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Abstract

One of the most important features of the analytic function is the ability to build it by
knowing its zeros.
In this work we display a point by point think about of how to build the entire function using
the roots with detailed mathematical proof.
The Detailed study of entire representation is given.
The roots of this entire theta function and there action are highlighted.
The number of the roots of Study function is same the dimension of the finite space and char-
acterize it.
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1. Introduction

The analytic function is very important and has been presented in many studies and has multiple uses
in mathematics and physics [1, 2, 3, 15, 16, 17].
This present work sheds light on the entire function in the finite quantum spaces.
Here we center on the roots of our function and there activity.
We studied the the ability to build it by knowing the roots and we have provided extensive evidence for this.
[13] has been examined the movement of the zeros and the behavior of there curves. Ref [12, 13] has consid-
ered the analytic theta functions.
By Knowing the roots, we know the dimension of study space.
Ref [13] has been examined the properties of the roots.
Ref. [15, 14] have Created the entire function using the knowing roots.
We expect that the roots are known, and that they fulfill Eq. (9).
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Or we assume that we have D− 1 roots and we calculate the unknown root using Eq. (9).
We proved that the entire representation have obtained by the roots.

2 The entire theta functions

We consider the limited dimension vector space H with dimension D.
And we define the momentum states Mg〉 as

|Mj〉 = F|Pj〉 = D−1/2
∑
l

(exp

[
i
2πj

D

]
)|Pl〉, (1)

where Pj is the position states with j is integer in D, and F is the Fourier operator which defined as

F =
1√
D

∑
j

∑
l

(e(i(2πj)/(D)))|Pj〉〈Pl|. (2)

Consider the state

F =
∑
j

FjPj ; , (3)

with property: ∑
j

|Fj |2 = 1; , (4)

Ref [12, 13] represented the entire representations of limited dimension vector space as following: Consider
the state F of Eq.(3), with entire theta function

f(z) =
1√√
π

D−1∑
j=0

Fjϑ3[πjD−1 − z
√

π

2D
; iD−1] (5)

with the periodicity property, meaning that the function after one period ρ =
√

2πD the function repeat its
value:

f [z + ρ] = f(z), (6)

In addition to the property

f [z + iρ] = f(z) exp [πD− iρz] (7)

Here ϑ3 is the Jacobean Theta function:

ϑ3(u, τ) =

∞∑
n=−∞

exp(iπτn2 + i2nu). (8)

This entire function f(z) is defined on a Rectangular area

With the condition :

D∑
n=1

zn = (2π)1/2D3/2(s+ ih) +
(π

2

)1/2
D3/2(1 + i), (9)

where s, h are integers.
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2.1 Special inner product

2−1/2π−1
1

π
√

2
D−3/2

∫
S

d2z exp
(
−z2I

)
Θ3[πlD−1 − z

√
π

D
π1/2(2D)−1/2; iD−1]

× Θ3[πjD−1 − z∗
√
π

D
; i
i

D
] = δ(j, l), (10)

where δ(j, l) is Dirac delta function defined as

δ(j, l) =

{
0 j 6= l

1 j = l
, (11)

(12)

Follows from the ref. [15, 13]. We introduce the proof:

2.2 Proof

We start with the definition of Theta function:

Θ3(u; τ) =

∞∑
n=−∞

exp(iπτn2 + i2nu), (13)

Put

Ŗ = 2−1/2π−1D−3/2
∫
S

d2z exp
(
−z2I

)
Θ3[πnD−1 − z

√
π

D
; iD−1]

× Θ3[πmD−1 − z∗
√
π

D
; i
i

D
], (14)

and

Ŕ =

∫ √(2πD)

0

dzRe

[
−i
√

( 2π
D (k+`)zR

]
=
√
2πDδ(k,−`)

(15)

Hence

Ŗ =
1

π
√

2D3

∑
k,`

e[
i2π(km+`n)

D ]Ŕ

×
∫ √(2πD)

0

dzI exp

[
−z2I +

√
2π

D
(k − `)zI −

( π
D

)
(k2 + `2)

]
; (16)

We substitute Eq. (15) into the Eq. (16)

Ŗ =
1

D
√
π

∞∑
k=−∞

exp

[
i2πk(m− n)

D

]

×
∫ √(2πD)

