On the vanishing cohomology theory of some operator algebras

Yousif Abdullah Alrashidi
The Higher Institute of Telecommunications and Navigation
PAAET, Kuwait

Received: July 15, 2021; Accepted: July 28, 2021; Published: August 2, 2021

Abstract

Cite this article: Alrashidi, Y . (2021). On the vanishing of the cohomology theory of some operator algebras. Journal of Progressive Research in Mathematics, 18(3), 24-30. Retrieved from http://scitecresearch.com/journals/index.php/jprm/article/view/2080.

Abstract

. We concerned with the vanishing of the dihedral and reflexive cohomology groups of stable C^{*} algebra. Wodzicki has proved that the cyclic cohomology of stable C^{*}-algebra is vanished. We extend this fact to prove that the reflexive and dihedral cohomology of this class are also vanish.

Key words: Dihedral homology - Stable algebras - C*-algebra -cohomology.
Mathematics Subject Classification: 55Q05, 57Q10

1- Introduction.

The vanishing cohomology group of operator algebras has been studied a lot. Consider the a unital semi-group algebra $l^{1}\left(Z_{+}\right)$of N, then the third cohomology group $H^{3}\left(l^{1}\left(Z_{+}\right), l^{1}\left(Z_{+}\right)^{\prime}\right)=0[15]$, and fornon-unital Banach algebra $I=l^{1}\left(Z_{+}\right)$, then $H C^{3}\left(I, I^{\prime}\right)=0[15]$. If Ais biflat algebra and n is odd and $\varepsilon= \pm 1$, then ${ }^{\varepsilon} H D^{n}(A)=0, n \in N[4]$. For an algebra A and A-bimodule M, the class of algebra can defined as Amenable algebras if the continuous derivation from A into M are inner [8]. Both of Dihedral and Hochschild cohomology groups vanish, in the event that A will be a C^{*}-algebra or a nuclear C^{*} algebra ([12],[13],[15]).
Here, the vanishing of Reflexive and Dihedral cohomology groups of C^{*}-algebra will be studied with given examples of non-trivial dihedral cohomology groups of a commutative Banach algebra.

1- Dihedral (Co)homology of operator algebra

We recall the definition properties of Banach algebra and its homology from[1],[3] and [11]. For acommutative ring $k=\mathbb{C}$ and the unital Banach algebra A, the complex $C(A)=\left(C^{*}(A), b_{*}\right)$ is the boundary operator

$$
b_{n}\left(a_{*} \otimes \ldots \otimes a_{n}\right)=\sum_{i=0}^{n-1}(-1)^{i} a_{0} \otimes . . \otimes a_{i} \mathrm{a}_{\mathrm{i}-1} \otimes . . \otimes \mathrm{a}_{\mathrm{n}-1},
$$

where $C_{n}(A)=A \otimes \ldots \otimes A$ is tensor product of algebras $\left(n+1\right.$ times) and, $b_{*}: C_{n}(A) \rightarrow C_{n-1}(A)$. It is well known that $b_{n-1} b_{n}=0$, and hence $\operatorname{kerb}_{n} \supset \operatorname{Im} b_{n+1}$.

$$
\begin{equation*}
H_{n}(A)=H(C(A))=\frac{\operatorname{kerb}_{n}}{I m b_{n-1}} \tag{1}
\end{equation*}
$$

is Hochschild homology of Awith involutive and denote by $\left(H H_{*}(A)\right)$.
If A is an unital Banach algebras, the cyclic group of order $(n+1)$ by the operator $t_{n}: C_{n}(A) \rightarrow C_{n}(A)$:

$$
t_{n}\left(a_{0} \otimes \ldots \otimes a_{n}\right)=(-1)^{n} a_{n} \otimes a_{0} \otimes \ldots \otimes a_{n-1} .
$$

The quotient complex $C C_{n}(A)=\frac{C_{n}(A)}{\operatorname{Im}\left(1-t_{n}\right)} \subset C C_{*}(A)$.
For the Connes-Tsygan bicomplex $C C_{*}(A)$ and the chain complex $C C_{\mathbf{\bullet}}(A)=\left(C H_{\mathbf{\bullet}}(A), b_{\mathbf{\bullet}}\right)($ see [5]), then the subcomplex $\left(\operatorname{ker}\left(1-t_{\mathbf{0}}\right), b_{\mathbf{0}}\right) \subset\left(C H_{\mathbf{0}}(A), b_{\mathbf{\circ}}\right)$ has homology as the complex $\left(C C .(A), b_{\mathbf{0}}\right)$ as:

$$
\begin{aligned}
H_{\mathbf{\bullet}}\left(C C_{\mathbf{\bullet}}(A)\right)= & H_{\mathbf{\bullet}}\left(C H_{\mathbf{\bullet}}(A), b_{\mathbf{\bullet}}\right) / \operatorname{im}\left(1-t_{\mathbf{\bullet}}\right)=H_{\mathbf{\bullet}}\left(C H_{\mathbf{\bullet}}(A), b_{\mathbf{\bullet}}\right) / \operatorname{ker} N=H_{\mathbf{\bullet}}\left(\operatorname{im} N, b_{\mathbf{\bullet}}\right) \\
& =H_{\mathbf{\bullet}}\left(\operatorname{ker}\left(1-t_{\mathbf{\bullet}}\right), b_{\mathbf{\bullet}}\right)(2)
\end{aligned}
$$

where

$$
\begin{gathered}
C H_{n}(A)=A^{\otimes n+1}=A \otimes \ldots \otimes A(n+1 \text { times }), \\
b_{n}, b_{n}^{\prime}: C H_{n}(A) \rightarrow C H_{n-1}(A),
\end{gathered}
$$

Such that:

$$
\begin{gathered}
b_{n}^{\prime}\left(a_{0} \otimes \ldots \otimes a_{n}\right)=\sum_{i=0}^{n-1}(-1)^{i}\left(a_{0} \otimes \ldots \otimes a_{i} a_{i+1} \otimes \ldots \otimes a_{n}\right), \\
b_{n}\left(a_{0} \otimes \ldots \otimes a_{n}\right)=b_{n}^{\prime}+(-1)^{n}\left(a_{n} a \otimes \ldots \otimes a_{n-1}\right), \\
t_{n}: C H_{n}(A) \rightarrow C H_{n}(A),
\end{gathered}
$$

such that

$$
t_{n}\left(a_{0} \otimes \ldots \otimes a_{n}\right)=(-1)^{n}\left(a_{n} \otimes a_{0} \otimes \ldots \otimes a_{n-1}\right) \quad \text { and } \quad N_{n}=1=t_{n}^{1}+\ldots+t_{n}^{n} .
$$

The complexes $\left(\operatorname{ker}\left(1-t_{\mathbf{0}}\right), b_{\mathbf{0}}\right)$ and $\left(C C_{\mathbf{0}}(A), b_{\mathbf{0}}\right)$ are isomorphism which given by as an operator $N_{0}: C C .(A) \rightarrow\left(\operatorname{ker}\left(1-t_{0}\right), b_{.}\right)$. The action of the groupZ/2 on the complexCC. (A), by the operator ${ }^{\varepsilon} h$ and on the complex $\left(\operatorname{ker}\left(1-t_{.}\right), b_{.}^{\prime}\right)$ by the operator

$$
{ }^{\varepsilon} r: a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n} \rightarrow(-1)^{\frac{n(n+1)}{2}} \varepsilon a_{n}^{*} \otimes a_{n-1}^{*} \otimes \ldots \otimes a_{0}^{*},
$$

are equal, where a^{*} is the image $a \in A$ under involution $*: A \rightarrow A, \varepsilon= \pm 1$, such that ${ }^{\varepsilon} h_{\boldsymbol{*}} t_{.}=t_{.}{ }^{-1}{ }^{\varepsilon} h$. then we have $N_{0}\left({ }^{\varepsilon} h_{\mathbf{\bullet}}\right)=\left({ }^{\varepsilon} h_{0}\right) N_{0}$.
Since ${ }^{\varepsilon} r_{\mathbf{0}}=t_{\mathbf{0}}{ }^{\varepsilon} h_{\mathbf{0}}$, then

$$
{ }^{\varepsilon} h_{\mathbf{\bullet}} N_{\mathbf{\bullet}}=N_{\bullet}{ }^{\varepsilon} h_{\bullet}=\left(N_{\mathbf{0}} t_{\mathbf{\bullet}}\right)^{\varepsilon} h_{\bullet}=N_{\mathbf{\bullet}}\left(t_{\mathbf{\bullet}}^{\varepsilon} h_{\mathbf{0}}\right)=N_{\mathbf{0}} \quad{ }^{\varepsilon} r_{\bullet} .
$$

then the dihedral homology of A is:

$$
\begin{equation*}
\varepsilon H D_{\mathbf{0}}(A)=H_{\mathbf{\bullet}}\left(\operatorname{ker}\left(1-t_{\mathbf{\bullet}}\right) /\left(\operatorname{Im}\left(1-{ }^{\varepsilon} h_{\mathbf{0}}\right) \cap \operatorname{ker}\left(1-t_{\mathbf{\bullet}}\right)\right)\right) . \tag{3}
\end{equation*}
$$

