly satisfy the relation (25.2). 

         The simplest and most common type of Hamiltonian of a system of many particles consists of two terms: the 

operator 𝐻 (1) of one particle and the operator 𝐻 (2) of two particles that interact with each other. Now we can write 

an expression for the average energy of a system of identical particles 

 

E  =  𝐻𝛼𝛼 ′𝛼𝛼 ′ 𝜚𝛼 ′ 𝛼+ 1 2  𝐻𝛼1𝛼2 ,𝛼1
′ 𝛼2

′ {𝛼} 𝜚𝛼1
′ 𝛼2

′ ,𝛼1𝛼2
,                              (25.4) 

 

where{𝛼} = 𝛼1,   𝛼2, 𝛼1,   
′ 𝛼2

′  , 𝐻𝛼𝛼 ′  and 𝐻𝛼1𝛼2 ,𝛼1
′ 𝛼2

′  are matrix elements of the operators 𝐻 (1) and 𝐻 (2). The matrix 

elements 𝐻𝛼𝛼 ′  are equal to  
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𝐻𝛼𝛼 ′ (t) = 𝜑𝛼
∗ (q, t) 𝐻 (1)(q, t) 𝜑𝛼 ′ (q, t) dq .                                              (25.5) 

 

Matrix element  

 

𝐻𝛼1𝛼2 ,𝛼1
′ 𝛼2

′ ≡ 𝐻12,1′ 2′  

 

of the Hamiltonian 𝐻 (2), the interactions of two particles must satisfy the equalities: 

 

𝐻12,1′ 2′ = ±𝐻21,1′ 2′ = ±𝐻12,2′ 1′ = 𝐻21,2′ 1′ .                                    (25.6) 

 

By analogy with the formula (25.5), the formula will be valid  

 

𝐻𝛼1𝛼2 ,𝛼1
′ 𝛼2

′ =  𝛷𝛼1𝛼2
∗ (𝑞1, 𝑞2) 𝐻 (2)𝛷𝛼1

′ 𝛼2
′  𝑞1 , 𝑞2 d𝑞1 d𝑞2 .                       (25.7) 

 

In order for these matrix elements to obey the conditions (25.6), the function 𝛷𝛼1𝛼2
 𝑞1 , 𝑞2  must be a Slater 

function: 

 

𝛷𝛼1𝛼2
 𝑞1 , 𝑞2 = 1  2 { 𝜑𝛼1

(𝑞1, 𝑡)𝜑𝛼2
(𝑞2, 𝑡) ± 𝜑𝛼1

(𝑞2 , 𝑡)𝜑𝛼2
(𝑞1, 𝑡)} . 

 

Substituting the approximate expression (25.3) into the formula (25.4), taking into account the property (25.6) of 

matrix elements of the Hamiltonian 𝐻 (2), we have 

 

E =  𝐻𝛼𝛼 ′𝛼𝛼 ′ 𝜚𝛼 ′ 𝛼+ 𝐻𝛼1𝛼2 ,𝛼1
′ 𝛼2

′ {𝛼} 𝜚𝛼1
′ 𝛼1

𝜚𝛼2
′ 𝛼2

 .                         (25.8) 

 

It is not difficult to prove that  

 

  [𝑛2𝑛3𝑛4
𝐻12,34𝜚43 21′ ] ≅2   [𝑛2𝑛3𝑛4

𝐻12,34 , 𝜚42𝜚31′  ] .                                 (25.9) 

 

        Now you can write the desired equation for the density matrix 

 

iℏ 𝜕𝜚11′ 𝜕𝑡 =  [𝑛2
𝐻12𝜚21′  ]+  [𝑛2𝑛3𝑛4

𝐻12,34  , 𝜚42𝜚31′ ] + 

 

+iℏ 2   (𝑛2𝑛3
 2 𝛾12,31′ 𝜚23 − 𝛾23,12𝜚31′ − 𝛾31′ ,23𝜚12  ) + 

 

+i ℏ   {𝑛2𝑛3𝑛4
(𝜚14𝜚23 ± 𝜚24𝜚13) 𝛾34,21′ − 𝛾34,12  (𝜚24𝜚1′ 3 ± 𝜚1′ 4𝜚23) + 

 

+𝛾12,43(𝜚32𝜚41′ ± 𝜚42𝜚31′ ) − ( 𝜚31𝜚42 ± 𝜚41𝜚32) 𝛾21′ ,43} .                    (25.10)  

 

         In some representation the density matrix has a diagonal form:  

 

𝜚12=𝑤1𝛿12  . 

