On the vanishing of the cohomology of stable C^{*}-algebras

Yousif Abdullah Alrashidi
The Higher Institute of Telecommunications and Navigation
PAAET, Kuwait

Received: April 25, 2021; Accepted: May 20, 2021; Published: June 3, 2021

Abstract

Cite this article: Alrashidi, Y. (2021). On the vanishing of the cohomology of stable C*- algebras. Journal of Progressive Research in Mathematics, 18(2), 39-44. Retrieved from http://scitecresearch.com/journals/index.php/jprm/article/view/2048.

Abstract

. We concerned with the vanishing of the dihedral and reflexive cohomology groups of stable C^{*}-algebra. Wodzicki has proved that, the cyclic cohomology of stable C^{*}-algebra is vanished. We extend this fact to prove that the reflexive and dihedral cohomology of this class are also vanish.

Key words: Dihedral homology - Stable algebras - C ${ }^{*}$-algebra -cohomology.
Mathematics Subject Classification: 55Q05, 57Q10

1- Introduction.

There are many studies interested in vanishing the cohomology group of operator algebras. For example, thethird cohomology group $H^{3}\left(l^{1}\left(Z_{+}\right), l^{1}\left(Z_{+}\right)^{`}\right)=0$ where $l^{1}\left(Z_{+}\right)$is a unital semi-group algebra of N [15], also the third cyclic cohomology group $H C^{3}\left(I, I^{`}\right)=0$ where I is a nonunital Banach algebra $l^{1}(Z)$ [15]. The dihedral cohomology ${ }^{\varepsilon} H D^{n}(A)=0, n \in N, \mathrm{n}$ is odd, $\varepsilon= \pm 1$, where A is biflat algebra [4]. The class of algebra called Amenable algebras, that, is all continuous derivation from an algebra A into A-bimodule M are inner, is a good result of the vanishing of the I-St.dimensional cohomology of a Banach algebra A, with coefficient in A bimodule M [8]. If A is a C^{*}-algebra without bounded traces or a nuclear C^{*}-algebra, the Hochschild and dihedral cohomology groups vanish ([12],[13]).
In the paper we study the vanishing cohomology groups (Reflexive and Dihedral) of some classes of C^{*}-algebra and give examples of nontrivial dihedral cohomology groups of a commutative Banach algebra under special condition.

2- Dihedral (Co)homology of operator algebra.

We recall the definition properties of Banach algebra and its homology from[1],[3] and [11]. Let A be a unital Banach algebra over a commutative ring $k(k=\mathbb{C})$. A complex $C(A)=\left(C^{*}(A), b_{*}\right)$, where $C_{n}(A)=A \otimes$ $\ldots \otimes A$ is the tensor product of algebra ($n+1$ times) and, $b_{*}: C_{n}(A) \rightarrow C_{n-1}(A)$ is the boundary operator

$$
b_{n}\left(a_{*} \otimes \ldots \otimes a_{n}\right)=\sum_{i=0}^{n-1}(-1)^{i} a_{0} \otimes . . \otimes a_{i} \mathrm{a}_{\mathrm{i}-1} \otimes . . \otimes \mathrm{a}_{\mathrm{n}-1}
$$

It is well known that $b_{n-1} b_{n}=0$, and hence $\operatorname{ker}_{n} \supset I m b_{n+1}$.
$H_{n}(A)=H(C(A))=\frac{\operatorname{ker} b_{n}}{\operatorname{Im} b_{n-1}}$
Is called the Hochschild homology of unital Banach algebras A with involutive and denote by $\left(H H_{*}(A)\right)$.
If A is an unital Banach algebras, one acts on the complex $C(A)$, by the cyclic group of order $(n+1)$ by means of the operator $t_{n}: C_{n}(A) \rightarrow C_{n}(A)$

$$
t_{n}\left(a_{0} \otimes \ldots \otimes a_{n}\right)=(-1)^{n} a_{n} \otimes a_{0} \otimes \ldots \otimes a_{n-1}
$$

The quotient complex $C C_{n}(A)=\frac{C_{n}(A)}{\operatorname{Im}\left(1-t_{n}\right)}$ is a subcomplex of a complex $C C_{*}(A)$.

