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Abstract

The stochastic SIR household epidemic model is well discussed in [3], [4], [5] and also in [1]
by assuming that the infection period distribution is known. Sometimes this may wrongly be
assumed in the model estimation and hence the adequacy of the model fitness to the final size
data is affected. We examined this problem using simulations with large population size and
theoretical parameters in which the final size data is first simulated with exp(4.1) infectious
period distribution and estimated with Γ(2, 4.1/2) infectious period distribution and vice versa.
The estimates of the two dimensional models are further explored for a range of local and global
infection rates with corresponding proportion infected and found to be biased and imprecise.
Keywords:

Final size epidemic, Infectious period distribution, Maximum likelihood estimates, Misclassi-
fication probabilities.

1. Introduction

Sometimes the final size epidemic data may be wrongly estimated with an infectious period distribution
different from that used in simulation. This is a misspecification problem that is sometimes encountered in
modelling process.

In this work, we examined this problem using simulations with large population size, and choice of
appropriate theoretical parameters which allows global infection. Our studies is primarily focused on mis-
specification of the infectious period distribution, as extensive studies on the model behaviors, its theoretical
parameters and other properties have been provided by various researchers especially in [5, 6, 2], [5], [7],
[8],[9], [10],[13], [18], [19] and more recently [22], whose work examined effects of minimum epidemic size
and population sizes on a global epidemic in simulation of final size epidemic data and the behavior of the
estimates when the theoretical parameters correspond z = 0.1775 and z = 0.7298 with minimum epidemic
size of 1000 for various local and global infection rates. Also, the properties of the parameters and functions
of the stochastic SIR household epidemic model are well discussed for ease of understanding of the model
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behaviours and also allow comparison of results from these studies with those that employed same infectious
periods distribution in their simulations and model estimation as in [5, 6, 2] and [22]

This work therefore examined the stochastic SIR household epidemic model with some their properties
as found in [4], [11], [15], [14], [17],[20, 21], [16] and a host of other authors, its estimation in the face of
misspecification of the infectious period distribution is also discussed.

2. Material and Methods

2.1. The model.

Discussion on the stochastic SIR household epidemic model can be found in [5, 6, 2], especially in [5],
one of the pioneering research figure on this topic. Other extensions are provided in the works of [1], [4], [3],
[12], which allows construction of likelihood function often referred to as approximation likelihood function
as in [1], [22] and [5] hence enables model estimation based on the assumption that the infectious period
distribution is often the same as the one used in simulation.

If the stochastic SIR household epidemic model is estimated using a different infectious period distribution
from that used for the simulations, then how does this affect the precision of the estimates? This is a
misspecification problem which may sometimes be taken for misclassification of the epidemic data. It is
therefore necessary to study these scenarios using simulations in order to understand their effects on the
estimates of the parameters. We do this with large population size and theoretical parameters, λL = 0.1,
λG = 0.29 which give global infection in our simulations and hence enable us compare the estimates with
those of our previous studies.

We simulate two dimensional model epidemic data with exp(4.1) infectious period distribution and esti-
mated the model parameters with the Gamma(2, 4.1/2) infectious period distribution. Plots of the estimates
and tables of mean, standard deviation and root mean square errors are presented.

2.2. Numerical simulations of the Stochastic Household Epidemic.

In order to illustrate the threshold behaviour of SIR household epidemic model, we conducted 1000
simulations of a household epidemic for different values of the local and global infection rates, ,(λL, λG),
with a modified version of the simhouses simulation package of Dr Owen Lyne, [1] household structure
[133, 189, 108, 106, 31]× 50.

Here, the entries represent number of households which size corresponds to its column. For example
133 is the number of households of size 1, 189 is the number of households of size 2, 108 is the number of
households of size 3. The population is made of households of sizes 1 to 5 in which the number of households
of each size is 50 times that of [1] and a population size of 70700. Also, we have assumed Gamma(2, 2.05)
infectious period distribution in [1] which has probability density function, fTI

(t) = c2t exp(−ct), c > 0,
where c = 2/4.1 and mean E(TI) = 4.1 [1, 6].

Six pairs of parameter values, (λL, λG) are considered together with their corresponding threshold pa-
rameter in order to study the influence of the infection rates on the occurrence of a global epidemic in the
simulation runs. Two columns of histograms of the number of individuals infected from the simulations are
presented, with the one on the left having fixed global contact rate and varying local infection rates while
those on the right hand side have fixed local infection rate and varying global infection rates.