 

Substituting this matrix into equation (25.10) turns it into a quantum kinetic equation for 𝑛2=𝑛1 

 

                                                  𝜕𝑤1 𝜕𝑡 =  {𝑛2
𝑝12𝑤2( 1±𝑤1) −𝑝21𝑤1( 1 ±𝑤2) } ,                                                   (25.11) 

 

where 𝑝12= 𝛾12,21  is the probability of the particle passing from the state 𝑛2 to the state𝑛1 in a unit of time.  

 

26. Variation principle 
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When a quantum system is in an equilibrium state, the law that characterizes this state can be found using 

the variational principle. To do this, you need to know the energy of the system and its entropy. We only 

know one approximate expression for entropy, which is valid only in the case of a diagonal density matrix: 

 

S = −𝑘B   { (𝒌 1– 𝑤𝒌)ln ( 1− 𝑤𝒌)+𝑤𝒌ln𝑤𝒌} .                            (26.1) 

 

Therefore, the energy of the system must also be diagonal. But the energy of the system, as usual, is recorded in the 

coordinate representation. You need to find a unitary matrix, which is used to transfer energy from the coordinate 

views in diagonal:   

 

E =  𝜀𝑘𝒌 𝑤𝒌+1 2  𝜀𝒌𝒌′𝒌𝒌′ 𝑤𝒌𝑤𝒌′  ,                                                   (26.2) 

 

where 𝜀𝒌 is the kinetic energy of one particle, 𝜀𝒌𝒌′  is the interaction energy of two particles. 

         Next, the variational principle allows you to write the equation for the probability of the state 𝑤𝒌. The 

variational principle begins with the thermodynamic potential 

 

                                                                     𝛺 = E − S T − 𝜇N ,                                                                          (26.3) 

 

where T is the absolute temperature and μ is the chemical potential. The number of N particles is related to the 

probability 𝑤𝒌 by the equality 

 

N=  𝑤𝒌𝒌 .                                                                                        (26.4) 

 

          In our case, the thermodynamic potential is a function of 𝑤𝒌: 

 

                                                                       𝛺 = 𝛺(𝑤𝒌) . 

 

By differentiating this function by probability and equating the derivative to zero, 

we get the equations for the desired function:   

 

ln  [ ( 1 −  𝑤𝒌) 𝑤𝒌 ] =β (𝜀𝒌 +  𝜀𝑘𝑘 ′𝑘 ′ 𝑤𝑘 ′ −  𝜇 ) .                                               (26.5) 

 

27. Superconductivity 

 

Unfortunately, it is not possible to solve equation (26.5), unless we accept an approximate  

formula for the energy 𝜀𝒌𝒌′  of the interaction of two electrons:  

 

𝜀𝒌𝒌′ = 𝐼 𝛿𝒌 + 𝒌′ − 𝐽𝛿𝒌 − 𝒌′ ,                                                                            (27.1) 

 

where I and J are positive constants. Substitute the formula (27.1) in the formula (26.2). After  

simple transformations we get 

 

E =  { 𝜀𝑘𝑘 𝑤𝑘+1 2  ( 𝐼𝑤𝑘𝑤− 𝑘 − 𝐽𝑤𝑘
2) } ,                                                      (27.2) 

 

and putting the formula (27.1) in equation (26.5) gives 

 

ln  [ ( 1 −  𝑤𝒌) 𝑤𝒌 ] =β (𝜀𝒌 + 𝐼𝑤− 𝑘 − 𝐽 𝑤𝒌 −  𝜇 ) .                                                                     (27.3) 

 

Solving this equation on a computer allows us to explain all the phenomena that have been discovered in 

superconductivity [5].  
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28. Conclusion 

 

New theories from quantum physics based on the statistical operator and density matrix are presented in [6]. Here 

are some of these theories: superconductivity and superfluidity theories, laser theory and the theory of calculating 

the energy levels of an arbitrary atom, the theory of the oscillator density matrix, and the derivation of the 

Heisenberg relation. A new theory of ball lightning is presented in [7]. 
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New theories in quantum physics 

 

I take the liberty of listing new theories in quantum physics that I have published in various scientific journals over 

the course of my long life. All these theories are based on the well-known mathematical principles of quantum 

mechanics. The core of these theories were the statistical operator and the density matrix. 

