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Abstract.

We concerned with the vanishing of the dihedral and reflexive cohomology groups of stable C*-algebra.
Wodzicki has proved that, the cyclic cohomology of stable C*-algebra is vanished. We extend this fact to prove that

the reflexive and dihedral cohomology of this class are also vanish.
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1- Introduction.

There are many studies interested in vanishing the cohomology group of operator algebras. For example,

thethird cohomology group H 3(Il(ZJr), 1*(Z,)") =0 where I*(Z,) is a unital semi-group algebra of N

[15], also the third cyclic cohomology group HC3(1,17) =0 where I is a nonunital Banach algebral*(Z) [15].

The dihedral cohomology ¢HD"(A) =0, n € N, nis odd, & =1, where A is biflat algebra [4]. The class of

algebra called Amenable algebras, that, is all continuous derivation from an algebra A into A-bimodule M are inner,
is a good result of the vanishing of the 1-St.dimensional cohomology of a Banach algebra A, with coefficient in A-
bimodule M [8]. If A is a C -algebra without bounded traces or a nuclear C -algebra, the Hochschild and dihedral
cohomology groups vanish ([12],[13]).

In the paper we study the vanishing cohomology groups (Reflexive and Dihedral) of some classes of C™-algebra and

give examples of nontrivial dihedral cohomology groups of a commutative Banach algebra under special condition.

2- Dihedral (Co)homology of operator algebra.
We recall the definition properties of Banach algebra and its homology from[1],[3] and [11]. Let A be a

unital Banach algebra over a commutative ring k(k = c) . A complex C(A) = (C*(A),b,), where C,(A) =A®
... ® A is the tensor product of algebra (n + 1 times)and,b,: C, (4) = C,_1(A4) is the boundary operator
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n-1

b(@.® .. ®a) =Y (-1 4 ® B aa s @@,

i=0
It is well known that b,_,b,, = 0, and hence kerb,, > Imb, ;.

ker by,

H,(4) = H(C() = 15— (1)

Is called the Hochschild homology of unital Banach algebras A with involutive and denote by (HH* (A)).
If A is an unital Banach algebras, one acts on the complex C(A), by the cyclic group of order (n + 1) by means of
the operator t,: C,(4) - C,(A)

ta(@® .0 a,)=(-1D"a, ®ay® .. & a1

Cn(4)

The quotient complex C€C,(A4) = Tt

is a subcomplex of a complex CC,(A).

Consider the chain complex CC, (A)=(C#.(A),b,)and the Connes-Tsygan bicomplex CC,(4) (see [5]). Then

the subcomplex (ker (1-t,),b,) = (C #£,(A),b,) has the same homology as the complex (CC,(A),b,),

that is

H,(CC,(A)=,CH, (A),b,)/Im1-t,))=#,(CH_ (A),b,)/Ker N)

=9,(IMN ,b,) = #,(Ker (1-t,),b,), @)

where
CH,(A) =A®"*"1 = AQ® ..® A (n+1times),
by, by: CH, (A) = CHy_1(4),
Such that:

n—1

b, (2 ®..8 a,) = Z(—l)i(ao ®.® aay ®..Qa,),
i=0

bn(aO ®® a, ) = bn + (_1)n(ana ®® an—l);
t,: CH,(A) = CH,(A4),
Suchthat t,(ay ®...Q a,) = (-1)"(a, ® ay ®...Q a,_;) and N, =1=tl+...+tl.

Therefore, the complex (ker(1 —t.),b.) is isomorphic to complex (CC.(A),b.). The isomorphism between them

is given by the operator N, :CC,(A) — (ker(1—t,),b.). Consequently, the action of the group Z/2 on the

complex CC,(A), by means of the operator “h is equal to action of Z/2 on the complex (ker(1—t_),b.) by
means of the operator
iy ® @ ®..Q a, > (—1) T ed; @', ®..8 a,
where a@" is the image of element in a € A under involution *: A —» A, ¢ = +1.Since  ¢/4.t. =t,”! ¢/, then we
have N.( ¢4)=( ¢/4.N..
On the other hand, since  “r, =t, “h, then
¢A4.N, =N, ¢/4.=(N.t.)) ®/4.=N.(t°h,) =N, °r.