Form the histograms of the number infected we see that the threshold behaviour exhibits the expected
theoretical result such that when R∗ > 1, then global epidemic occurs with probability 1− pa, where a = 1
is the initial number of infectives. The bimodal behaviour of the histograms when R∗ > 1 further clarify the
occurrence a global epidemic in such cases. Thus, large epidemic only occurs when R∗ > 1 in accordance
with [5, 6], also given R∗, the precise values of λL and λG have little effect on either the number of people
infected or the probability of large epidemic occurring.

Thus, the first two histograms at the top correspond to the case in which R∗ < 1 and therefore global
epidemic never occurred, while the remaining histograms are made of few cases in which a global epidemic
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occur with bimodal behaviours and few cases in which there is no global epidemic.
In order to disallow the non global epidemic from occurring, we employed a minimum cut-off of the

number infected between the epidemics using rejection sampling in which if the number infected in the
simulation is less than the cut-off then it is rejected and a re-run is made. This is continued until the
simulation run is completed.

3. Theoretical properties of the parameters and functions of the
SIR household epidemic model.

In this chapter, we examined the theoretical properties of the parameters and functions of the stochastic
SIR household epidemic model beginning with the mean final size of the household epidemic, the beta
function for small and large local infection rates, the threshold parameter, the proportion of the initial
susceptibles infected in a household epidemic

3.1. The mean final size of single household epidemic.

The mean final size of a single household epidemic is given in [5] and is defined as the average number of
initial susceptibles that are ultimately infected, including the initial number of infectives, at the end of the
disease outbreak expressed as

µn,a = n+ a−
n∑

k=0

(
n

k

)
βkφ(λLk)n+a−k,

where n is the total number of susceptibles, a is the initial number of infectives at the beginning of disease
outbreak, βk are functions of λL and the infectious period distribution, obtained for k ∈ Z+ from the
triangular equation in [4] as,

k∑
i=0

(
k

i

)
βiφ(λLi)

k−i = k, k = 0, 1, 2, . . . ,

where, φ(θ) = E(exp(−θTI)), is the moment generating function of the infective period, TI , and λL is the
local contact rate. This can be expanded as,

(
k

0

)
β0φ(λL.0)k−0 +

(
k

1

)
β1φ(λL.1)k−1 + · · ·+

(
k

k − 1

)
βk−1φ(λL · (k − 1))1 + βkφ(λL.k)0 = k.

Observe that if k = 0, then β0 = 0. Thus we can ignore the first term and express the equation as,(
k

1

)
β1φ(λL.1)k−1 +

(
k

2

)
β2φ(λL.2)k−2 + · · ·+

(
k

k − 1

)
βk−1φ(λL · (k − 1))1 + βk = k.

We can also rearrange it as,

βk = k −
k−1∑
i=1

(
k

i

)
βiφ(λLi)

k−i. (1)

3.2. Properties of βk for small and large local infection rates.

If λL → 0, then φ(λL) = E(exp(−λLTI))→ 1, ∀ TI and equation 1 reduces to

k∑
i=1

(
k

i

)
βi = k.
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Figure 1: Histogram of 1000 simulations of household epidemic with Gamma(2, 2.05) infectious period
distribution, parameter estimates from [1] but fifty times its population size and minimum epidemic size of
1.
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It follows that, if λL → 0, βk can be expressed as,

βk = k −
k−1∑
i=1

(
k

i

)
βi.

Theorem 1. If λL = 0, then βk = 0, ∀k ∈ Z+ − {1} and β1 = 1 when k = 1.

Proof. Using mathematical induction, we will show that βk = 0, ∀k ∈ Z+ − {1}, whenever λL = 0.
From the arguments in equation (1), we know that β0 = 0, when k = 0, also when k = 1, β1 = 1, however

when k = 2, then β2 = 0.
Using mathematical induction, we want to show that βk = 0, ∀k ∈ Z+ − {1}.
We assume the induction hypothesis holds for ∀n ∈ {2, . . . , k} and show that it also holds for βk+1.
For k + 1, we have,

βk+1 = k + 1−
k∑

i=1

(
k + 1

i

)
βi.

Using
(
k+1
m

)
=
(
k
m

)
+
(

k
m−1

)
, ∀m, k ∈ Z+, reduces the problem to the form,

βk+1 = k + 1−
k−1∑
i=1

(
k

i

)
βi − βk −

k∑
i=1

(
k

i− 1

)
βi.

Replacing the term,
∑k−1

i=1

(
k
i

)
βi with k − βk and simplifying gives,

βk+1 = 1−
k∑

i=1

(
k

i− 1

)
βi.