0

dzI exp

−
[
zI −

√
2π

D
k

]2 (17)
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from the periodicity we get

Ŗ =
1

D
√
π

D−1∑
k=0

e

[
i2πk0(m−n)

D

]

×
∞∑

k=−∞

∫ √2πD

0

dzIe

{
−
[
zI−
√

2π
D (kD+k0)

]2}
. (18)

Now it is easy to get

∞∑
k=−∞

∫ √2πD

0

dzI exp

−
[
zI −

√
2π

D
(kD + k0)

]2

=

∫ ∞
−∞

dzIe

{
−
[
zI−
√

2π
D k0

]2}
=
√
π. (19)

Now

Ŗ =
1√
π
D−1

D−1∑
k=0

e

[
i2πk0(m−n)

D

]√
π

= D−1
D−1∑
k=0

e

[
i2πk0(m−n)

D

]

= δ(j, l)

Ref[15, 13] has been used that to prove:

Fj =
1√

2D3
√
π3

×
∫
S

D2ze(−z
2
I)Θ3[

πj

D
− z
√
π

D
;
i

D
] f(z∗) (20)

2.3 The roots of the entire Representation

Consider an entire theta function and its roots Zn,
In order to study this function and know its properties, it is sufficient to study its zeros.
Also, to know the finite vector space of a study function, it suffices to know its roots and study its motion.

These roots give a Sufficient definition for the limited dimension vector space.
By knowing the number of roots of the theta function we know the dimension of the limited dimension vector
space.
The movement of these roots over the time has been studied.
The sum of these roots is equal:

D∑
n=1

Zn =
√

2πD3(s+ ih) +

√
π

2
D3(1 + i).

14



M. Tabuni

3 Development of the entire representation using the roots

One of the most amazing properties of the study function is that it can be formed from its roots.
Ref. [15, 14] have created the study function from its roots. Let’s say the D roots Zn are known, and that
they fulfill Eq. (9). Or we assume that one of these roots is unknown and we get it using the Eq. (9)

The entire theta function f(z) is defined as following

f(z) = Xe

[
−i
√

2π
D hz

] D∏
n=1

θ

[√
π

2D
(z − ζn) +

π(1 + i)

2
; i

]
; (21)

where h ∈ Z in Eq. (9), and X is a consistent fufill the eq4.

3.1 Proof

We can prove the equality of Eqs. (5) and (21) as following.
We consider the identity

∞∑
m=−∞

xm
2

z2m =

∞∏
n=1

(1− x2n)(1 + x2n−1z2)(1 + x2n−1z−2) (22)

The Jacobi Theta functions is defined as

ϑ(z; τ) =

∞∑
m=−∞

exp(iπτm2 + i2mz), (23)

=

∞∑
m=−∞

(
eiπτ

)m2 (
eiz
)2m

, (24)

=

∞∏
n=1

(1− (eiπτ )2n)(1 + (eiπτ )2n−1(eiz)2)(1 + (eiπτ )2n−1(eiz)−2). (25)

We now consider the function

ϑ3((z − zj + ω)

√
π

2D
; i) =

∞∑
m=−∞

exp

(
iπim2 + 2mi(z − zj + ω)

√
π

2D

)
, (26)

=
∞∑

m=−∞

(
e−π

)m2 (
eiz
√

2π
D

)2m (
e−i(zj−ω)

√
π

2D

)2m
. (27)

Let

x = e−π; y = exp

[
−i
(

2π

D

)1/2

z

]
; bj = (zj − ω)

( π

2D

)1/2
. (28)

Then Eq. (26) is rewritten as

h(y) =

∞∏
n=1

(1− x2n)(1 + x2n−1y−1e−2bji)(1 + x2n−1ye2ibj ). (29)

We define

F (y) =

∞∏
n=1

(1 + x2n−1ye2bji)(1 +
x2n−1

ye2ibj
), (30)

= (1 + xye2ibj )(1 +
x

ye2ibj
)(1 + x3ye2ibj )(1 +

x3

ye2ibj
)(1 + x5ye2ibj )(1 +

x5

ye2ibj
)...
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F (x2y) = (1 + x3ye2ibj )(1 +
1

xye2ibj
)(1 + x5ye2ibj )(1 +

x

ye2ibj
)(1 + x7ye2ibj )(1 +

x3

ye2ibj
)...