 

        1. Correlation theory of bimolecular reactions in solids. Bondarev B. V. Correlation theory of solid-phase 

reaction kinetics, Kinetics and catalysis, 1982, v. 23, № 2, p. 334-339. 

        2. Dissipative diffusion and attenuation operators were introduced. How I came up with it these two operators, 

I don't remember. I think it was God who chose me as his Minister. But even then Lindblad wrote down his 

equation. He assigned the operator 𝐷  to the Liouville – von Neumann equation in its most General form without 

conclusion. So I substituted my diffusion and attenuation operators into this General expression for the operator 

𝐷 and deduced that the quantum Lindblad equation goes into the Fokker – Planck equation for probability, which 

describes the motion of a Brownian particle. This was how quantum theory was linked to classical statistical 

physics.  

Bondarev B.V. Quantum Markovian master equation for a system of identical particles interacting with a heat 

reservoir, Physica A, 1991, v. 176, № 2, p. 366-386.  

         3. An equation for the density matrix was derived from the Liouville – von Neumann equation. Bondarev B. 

V. Derivation of the quantum kinetic equation from the Liouville – von Neumann equation, TMF, 1994, v. 100, № 

1, p. 33-43. 

           4. A new theory of superconductivity. Bondarev B. V. On some features of the electron distribution function 

for Bloch States. Bulletin of the MAI, 1996, v. 3, №2, p. 56-65. 

        5. A new theory of superfluidity. Bondarev B. V. Application of the variational density matrix method for 

describing the thermodynamic properties of a quantum Bose gas, Vestnik MAI, 1998, v. 5, № 2, p. 53-60. 

         6. A new theory of the quantum oscillator. Dissipative matrix. Bondarev B.V. Lindblad Equation for 

Harmonic Oscillator. Uncertainty Relation Depending on Temperature, Applied Mathematics, 2017, v. 8, p. 1529-

1538. 

          7. A new theory for calculating the energy levels of electrons in an arbitrary atom. Bondarev B.V. Density 

Matrix Method in Theory of Atom. Advanced Materials. Springer. 2018, v. 207, p. 145-159. 
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          8. A new theory of the laser. Bondarev B.V. New theory of laser. Method of density matrix. Advanced 

Materials. Springer. 2019, v. 224, p. 163. 

           9. A new theory for the density matrix of a quantum oscillator, when a dissipative attenuation operator is 

inserted into the Lindblad equation. Calculations show that the average value of the coordinate exactly satisfies the 

differential equation of damped oscillations. Bondarev B. V. Method of density matrices in the theory of quantum 

oscillator. Dissipative matrix. Scientific discussion, 2018, v. 1, № 19, p. 52-55. 

          10. A new theory of the equation for the density matrix of a system of identical particles. 

Bondarev B.V. Equation for the density matrix of the system of identical particles. Advanced Materials. Springer. 

2020, p. 141. 

          11. A new theory LED. Bondarev B. V. method of density matrices in quantum LED theory.  Scientific 

discussion, 2019, v. 1, № 31, p. 43-50. 

         12. A new theory of ball lightning.Bondarev B.V.  Ball lightning. Density matrix method. Scientific 

discussion, 2019, v. 1, № 38, p. 37-44. 

         13. A new spaser theory.Bondarev B.V. Spaser's quantum theory. Method of density matrix. Scientific 

discussion, 2020, v. 1, № 41. p. 21-27. 

         14. A new theory of graphene. Bondarev B.V. Method of density matrix. Quantum theory of graphene. 

Superconductivity. Scientific discussion, 2020, v. 1, № 42. p. 6-12 

15. A new theory of nuclear forces. Bondarev B.V. Equation for the statistical operator and the state of nucleons in 

the atomic nucleus. Scientific discussion, 2020, v. 1, № 46. p. 34-41. 

These theories begin a new stage in the development of quantum physics. which will be taken over by new young 

physicists. I wish you good luck. 

 