For example, when k = 2 we get, β3 = 1 −
(
2
0

)
β1 +

(
2
1

)
β2. Substituting β0 = 1 and β2 = 0 gives the

required results.
Since by hypothesis, βi = 0, for i = 0, 2, 3 . . . k, and β1 = 1, the result follows that βk+1 = 1 − β1 = 0.

Therefore, the result follows by induction.

If λL → ∞, then φ(λL) = E(exp(−λLTI) → 0, for all positive random variables TI and the expression∑k−1
i=1

(
k
i

)
βiφ(λLi)

k−i, gives βk = k when λL →∞.
In figures 2 (a) and (b), we have plotted the βk, as a function of λL while holding other parameters as

n = 6, Gamma(a)=2, Gamma(b)=2.05 and c = 1 number of initial infective, for two extreme values of λL,
that is when λL → ∞ and when λL → 0. We have adopted the Gamma infectious period distribution to
enables us compare our results with those of [1] who also employed the Gamma(2, 2.05) infectious period
distribution.

The behaviour of βk is found to be consistent with our theoretical studies. When λL becomes very large,
βk becomes asymptotic to k, while as λL approaches 0, so also is βk. This can be seen from figures 2.

35



A.M. Umar

In figure 2, we plotted the beta function as a function of λL, using Gamma(a, b) infectious period distri-
bution with parameters Gamma(a) = 2, Gamma(b) = 2.05. We see that with increasing λL, the function
βk also increases and tends to k = 1, . . . , 5, where β0 = 0, while as λL tends to zero, βk also tends to zero
except β1 which assumes the value 1.

3.3. The mean final size of the single household epidemic for small λL.

Using the properties of βk and since φ(λL)→ 1, if λL → 0, the expression for the mean final size reduces
to

µn,a = n+ a−
n∑

k=0

(
n

k

)
βk,

where n+ a is the household size, n and a are the number of initial susceptibles and infectives.
Since βk → 0 ∀k ∈ Z+ − {1} with β1 = 1, when λL → 0, the expression for the mean final size reduces

to,

µn,a = n+ a−
(
n

0

)
β0 +

(
n

1

)
β1.

Putting the values of β0 = 0 and β1 = 1 into the expression yields the value of the mean final size of a
single household epidemic, when λL → 0,

µn,a = n+ a− n = a.

This means that if there are no local contacts between susceptible and infective individuals in the house-
hold, there will be no new infections and the ultimate number of infected individuals at the end of the
epidemic will be the initial number of infectives.

3.4. The mean final size of the single household epidemic, for large local infection
rates.

If λL →∞, then φ(λL) = E(exp(−λLTI))→ 0, since TI is a non-negative random variable and since βk
assumes the values k ∈ Z+, we can write the mean final size equation as,

µn,a = n+ a−
((

n

0

)
β0φ(λL.0)n+a−0 +

(
n

1

)
β1φ(λL.1)n+a−1 + · · ·+

(
n

k

)
βkφ(λL.k)n+k−1

)
.

We know that if λL →∞, then φ(λL)→ 0. The question then is, can n+a− k be zero, since if n+a− k
is zero then the expression φ(λL.k)n+a−k reduces to 1. Since k is only defined for k = 0, 1, 2, . . . , n and a is
not zero, if a is zero then there will be no infection in the household and so no susceptible individuals will
be subjected to any infection pressure and so k < n+ a, ∀a ∈ Z+ − {0},

However, if k = 0 then βkφ(λL.k)a+n−k reduces to zero, since β0 = 0.
If a 6= 0, k 6= 0, then n+ a > k.
Under this assumption, βkφ(λL.k)a+n−k → 0 and the summation terms on the right hand of mean final

size will collapse to zero with the mean final size given by the remaining term as,

µn,a = n+ a.

This means that everybody will be infected at the end of the epidemic outbreak, which is possible for
highly infectious diseases with large local contact rate. The role of these parameters on household disease
transmission is crucial and any effective intervention, and control strategies must take this into consideration.

3.5. The threshold parameter for small and large local infection rates.
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Figure 2: The beta function with increasing λL.
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The threshold parameter is a function of both the local and global infection rates. If the global infection
rate, λG → 0, then the threshold parameter will be zero, on the contrary if λL → 0, then βk will all be
zero except β1 = 1 in accordance with the properties of βk and the resulting mean final size µn−1,1 of the
household with n− 1 initial susceptibles and 1 initial infective will be the initial infective, which under this
definition is µn−1,1 = 1 with the threshold parameter given by

R∗ = λGE(TI)

∞∑
n=1

α̃n,

Since α̃n are probabilities, their summation will be 1, reducing the threshold parameter to

R∗ = λGE(TI),

= R0.