Consider the chain complex $\mathrm{CC}_{*}(\mathrm{~A})=\left(C \mathcal{H}_{\bullet}(A), b_{\bullet}\right)$ and the Connes-Tsygan bicomplex $C C_{*}(A)$ (see [5]). Then the subcomplex $\left(\operatorname{ker}\left(1-t_{\bullet}\right), b_{\bullet}\right) \subset\left(C \mathcal{H}_{\bullet}(A), b_{\bullet}\right)$ has the same homology as the complex $\left(C C_{\bullet}(A), b_{\bullet}\right)$, that is

$$
\begin{align*}
\mathcal{H}_{\bullet}\left(C C_{\bullet}(A)\right. & \left.\left.=\mathcal{H}_{\bullet}\left(C H_{\bullet}(A), b_{\bullet}\right) / \operatorname{Im}\left(1-t_{\bullet}\right)\right)=\mathcal{H}_{\bullet}\left(C H_{\bullet}(A), b_{\bullet}\right) / \operatorname{Ker} N\right) \\
& =\mathcal{H}_{\bullet}\left(\operatorname{Im} N, b_{\bullet}\right)=\mathcal{H}_{\bullet}\left(\operatorname{Ker}\left(1-t_{\bullet}\right), b_{\bullet}\right), \tag{2}
\end{align*}
$$

where

$$
\begin{gathered}
C H_{n}(A)=A^{\otimes n+1}=A \otimes \ldots \otimes A(n+1 \text { times }), \\
b_{n}, b_{n}^{\prime}: C H_{n}(A) \rightarrow C H_{n-1}(A),
\end{gathered}
$$

Such that:

$$
\begin{gathered}
\grave{b_{n}}\left(a_{0} \otimes \ldots \otimes a_{n}\right)=\sum_{i=0}^{n-1}(-1)^{i}\left(a_{0} \otimes \ldots \otimes a_{i} a_{i+1} \otimes \ldots \otimes a_{n}\right), \\
b_{n}\left(a_{0} \otimes \ldots \otimes a_{n}\right)=b_{n}^{\grave{ }}+(-1)^{n}\left(a_{n} a \otimes \ldots \otimes a_{n-1}\right), \\
t_{n}: C H_{n}(A) \rightarrow C H_{n}(A),
\end{gathered}
$$

Such that $t_{n}\left(a_{0} \otimes \ldots \otimes a_{n}\right)=(-1)^{n}\left(a_{n} \otimes a_{0} \otimes \ldots \otimes a_{n-1}\right)$ and $N_{n}=1=t_{n}^{1}+\ldots+t_{n}^{n}$.
Therefore, the complex $\left(\operatorname{ker}\left(1-t_{\mathbf{0}}\right), b_{\mathbf{\prime}}\right)$ is isomorphic to complex $\left(C C .(A), b_{\mathbf{0}}\right)$. The isomorphism between them is given by the operator $N_{\bullet}: C C_{\mathbf{\bullet}}(A) \rightarrow\left(\operatorname{ker}\left(1-t_{\bullet}\right), b_{\bullet}\right)$. Consequently, the action of the group $\mathbb{Z} / 2$ on the complex $C C_{\bullet}(A)$, by means of the operator ${ }^{\varepsilon} h$ is equal to action of $\mathbb{Z} / 2$ on the complex $\left(\operatorname{ker}\left(1-t_{\bullet}\right), b_{\bullet}\right)$ by means of the operator

$$
{ }^{\varepsilon} r: a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n} \rightarrow(-1)^{\frac{n(n+1)}{2}} \varepsilon a_{n}^{*} \otimes a_{n-1}^{*} \otimes \ldots \otimes a_{0}^{*}
$$

where a^{*} is the image of element in $a \in A$ under involution $*: A \rightarrow A, \varepsilon= \pm 1$. Since $\quad{ }^{\varepsilon} h_{.} t_{\bullet}=t_{0}{ }^{-1} \quad{ }^{\varepsilon} h$. then we have $N_{0}\left({ }^{\varepsilon} h\right)=\left(\varepsilon^{\varepsilon} h_{.}\right) N_{0}$.