F (x2y)

F (y)
= (1 +

1

xye2ibj
)(

1

1 + xye2ibj
),

=
xye2ibj + 1

xye2ibj
1

1 + xye2ibj
,

=
1

xye2ibj
,

F (y) = xye2ibjF (x2y). (31)

It is easily seen that

h(y) = F (y)

∞∏
n=1

(1− x2n), (32)

and

h(x2y) = F (x2y)

∞∏
n=1

(1− x2n). (33)

From Eq. (31), we see

h(x2y) =
F (y)

xye2ibj

∞∏
n=1

(1− x2n) =
h(y)

xye2ibj

h(y) = xye2ibjh(x2y). (34)

Then Eq. (21) is rewritten as

g(y) = cyN
D∏
j=1

∞∏
n=1

(1 + x2n−1y−1e−2bji)(1 + x2n−1ye2bji), (35)

= cyN
D∏
j=1

h(y). (36)

g(x2y) = cx2NyN
D∏
j=1

h(x2y), (37)

from Eq. (34) we get

= cx2NyN
D∏
j=1

x−1y−1e−2ibjh(y), (38)

= x−Dy−Dx2N
D∏
j=1

e−2ibjg(y);

where
D∏
j=1

e−2ibj = x−2N ,
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g(x2y) = x−Dy−Dg(y). (39)

Expand g in a Laurent Series:

g(y) =

∞∑
n=−∞

any
n, (40)

∞∑
n=−∞

any
n = xDyD

∞∑
n=−∞

an(x2y)n =

∞∑
n=−∞

anx
2n+Dyn+D, (41)

This can be re-indexed with n′ = n−D on the left side of Eq. (41) to get

∞∑
n=−∞

any
n =

∞∑
n=−∞

anx
2n−Dyn, (42)

an = an−Dx
2n−D, (43)

so
aD = a0x

D;

aD+1 = x2(D+1)−DaD+1−D = xD+2a1;

a2D = x2(2D)−Da2D−D = x3DaD = x3D(a0x
D) = x4Da0;

a2D+1 = x2(2D+1)−Da2D+1−D = x3D+2−DaD + 1 = x3D+2−D(xD+2a1) = x4D+Da1.

Therefore

akD+j = (x)
(k2D+2kj) aj ; j = 0, ...,D− 1. (44)

On the other hand, we consider Eq. (5),

f(z) = π
−1
4

D−1∑
m=0

fmϑ3(
πm

D
− z
√

π

2D
;
i

D
)

= π
−1
4

D−1∑
m=0

fm

∞∑
n=−∞

(e−π)
n2

D exp

(
inmπ

D

)
exp

(
−i2nz

√
π

2D

)
, (45)

Let

x = exp(−π); y = exp

(
−i2z

√
π

2D

)
Then Eq. (45) is rewritten as

g′(y) = π
−1
4

D−1∑
m=0

∞∑
n=−∞

x
n2

D yne(
i2nmπ

D )fm, (46)

= π
−1
4

∞∑
n=−∞

(x)
n2/D

yn
D−1∑
m=0

fmexp

(
2πimn

D

)
, (47)
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= π
−1
4

∞∑
n=−∞

(x)
n2/D

ynf̃n, (48)

=

∞∑
n=−∞

(
π

−1
4 (x)

n2/D
f̃n

)
yn, (49)

If we let

an = π
−1
4 (x)

n2/D
f̃n, (50)

Eq. (43) is satisfied,
and therefore g(y) = g′(y). The equality of Eq. (5) and Eq. (21) is proved.

Presently we will get the values of Fm by Take advantage from the Eq. (20).
By substitution the values of roots in the equation

f(zn) =
1√√
π

D−1∑
m=0

Fm θ[
πm

D
− zn

√
π

D
;
i

D
].o

(51)

Now we have a linear system of D equations and D variables,
by solving this system we get the coefficients.

4 Conclusion

This study presents an analysis of the importance of roots of the entire function.
These roots give a Sufficient definition for the limited dimension vector space.
By knowing the number of roots of the entire function we know the dimension of the limited dimension
vector space.
The movement of these roots over the time has been studied.
The function has been built from its zeros.
A good and detailed proof has been provided.
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