The household threshold parameter R∗ is expressed in terms of R0 in [4, 5, 6] as,

R∗ = R0µ,

where R0 = λGE(TI) and µ =
∑∞

n=1 α̃nµn is the mean amplification factor owing to internal spread within
the household. Where R0 is the basic reproductive ratio for homogeneous mixing population, in which
everyone is assumed to have similar characteristics without consideration for heterogeneity in infectivity and
susceptibility. It is a threshold parameter for a population in which the household size is one. It can loosely
be defined as the average number of infectives generated by a single infected individual in a completely
susceptible population throughout its infectious period.

The behaviour of the threshold parameter for varying local infection is studied for some global infection
rates, λG = 0.01, 0.02, 0.03, 0.04, and λG = 0.1, 0.2, 0.3, 0.4 respectively, Gamma(a, b) infectious period
distribution with parameters, a = 2, b = 2.05 and assuming single initial infective, c = 1, in the household.
We found in each of the cases that large global infection rate leads to corresponding large threshold parameter.
Thus the threshold parameter is linearly influenced by the level of the global contact rate.
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In figure 3, we have plotted the threshold parameter for varying local infection rate defined in the region
{λL : 0 ≤ λL ≤ 2}, with stepsize of 0.05, for the following global infection rates λG = 0.01, 0.02, 0.03, 0.04,
and λG = 0.1, 0.2, 0.3, 0.4 respectively and Gamma(2, 2.05) infectious period distribution, and one initial
infective, c = 1.

4. Proportion of the initial susceptibles that are ultimately in-
fected.

The proportion of the initial susceptible individuals that are ultimately infected by the epidemic, denoted
by z, is given in [6] as

z =

∞∑
n=1

α̃nn
−1

n∑
k=1

(
n

k

)
(1− π)kπn−kµn−k,k. (2)

Equation (2) is the weighted average of the number of infectives in a single household epidemic with Binomial
distributed number of infectives k, and the remaining n − k susceptibles avoid infection from outside the
household of size n.

In equation (2), α̃n is the probability that a randomly selected individual resides in a household of size
n, π is the probability that a given individual avoids global infection, which is approximately given in [5, 6]
as,

π = exp(−λG
N
zNE(TI)) = exp(−λGzE(TI)). (3)

Where NzE(TI) is the total person units of infection present throughout the epidemic, N is the total number
of individuals in the household and z is the proportion of the initial susceptibles ultimately infected.

Suppose global epidemic has occurred with the proportion of individuals ultimately infected, z ∈ [0, 1],
then equations (2) together with (3) gives an implicit equation for z. Here z = 0 is always a solution and the
only solution if R∗ ≤ 1. A second solution in 0 < z < 1 exists only if R∗ > 1. This is better understood by
expressing equation (3) in the form y = z = g(z) where y = z, y = g(z).

Here g(z) is the right hand side of equation (3) and the unique solution of the equation is found at the
point of intersection of y = z and y = g(z) nearest to the origin for which R∗ > 1. Now let the generating
function of the offspring random variable R be defined as E(zR) = g(z) and Pk be its distribution. Then
g(z) =

∑∞
k=0 Pkz

k with g′(1) =
∑∞

k=1 kPk which is equal to R∗.

4.1. Proportion of the initial susceptibles that are ultimately infected at the
lower and upper boundaries of the local infection rate.

If the local contact rate λL → 0, then the mean final size of a household with k initial infectives and
n− k initial susceptibles is, µn−k,k(0) = k. We can express z as,

z =

∞∑
n=1

α̃nn
−1

n∑
k=1

(
n

k

)
(1− π)kπn−kk. (4)

Since,

E(K) =

n∑
k=0

(
n

k

)
(1− π)kπn−kk = n(1− π),

where
(
n
k

)
(1−π)kπn−k is the probability that k susceptibles individuals are infected with probability (1−π)k,

while the remaining n− k escape infection with probability πn−k.
The number of infectives k, in the household is distributed as a binomial random variable, with parame-

ters, n and (1− π).
Here E(K) is the mean number of infected susceptibles in the household. Substitution of the mean

number of susceptible individuals infected, E(K) = n(1− π) into the expression for z gives,

z =

∞∑
n=1

α̃n(1− π) = (1− π).
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Figure 3: The threshold parameter with varying local infection rate.
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This can further be simplified as,

z = 1− π = 1− exp(−λGzE(TI)). (5)

This is the governing equation of z for the single population S-I-R deterministic epidemic model.
If λL →∞, then the mean final size in equation, µn−k,k for k > 0 reduces to n and the expression for z

becomes,

z =

∞∑
n=1

α̃nn
−1

n∑
k=1

(
n

k

)
(1− π)kπn−kn. (6)

Since,
n∑

k=0

(
n

k

)
(1− π)kπn−k = 1,

we will have,
n∑

k=0

(
n

k

)
(1− π)kπn−k = πn +

n∑
k=1

(
n

k

)
(1− π)kπn−k,

where p(K = 0) = πn is the probability that every susceptible in a household of size n avoids global inflection.
We can write

n∑
k=1

(
n

k

)
(1− π)kπn−k = 1− πn.