For a commutative unital Banach algebra A. We denote $\operatorname{by} C^{n}(A)(n=0,1, \ldots)$ the Banach space of continuous $(n+1)$-linear functionals on A ; and we call it n-dimensional co-chains. Let $t_{n}: C^{n}(A) \rightarrow$ $C^{n}(A),(n=1,2, \ldots)$ be the operator

$$
t_{n} f\left(a_{0}, a_{1}, \ldots, a_{n}\right)=(-1)^{n}=(-1)^{n} f\left(a_{1}, \ldots, a_{n}, a_{0}\right),
$$

ift $t_{0}=I$. We write $t=t_{n}$.An operator f satisfying $t f=f$ and called cyclic.IfCC ${ }^{n}(A)$ denotes closed subspace of $C^{n}(A)$ which formed as the cyclic co-chains. $\left(C C^{0}(A)=C^{0}(A)=A^{*}\right.$ since A^{*} is the dual Banach space for A).
by proposition (4) in [4], $\operatorname{Im}\left(1-t_{n}\right)$ is closed in $C^{n}(A)$ and $C C^{n}(A)=C^{n}(A) / \operatorname{Im}\left(1-t_{n}\right)$. The induce operatord $c_{n}: C C^{n+1}(A) \rightarrow C C^{n}(A)$ in the respective quotient spaces. Then, the quotient complex $C C^{\bullet}(A)$ of $C C(A)$ was obtained. The cohomology $C H^{\bullet}(A)$ of $C C^{\bullet}(A)$ is n-dimensional Banach cyclic cohomology group of A. If $r_{n}: C_{n}(A) \rightarrow C_{n}(A), n=0,1, \ldots$ is an operator on the formula

$$
r_{n}\left(a_{0} \otimes \ldots \otimes a_{n}\right)=(-1)^{\frac{n(n+1)}{2}} \in a_{0}^{*} \otimes a_{n}^{*} \otimes \ldots \otimes a_{1}^{*}, \in= \pm 1
$$

where $*$ is an involution on A.
Note that: $\operatorname{Im}\left(i d_{t_{n}(A)}=1-t_{n}\right)$ is closed $\operatorname{in} C^{\bullet}(A)$.
The quotient complex,

$$
C D^{n}(A)=\frac{C^{n}(A)}{\operatorname{Im}\left(1-t_{n}\right)+\operatorname{Im}\left(1-r_{n}\right)}
$$

of a complex $C^{\bullet}(A)$. $H D^{n}(A)$ is an n-dimensional cohomology of $C D^{n}(A)$ and called n-dimensional dihedral cohomology group of a unital Banach algebra A. similarly, we can get the reflexive cohomology $H R^{n}(A)$.

2- Main result

In this part we prove the main theorem of our study. We prove the vanishing state of C^{*}-algebra

Definition3.1:

If C^{*}-algebra Aisomorphic to the tensor product algebra $(K \otimes A)$, then it is called stable, for an algebra K which is compact operators on a separable infinite-dimensional Hilbert space.

In ([2], [6]) we find the definitions of the simplicial, cyclic, reflexive and dihedral cohomology of operator algebra. Following [10] the relations between Hochschild, cyclic, reflexive and dihedral cohomology are given by the following commutate diagram $\mathfrak{C}(A)$:

$$
\begin{aligned}
& \ldots \quad{ }^{-\alpha} \mathrm{HR}^{\mathrm{n}+1}(\mathrm{~A}) \rightarrow{ }^{-\alpha} \mathrm{HD}^{\mathrm{n}+1}(\mathrm{~A}) \rightarrow{ }^{\alpha} \mathrm{HD}^{\mathrm{n}+3}(\mathrm{~A}) \rightarrow{ }^{-\alpha} \mathrm{HR}^{\mathrm{n}+2}(\mathrm{~A}) \rightarrow \cdots
\end{aligned}
$$

Suppose that M_{m} is the algebra of matrices of ordered m with m coefficients in algebra A over ring k with identity. Then the natural isomorphism $H H^{*}\left(M_{m}(A)\right) \approx H H^{*}(A)$ holds [7]. It is called a Morita equivalence. Following [14] the cyclic cohomology is Morita equivalence. If A be involutive algebra with identity, the following assertion holds [see [9]].