So, the dihedral homology of A is given by formula:
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eHD,(A) = H.(ker(1—t)/(Im(1—- %f4.)Nker(1-t.))). @3)

For a commutative unital Banach algebra A. We denote byC™(4)(n = 0,1, ... )the Banach space of continuous (n +

1)-linear functionals on A; these functionals we shall later call n-dimensional cochains.

We let t,,: C"(A) » C™(A), (n = 1,2, ...denote the operator given by
tof(ag, a1, ., a) = (=" = (=1)"f(ay, ..., ay, ao)
and we set t, = I. We shall write t instead of ¢, if it is clear which n we mean.
A cochain f satisfying tf = f is called cyclic. We let CC™(A) denote the closed subspace of C™(A4) formed by the
cyclic cochains. (In particular, CC°(A) = €°(4) = A*where A* is the dual Banach space ofA).

by proposition (4) in [4], Im(1—t¢,) is closed in C"(A) and CC™"(A) =C"(A)/Im(1—t,). The induce
operatordc,: CC"*1(A) - CC™(A) in the respective quotient spaces. Thus,we obtain a quotient complex CC" (A)
of complex CC(A). The cohomology of CC*(A), denoted by HC" (A) is called the n-dimensional Banach
cyclic cohomology group of A. We let 1. :C (A)—C (A),n=0,1... denote the operator given by the
formula:

nn+1)

n(ay ®..0a,)=(-1)"2 €a;Qa,Q...Qaj, €= +1,

where * is an involution on A.

Note that: Im(id,, 4y = 1 —t,) isclosed in C" (A).
The quotient complex,

C"(A)
Im(l—-¢t,)+Im(1l—rn)

CD"(A) =

of a complex C" (A). The n-dimensional cohomology of CD™(A) denoted by HD™(A) is called n-dimensional

dihedral cohomology group of a unital Banach algebra A.

We can similarly get the reflexive cohomology HR™(A).

3- Maine result.
In this part we prove the main theorem of our study. We prove the vanishing state of C*-algebra.

Definition 3.1:

AC*-algebra A is called stable if it isomorphic to the tensor product algebra (K®A), where K is the algebra of
compact operators on a separable infinite-dimensional Hilbert space.

In ([2), [6]) we find the definitions of the simplicial, cyclic, reflexive and dihedral cohomology of operator algebra.
Following [10] the relation between Hochschild, cyclic, reflexive and dihedral cohomology is given by the
following commutate diagram €(A):

. _“HRnH(A) - —aHDn+1(A) - aHDn+3(A) N —aHRn+2(A) N

) T ) T
.= %HR"(4) - <“HD"(4) - T“HAD"M1(4) - “HR"(A) - -
T ) T )
..~ H"1(A) - HC"1(A) - HC"*1(A) - H"(A) -
) T T )
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W= TCHR™(A) - TCHD"'(A) - C“HD"™'(4) - ““HR"(A) - -

1 1 1 0
.o CHR"3(4) > @HD"3(4) - “CHD"1(A) - C“HR"(A) o -
1 1 0 1

Suppose that M,, is the algebra of matrices of ordered m with m coefficients in algebraA over ring k with identity.
Then the natural isomorphism HH*(Mm (A)) ~ HH*(A) holds [7]. It is called a Morita equivalence. Following [44]
the cyclic conomology is Morita equivalence. If A be involutive algebra with identity, the following assertion holds
[see [9]].
Proposition3.2:
There exists an isomorphism;
Tr.. “HD*(M,(A)) > “HD(A)

foralland m > 1andn > 0.
We shall denote by the B*(A) the reflexive or dihedral cohomology ( “HR*(A) or *HD*(A)) of algebra A.
Our aim now is to prove the following assertion [14].
Theorem3.3:
Let A be a stable C*-algebra, then the reflexive and dihedral cohomology of A vanishes, i.e