On the other hand, since ${ }^{\varepsilon} r_{\bullet}=t_{\bullet}{ }^{\varepsilon} h_{\bullet}$ then

$$
{ }^{\varepsilon} h_{\bullet} N_{\bullet}=N_{\bullet} \quad{ }^{\varepsilon} h_{\bullet}=\left(N_{0} t_{\bullet}\right) \quad{ }^{\varepsilon} h_{\bullet}=N_{\bullet}\left(t_{\bullet}{ }^{\varepsilon} h_{\bullet}\right)=N_{\bullet} \quad{ }^{\varepsilon} r_{\bullet} .
$$

So, the dihedral homology of A is given by formula:

$$
\begin{equation*}
\varepsilon H D_{.}(A)=H_{\mathbf{\bullet}}\left(\operatorname{ker}\left(1-t_{\mathbf{\bullet}}\right) /\left(\operatorname{Im}\left(1-{ }^{\varepsilon} h_{\bullet}\right) \cap \operatorname{ker}\left(1-t_{.}\right)\right)\right) . \tag{3}
\end{equation*}
$$

For a commutative unital Banach algebra A. We denote by $C^{n}(A)(n=0,1, \ldots)$ the Banach space of continuous $(n+$ 1)-linear functionals on A ; these functionals we shall later call n-dimensional cochains.

We let $t_{n}: C^{n}(A) \rightarrow C^{n}(A),(n=1,2, \ldots$ denote the operator given by

$$
t_{n} f\left(a_{0}, a_{1}, \ldots, a_{n}\right)=(-1)^{n}=(-1)^{n} f\left(a_{1}, \ldots, a_{n}, a_{0}\right)
$$

and we set $t_{0}=I$. We shall write t instead of t_{n} if it is clear which n we mean.
A cochain f satisfying $t f=f$ is called cyclic. We let $C C^{n}(A)$ denote the closed subspace of $C^{n}(A)$ formed by the cyclic cochains. (In particular, $C C^{0}(A)=C^{0}(A)=A^{*}$ where A^{*} is the dual Banach space of A).
by proposition (4) in [4], $\operatorname{Im}\left(1-t_{n}\right)$ is closed in $C^{n}(A)$ and $C C^{n}(A)=C^{n}(A) / \operatorname{Im}\left(1-t_{n}\right)$. The induce operator $d c_{n}: C C^{n+1}(A) \rightarrow C C^{n}(A)$ in the respective quotient spaces. Thus, we obtain a quotient complex $C C^{*}(A)$ of complex $C C(A)$. The cohomology of $C C^{*}(A)$, denoted by $H C^{n}(A)$ is called the n-dimensional Banach cyclic cohomology group of A. We let $r_{n}: C_{n}(A) \rightarrow C_{n}(A), n=0,1, \ldots$ denote the operator given by the formula:

$$
r_{n}\left(a_{0} \otimes \ldots \otimes a_{n}\right)=(-1)^{\frac{n(n+1)}{2}} \in a_{0}^{*} \otimes a_{n}^{*} \otimes \ldots \otimes a_{1}^{*}, \in= \pm 1
$$

where $*$ is an involution on A.
Note that: $\operatorname{Im}\left(i d_{t_{n}(A)}=1-t_{n}\right)$ is closed in $C^{n}(A)$.
The quotient complex,

$$
C D^{n}(A)=\frac{C^{n}(A)}{\operatorname{Im}\left(1-t_{n}\right)+\operatorname{Im}\left(1-r_{n}\right)}
$$

of a complex $C^{n}(A)$. The n-dimensional cohomology of $C D^{n}(A)$ denoted by $H D^{n}(A)$ is called n-dimensional dihedral cohomology group of a unital Banach algebra A.
We can similarly get the reflexive cohomology $H R^{n}(A)$.

3- Maine result.

In this part we prove the main theorem of our study. We prove the vanishing state of C^{*}-algebra.

Definition 3.1:

$\mathrm{A} C^{*}$-algebra A is called stable if it isomorphic to the tensor product algebra $(K \otimes A)$, where K is the algebra of compact operators on a separable infinite-dimensional Hilbert space.
In ([2), [6]) we find the definitions of the simplicial, cyclic, reflexive and dihedral cohomology of operator algebra. Following [10] the relation between Hochschild, cyclic, reflexive and dihedral cohomology is given by the following commutate diagram $\mathfrak{C}(A)$:

$$
\begin{aligned}
& \ldots \rightarrow{ }^{\alpha} H R^{n-1}(A) \rightarrow{ }^{\alpha} H D^{n-1}(A) \rightarrow{ }^{-\alpha} H D^{n+1}(A) \rightarrow{ }^{\alpha} H R^{n}(A) \rightarrow \cdots \\
& \underset{\uparrow}{\ldots \rightarrow \mathrm{H}^{\mathrm{n}-1}(\mathrm{~A})} \rightarrow \underset{\uparrow}{\mathrm{HC}^{\mathrm{n}-1}(\mathrm{~A})} \underset{\uparrow}{\mathrm{H}} \underset{\uparrow}{\mathrm{HC}^{\mathrm{n}+1}(\mathrm{~A})} \underset{\uparrow}{\rightarrow \mathrm{H}^{\mathrm{n}}(\mathrm{~A})} \quad \rightarrow \cdots
\end{aligned}
$$

$$
\begin{aligned}
& \ldots \rightarrow{ }^{-\alpha} H R^{n-1}(A) \rightarrow{ }^{-\alpha} H D^{n-1}(A) \rightarrow{ }^{\alpha} H D^{n+1}(A) \rightarrow{ }^{-\alpha} H R^{n}(A) \quad \rightarrow \ldots
\end{aligned}
$$

Suppose that M_{m} is the algebra of matrices of ordered m with m coefficients in algebraA over ring k with identity. Then the natural isomorphism $H H^{*}\left(M_{m}(A)\right) \approx H H^{*}(A)$ holds [7]. It is called a Morita equivalence. Following [44] the cyclic cohomology is Morita equivalence. If A be involutive algebra with identity, the following assertion holds [see [9]].

Proposition3.2:
There exists an isomorphism;

$$
T r_{*}: \quad{ }^{\alpha} H D^{*}\left(M_{m}(A)\right) \rightarrow \quad{ }^{\alpha} H D^{*}(A)
$$

for all and $m>1$ and $n>0$.
We shall denote by the $B^{*}(A)$ the reflexive or dihedral cohomology $\left({ }^{\alpha} H R^{*}(A)\right.$ or $\left.{ }^{\alpha} H D^{*}(A)\right)$ of algebra A .
Our aim now is to prove the following assertion [14].
Theorem3.3:
Let A be a stable C^{*}-algebra, then the reflexive and dihedral cohomology of A vanishes, i.e

$$
{ }^{\alpha} H R^{*}(A)=0, \quad{ }^{\alpha} H D^{*}(A)=0, \quad \alpha= \pm 1 .
$$

Firstly, we need the following facts:
Lemma 3.4: [4]
Let A be a C*-algebra without unit, and for $\mathrm{k}>0$, let $M_{k}(A)$ is the C^{*}-algebra of matrices over A, and $i: A \rightarrow M_{k}(A)$ is an inclusion maping such that,

$$
a \rightarrow\left(\begin{array}{lll}
a & & \\
& 0 & \\
& & 0
\end{array}\right)
$$

is a quasi-isomorphism.

Proof:

Let A be a C^{*}-algebra without unit. If we adjoint A with an identity element we get $\bar{A}=A \oplus \mathbb{C}$. Consider the following short exact sequence

$$
\begin{equation*}
0 \rightarrow A \rightarrow \bar{A} \rightarrow \mathbb{C} \rightarrow 0 \tag{1}
\end{equation*}
$$

where \bar{A} is algebra A with unit. We have the corresponding inclusion of algebra extensions

$$
\begin{array}{ccc}
A & \rightarrow \bar{A} \rightarrow & \mathbb{C} \tag{2}\\
\downarrow & \downarrow & \downarrow \\
M_{l_{k}}(A) & \rightarrow M_{k}(\bar{A}) \rightarrow & M_{k}(\mathbb{C})
\end{array}
$$

Following [13] and [14], since $\mathrm{M}_{\mathrm{k}}(\mathrm{A})$ is C^{*}-algebra, it is excision in Hochschild and cyclic homology, this fact is extended to reflexive and dihedral cohomology,

$$
\begin{array}{ccc}
0 \rightarrow \mathrm{~B}_{*}(\mathrm{~A}) & \rightarrow \mathrm{B}_{*}(\overline{\mathrm{~A}}) & \rightarrow \mathrm{B}_{*}(\mathbb{C}) \rightarrow 0 \tag{3}\\
\downarrow & \downarrow & \downarrow \\
0 \rightarrow \mathrm{~B}_{*}\left(\mathrm{M}_{\mathrm{k}}(\mathrm{~A})\right) & \rightarrow \mathrm{B}_{*}\left(\mathrm{M}_{\mathrm{k}}(\overline{\mathrm{~A}})\right) & \rightarrow \mathrm{B}_{*}\left(\mathrm{M}_{\mathrm{k}}(\mathbb{C})\right) \rightarrow 0
\end{array}
$$