Proposition 3.2:

There exists an isomorphism;

$$
\mathrm{Tr}_{*}: \quad{ }^{\alpha} \mathrm{HD}^{*}\left(\mathrm{M}_{\mathrm{m}}(\mathrm{~A})\right) \rightarrow \quad{ }^{\alpha} \mathrm{HD} D^{*}(\mathrm{~A})
$$

for all and $\mathrm{m}>1$ and $\mathrm{n}>0$.
We shall denote by the $B^{*}(A)$ the reflexive or dihedral cohomology $\left({ }^{\alpha} \operatorname{HR}^{*}(A)\right.$ or $\left.\quad{ }^{\alpha} \mathrm{HD}^{*}(A)\right)$ of algebra A.
Our aim now is to prove the following assertion [14].

Theorem 3.3:

For a stable C^{*}-algebra A , we get thatthe reflexive and dihedral cohomology of A are vanishing, i.e

$$
{ }^{\alpha} \mathrm{HR}^{*}(\mathrm{~A})=0, \quad{ }^{\alpha} \mathrm{HD}^{*}(\mathrm{~A})=0, \quad \alpha= \pm 1 .
$$

Firstly, we need the following facts:

Lemma 3.4: [4]

For a C^{*}-algebra A without unit, and i: $A \rightarrow M_{k}(A)$ where M_{k} is thematrices of C^{*}-algebra $A, k>0$ such that,

$$
a \rightarrow\left(\begin{array}{ccc}
a & & \\
& 0 & \\
& & 0
\end{array}\right)
$$

then i is a quasi-isomorphism.

Proof:

If A is a C^{*}-algebra without unit. If $\bar{A}=A \oplus \mathbb{C}$ since \bar{A} is the algebra A with unity, and for the short exact sequence

$$
\begin{equation*}
0 \rightarrow A \rightarrow \bar{A} \rightarrow \mathbb{C} \rightarrow 0 \tag{1}
\end{equation*}
$$

Then the corresponding inclusion of algebra extensions

$$
\begin{array}{ccc}
A & \rightarrow \bar{A} \rightarrow & \mathbb{C} \tag{2}\\
\downarrow & \downarrow & \downarrow \\
M_{k}(A) & \rightarrow & M_{k}(\bar{A}) \rightarrow \\
M_{k}(\mathbb{C})
\end{array}
$$

In [13] and [14], for C^{*}-algebra $\mathrm{M}_{\mathrm{k}}(\mathrm{A})$, we find that it is excision in Hochschild and cyclic homology. Also, we find that it is extended to reflexive and dihedral cohomology,

$$
\begin{array}{ccc}
0 \rightarrow \mathrm{~B}_{*}(\mathrm{~A}) & \rightarrow \mathrm{B}_{*}(\overline{\mathrm{~A}}) & \rightarrow \mathrm{B}_{*}(\mathbb{C}) \rightarrow 0 \tag{3}\\
\downarrow & \downarrow & \downarrow \\
0 \rightarrow \mathrm{~B}_{*}\left(\mathrm{M}_{\mathrm{k}}(\mathrm{~A})\right) & \rightarrow \mathrm{B}_{*}\left(\mathrm{M}_{\mathrm{k}}(\overline{\mathrm{~A}})\right) & \rightarrow \mathrm{B}_{*}\left(\mathrm{M}_{\mathrm{k}}(\mathbb{C})\right) \rightarrow 0
\end{array}
$$

Where for Morita invariance indihedral and reflexive cohomology we find that $\mathrm{B}_{*}\left(\mathrm{M}_{\mathrm{k}}(\mathbb{C})\right) \rightarrow B_{*}(\mathbb{C})$ and $\mathrm{B}_{*}(\overline{\mathrm{~A}}) \rightarrow \mathrm{B}_{*}\left(\mathrm{M}_{\mathrm{k}}(A)\right)$ are isomorphisms, then $\mathrm{B}^{*}(\mathrm{~A}) \xrightarrow{\sim} \mathrm{B}^{*} \mathrm{M}_{\mathrm{k}}(\mathrm{A})$.

Proposition 3.5:

Consider the C^{*}-algebra A and an algebra q_{n} of continuous functions on the n-sphere, then $B^{n+1}(\mathrm{~K} \otimes \mathrm{~A}) \approx \mathrm{B}^{\mathrm{n}}\left(\mathrm{K} \otimes \mathrm{q}_{1} \otimes \mathrm{~A}\right)$ is isomorphism and exists, where $\mathrm{q}_{\mathrm{n}}, \mathrm{n}=0,1, \ldots$ vanishes at the Northern pole.