“HR*(A) = 0, “HD*(A) =0, a=+1.
Firstly, we need the following facts:
Lemma 3.4: [4]
Let Abe a C*-algebra without unit, and for k > 0, letM,, (A) is the C*-algebra of matrices over A, and i: A — M, (4)

()

Let A be a C*-algebra without unit. If we adjoint A with an identity element we get A = A@C. Consider the

is an inclusion maping such that,

is a quasi-isomorphism.

Proof:

following short exact sequence
05A-A->C-0 (1)
where 4 is algebra A with unit. We have the corresponding inclusion of algebra extensions

A >4 C
L L L @
Mi(A) - M(A)-> M (C)

Following [13] and [14], since M, (A) is C*-algebra, it is excision in Hochschild and cyclic homology, this fact is

extended to reflexive and dihedral cohomology,

0 - B.(A) - B,(A) - B,(C) =0
l l l 3)
05 B.(M(8) - B.(M(a) - B.(M(©)~0

Where B,(A) - B.(M,(4)) and B,(M,(C)) - B.(C) are isomorphisms in view of the Morita invariance in

reflexive and dihedral cohomology, then B*(A) S B*M, (A).

Proposition 3.5:
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Suppose that Abe a C*-algebra, then the following isomorphism is exists B**1(K®A) ~ B" (K®q,®A).
Where g,, n = 0,1, ... is the algebra of continuous functions on the n-sphere which vanish at the Northern pole.
Proof:
Consider the following exact sequence
0-q >]5C—0 @

where ] is the algebra of continuous functions on the unit interval [0,1], that vanish at the left end, ker p = q;.
Tensoring the sequence (4) by (K®A) we get the following exact and split sequence

0 - (K®q:®4) - (K®J®A) - (K®A) » 0 (5)
the sequence (5) induces the long exact sequence in dihedral and reflexive cohomology (see [9]).

. = B (K®J®A) — B (K®A) > B"(K®q,®4) » B" (KQJ®A)

where the connecting homomorphism @ is commute with the canonical maps: HR" i> HD", HR™ - HR", and
HD™ — HD™. To show that B*(K®J®A) = 0, consider for a C*-algebra A a functor F(4) = F(K®A) from a
category of C*-algebra to a category of graded complex vector spaces, clearly F is stable and split-exact on the
collection of the split C*- extensions (see [8]). It is known that any functor with these two properties (stable and
split-exact) is homotopy invariant. Since the identity and zero endomorphisms of (J®A) are homotopic, then
F(J®A) = B*(K®J®A) = 0. using this result and sequence (6) we can easily deduce B""1(K®A) ~
B"(K®q, ®A).

Proof theorem 3.3:

From the above proposition we obtain the following commutative diagram,

“HR™"(KQ®A) 5 “HD™(K®A)
l l ™
*HR*(K®q,®4) = *HD*(K®q, ®A)

From the above diagram we obtain thus the isomorphism:
I: “HR*(K®A)1> “HD*(K®A).
The Connes long exact sequence related the reflexive and dihedral cohomology is given by,
..o 9YHRYK®A) > 9“HD°(K®A) > ~“HD*(K®A)—> “HR2(K®A)
> THDY(K®A)> ~“HD*(K®A) - - —» “HR"(KQA)
- CHD"I(K®A) > ~“HD"*'(K®A) - - ®)
where s is a periodic operator. From the diagram (7) and the sequence (8) we have;
“HD*(K®A) = “HR*(K®A) =0, a==+1
Example 3.6:
Let u = F(H)/k be the Calkin algebra then,
“HR*(u) = 9“HD*(u) =0.

Example 3.7:
Let F(H)denote the algebra of bounded operators on an infinite dimensional Hilbert space H. Then

“HR*(F(H)) = 0and “HD*(F(H)) = 0.
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