Where $\mathrm{B}_{*}(\overline{\mathrm{~A}}) \rightarrow \mathrm{B}_{*}\left(\mathrm{M}_{\mathrm{k}}(A)\right)$ and $\mathrm{B}_{*}\left(\mathrm{M}_{\mathrm{k}}(\mathbb{C})\right) \rightarrow B_{*}(\mathbb{C})$ are isomorphisms in view of the Morita invariance in reflexive and dihedral cohomology, then $B^{*}(A) \xrightarrow{\sim} B^{*} M_{k}(A)$.

Proposition 3.5:

Suppose that A be a C^{*}-algebra, then the following isomorphism is exists $B^{n+1}(K \otimes A) \approx B^{n}\left(K \otimes q_{1} \otimes A\right)$.
Where $q_{n}, n=0,1, \ldots$ is the algebra of continuous functions on the n-sphere which vanish at the Northern pole.
Proof:
Consider the following exact sequence

$$
\begin{equation*}
0 \rightarrow q_{1} \rightarrow J \xrightarrow{p} \mathbb{C} \rightarrow 0 \tag{4}
\end{equation*}
$$

where J is the algebra of continuous functions on the unit interval $[0,1]$, that vanish at the left end, $\operatorname{ker} p=q_{1}$. Tensoring the sequence (4) by $(K \otimes A)$ we get the following exact and split sequence

$$
\begin{equation*}
0 \rightarrow\left(K \otimes q_{1} \otimes A\right) \rightarrow(K \otimes J \otimes A) \rightarrow(K \otimes A) \rightarrow 0 \tag{5}
\end{equation*}
$$

the sequence (5) induces the long exact sequence in dihedral and reflexive cohomology (see [9]).

$$
\ldots \rightarrow B^{n+1}(K \otimes J \otimes A) \rightarrow B^{n+1}(K \otimes A) \xrightarrow{\partial} B^{n}\left(K \otimes q_{1} \otimes A\right) \rightarrow B^{n}(K \otimes J \otimes A)
$$

$$
\begin{equation*}
\rightarrow \cdots \tag{6}
\end{equation*}
$$

where the connecting homomorphism ∂ is commute with the canonical maps: $H R^{n} \xrightarrow{I} H D^{n}, H R^{n} \rightarrow H R^{n}$, and $H D^{n} \rightarrow H D^{n}$. To show that $\mathrm{B}^{*}(\mathrm{~K} \otimes \mathrm{~J} \otimes \mathrm{~A})=0$, consider for a C^{*}-algebra A a functor $F(A)=F(K \otimes A)$ from a category of C^{*}-algebra to a category of graded complex vector spaces, clearly F is stable and split-exact on the collection of the split C^{*} - extensions (see [8]). It is known that any functor with these two properties (stable and split-exact) is homotopy invariant. Since the identity and zero endomorphisms of $(J \otimes A)$ are homotopic, then $F(J \otimes A)=B^{*}(K \otimes J \otimes A)=0$. using this result and sequence (6) we can easily deduce $B^{n+1}(K \otimes A) \approx$ $B^{n}\left(K \otimes q_{1} \otimes A\right)$.
Proof theorem 3.3:
From the above proposition we obtain the following commutative diagram,

$$
\begin{array}{ccc}
{ }^{\alpha} H R^{n}(K \otimes A) & \xrightarrow{I} & { }^{\alpha} H D^{n}(K \otimes A) \\
\downarrow & & \downarrow \tag{7}\\
{ }^{\alpha} H R^{0}\left(K \otimes q_{n} \otimes A\right) & = & { }^{\alpha} H D^{0}\left(K \otimes q_{n} \otimes A\right)
\end{array}
$$

From the above diagram we obtain thus the isomorphism:

$$
I: \quad{ }^{\alpha} H R^{*}(K \otimes A) \xrightarrow{I} \quad{ }^{\alpha} H D^{*}(K \otimes A) .
$$