We can then express z as,

z =

∞∑
n=1

α̃nn
−1

n∑
k=1

(
n

k

)
(1− π)kπn−kn =

∞∑
n=1

α̃n(1− πn),

z =

∞∑
n=1

α̃n(1− exp(−nλGzE(TI))),

where πn = exp(−nλGzE(TI)). Further simplification of z gives,

z = 1−
∞∑

n=1

α̃n exp(−nλGzE(TI)). (7)

5. Estimation in the presence of model misspecification.

Here, the estimation methods uses the maximum likelihood techniques as described in [1] and [22], with
starting values using [12] method described in [22]. These are implemented in subsections 5.1 and 5.2
respectively.

5.1. Simulating epidemic data with exp(4.1) and estimating model parameters
with Gamma(2, 4.1/2) infectious period distributions.

We simulate two dimensional model epidemic data with exp(4.1) infectious period distribution and esti-
mated the model parameters with the Gamma(2, 4.1/2) infectious period distribution. Plots of the estimates
and tables of mean, standard deviation and root mean square errors are presented.

From figures 4 (a)-(d), we see that the estimates are biased and imprecise.
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Figure 4: Plots of the estimates with Gamma(2, 4.1/2) infectious period distribution when the epidemic
data is simulated with exp(1.4) infectious period distribution.

Gamma(2, 4.1/2) infectious period distribution
Par. Mean SD, RMSE λL λG π z R∗
Theoretical parameter 0.1 0.29 0.4199 0.7298 2.2166

Mean 0.092993 0.2869 0.43285 0.7119 2.1339
Standard deviation 0.0015132 0.0026017 0.005495 0.0048041 0.019735

Root mean square error 0.0071679 0.0040445 0.014025 0.018455 0.084961

Table 1: Table of mean, standard deviation and root mean square error of the estimates when the epidemic
data is simulated with exp(4.1) and estimated with Gamma(2, 4.1/2) infectious period distributions.
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exp(4.1) infectious period distribution
Par. Mean SD, RMSE. λL λG π z R∗
Theoretical parameter. 0.1 0.29 0.4291 0.7117 2.1106

Mean 0.10761 0.29351 0.41595 0.72898 2.1878
Standard deviation 0.0019244 0.0023979 0.0047063 0.0039479 0.017285

Root mean square error 0.0078474 0.0042457 0.013884 0.017705 0.079101

Table 2: Table of mean, standard deviation and root mean square error of the estimates when the epidemic
data is simulated with Gamma(2, 4.1/2) and estimated with exp(4.1) infectious period distributions.

5.2. Simulating epidemic data with Gamma(2, 4.1/2) and estimating model pa-
rameters with exp(4.1) infectious period distributions.

Here, we estimate the model parameters with exp(4.1) infectious period distribution when the epidemic
data is simulated with Gamma(2, 4.1) infectious period distribution.

Plots of the parameter estimates, table of mean, standard and root mean square of the estimates are
presented as follows.

In figures 5 (a)-(d), the estimates are biased and imprecise.
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Figure 5: Plots of the estimates with exp(4.1) infectious period distribution when the epidemic data is
simulated with Gamma(2, 4.1/2) infectious period distribution.
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6. Results and Discussion.

From figures 4 (a)-(d), we see that the estimates are biased and imprecise if wrong infectious period
distribution is chosen for model estimation. These behavours is not inconsistent with the results of our
studies in [22] with large choice of the minimum epidemic size 1000 say and suitable theoretical parameters
in which global epidemic occurred. We find that parameter estimates are scattered around their true values
as expected compared to the behaviours displayed in figures 4 and 5, (a)-(d) respectively, which are contrary
to the expected results.

Tables 1 and 2 of mean, variance, mean square error and root mean square error of the estimates are
indicative of the quality of the estimates given this scenario.

7. Conclusion

This work has shown that, there is the need for consistency in the choice of the infectious period distri-
bution, as this has considerable influence on the model estimation and fitting to the final size data. Wrong
choice of the distribution leads to a model which does not well to the final size data.
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