The Connes long exact sequence related the reflexive and dihedral cohomology is given by,

$$
\begin{array}{rllll}
\ldots & { }^{\alpha} H R^{1}(K \otimes A) & \rightarrow \quad{ }^{\alpha} H D^{0}(K \otimes A) & \rightarrow{ }^{-\alpha} H D^{2}(K \otimes A) \rightarrow & { }^{\alpha} H R^{2}(K \otimes A) \\
& \rightarrow \quad{ }^{\alpha} H D^{1}(K \otimes A) \xrightarrow{s} \quad{ }^{-\alpha} H D^{3}(K \otimes A) \rightarrow \cdots & { }^{\alpha} H R^{n}(K \otimes A) \\
& \rightarrow \quad{ }^{\alpha} H D^{n-1}(K \otimes A) \xrightarrow{s} \quad{ }^{-\alpha} H D^{n+1}(K \otimes A) \rightarrow \cdots \tag{8}
\end{array}
$$

where s is a periodic operator. From the diagram (7) and the sequence (8) we have;

$$
{ }^{\alpha} H D^{*}(K \otimes A)={ }^{\alpha} H R^{*}(K \otimes A)=0, \quad \alpha= \pm 1
$$

Example 3.6:
Let $u=\mathcal{F}(H) / k$ be the Calkin algebra then,

$$
{ }^{\alpha} H R^{*}(u)={ }^{\alpha} H D^{*}(u)=0 .
$$

Example 3.7:
Let $\mathcal{F}(\mathrm{H})$ denote the algebra of bounded operators on an infinite dimensional Hilbert space H. Then

$$
{ }^{\alpha} H R^{*}(\mathcal{F}(H))=0 \text { and } \quad{ }^{\alpha} \mathrm{HD}^{*}(\mathcal{F}(\mathrm{H}))=0 .
$$

References:

[1] Alaa H. N., "On the Homology Theory of Operator Algebras", International Journal of Mathematics and Mathematical Sciences, 2012, pages 1-13, December. DOI: 10.1155/2012/368527
[2] Alaa H. N., "On the relative dihedral cohomology of Banach algebras", Modern Applied Science; 2019, Vol. 13, No. 10; DOI: 10.5539/mas. v13n10p1.
[3] Loday J-L., "Cyclic Homology of Algebras", Springer Berlin Heidelberg, (1998), vol 301., https://doi.org/10.1007/978-3-662-11389-9_2.
[4] Thiel H., "An introduction to hochschild and cyclic homology", Term paper for Math 215B Algebraic Topology", Spring 2006, UC Berkeley.
[5] Y. Gh. Gouda, The relative dihedral homology of involutive algebras, Internat. J. Math. \& Math. Sci. Vol.2, N0.4(1999) 807-815.
[6] Krasauskas R L, \& Lapin S V, \& Solov'ev Yu P, "Dihedral homology and cohomology basic notions and constructions", Mathematics of the USSR-Sbornik, 1988, volume 61, issue 1, P23-47. DOI: $10.1070 / \mathrm{sm1988v} 061 \mathrm{n} 01 \mathrm{abeh} 003190$.
[7] E. Christensen and A. M. Sinclair, "On the vanishing of H^{n} (A, A") for certain c^{*}-algebras". Pacific J. of Math. 137, No. 1. (1989), 55-63.
[8] G. Frederic and White M.C "Vanishing of the third simplicial Cohomology group $l^{1}\left(Z_{+}\right)$" Trans. A.M.s., 353,No 5(2001),2003-2017.
[9] Y. Gh. Gouda "Reflexive and dihedral(co)homology of pre-additive category " Int. J. of Math, \& Math. Sci 24:7 (2001), 429-438.
[10] Y. Gh. Gouda "On the cohomology wit inner symmetry of operator algebra" Differential homology and Dynamic System, 2008.
[11] Y. Gh. Gouda "On the cohomology of certain c ${ }^{*}$-algebra" ASW.Sc.Tec. Bull., 19 (1998), 26-30.
[12] A. Ya. Helemskii " the homology in Banach and topologicalalgebras" Kluwer Acd. Press (1989).
[13] B. E.Johnson "Cohomology of operator algebras" Memoirs. Amer.Math. Soc. No. 127 (1972).
[14] J-L. Loday "cyclic homology" Second Springer-Verlag, New York (1998).
[15] M. Wodzicki "Vanishing of cyclic homology of stable C"-algebras" C. R. Acad. Sci. Paris, 307, Serie I, (1988),329-334.