Proof:

For an algebra of continuous functions] which defined on the unit interval [0,1], then the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathrm{q}_{1} \rightarrow \mathrm{~J} \xrightarrow{\mathrm{p}} \mathbb{C} \rightarrow 0 \tag{4}
\end{equation*}
$$

vanish at the left end, $\operatorname{ker} \mathrm{p}=\mathrm{q}_{1}$.
If the sequence (4) was tensored by $(K \otimes A)$, then we get the split exact sequence

$$
\begin{equation*}
0 \rightarrow\left(\mathrm{~K} \otimes \mathrm{q}_{1} \otimes \mathrm{~A}\right) \rightarrow(\mathrm{K} \otimes \mathrm{~J} \otimes \mathrm{~A}) \rightarrow(\mathrm{K} \otimes \mathrm{~A}) \rightarrow 0 \tag{5}
\end{equation*}
$$

from (5) we get the long exact sequence inreflexive and dihedral cohomology (see [9]).

$$
\begin{gather*}
\ldots \rightarrow \mathrm{B}^{\mathrm{n}+1}(\mathrm{~K} \otimes \mathrm{~J} \otimes \mathrm{~A}) \rightarrow \mathrm{B}^{\mathrm{n}+1}(\mathrm{~K} \otimes \mathrm{~A}) \xrightarrow{\partial} \mathrm{B}^{\mathrm{n}}\left(\mathrm{~K} \otimes \mathrm{q}_{1} \otimes \mathrm{~A}\right) \rightarrow \mathrm{B}^{\mathrm{n}}(\mathrm{~K} \otimes \mathrm{~J} \otimes \mathrm{~A}) \\
\rightarrow \cdots \tag{6}
\end{gather*}
$$

where the connecting homomorphism ∂ is commute with the canonical maps: $H R^{\mathrm{n}} \xrightarrow{\mathrm{I}} \mathrm{HD}^{\mathrm{n}}, \mathrm{HR}^{\mathrm{n}} \rightarrow$ HR^{n}, and $\mathrm{HD}^{\mathrm{n}} \rightarrow \mathrm{HD}^{\mathrm{n}}$. If A is C^{*}-algebra and F is split-exact of the split C^{*}-extensions and stable, then $F(A)=F(K \otimes A)$ is functor between category of graded complex vector spaces to a category of C^{*} algebra (see [8]). Any stable and split-exact functor is homotopy invariant. Since the zero and identity
endomorphisms of $(J \otimes A)$ are homotopic, then $F(J \otimes A)=B^{*}(K \otimes J \otimes A)=0$. using this result and sequence (6) we can easily deduce $B^{n+1}(K \otimes A) \approx B^{n}\left(K \otimes q_{1} \otimes A\right)$.

Proof theorem 3.3:

From the above proposition, the following commutative diagram is obtained as,

$$
\begin{array}{ccc}
{ }^{\alpha} H R^{n}(K \otimes A) & \stackrel{I}{\rightarrow} & { }^{\alpha} H D^{n}(K \otimes A) \\
\downarrow & & \downarrow \tag{7}\\
{ }^{\alpha} H R^{0}\left(K \otimes q_{n} \otimes A\right) & = & { }^{\alpha} H D^{0}\left(K \otimes q_{n} \otimes A\right)
\end{array}
$$

then we obtain the isomorphism:

$$
I: \quad{ }^{\alpha} H R^{*}(K \otimes A) \xrightarrow{I} \quad{ }^{\alpha} H D^{*}(K \otimes A)
$$

The following Connes long exact sequence obtain the relation between reflexive and dihedral cohomology,

$$
\begin{align*}
& \ldots \rightarrow \quad{ }^{\alpha} H R^{1}(K \otimes A) \rightarrow \quad{ }^{\alpha} H D^{0}(K \otimes A) \rightarrow \quad{ }^{-\alpha} H D^{2}(K \otimes A) \rightarrow \quad{ }^{\alpha} H R^{2}(K \otimes A) \\
& \rightarrow \quad{ }^{\alpha} H D^{1}(K \otimes A) \xrightarrow{s} \quad{ }^{-\alpha} H D^{3}(K \otimes A) \rightarrow \cdots \rightarrow \quad{ }^{\alpha} H R^{n}(K \otimes A) \\
& \rightarrow \quad{ }^{\alpha} H D^{n-1}(K \otimes A) \xrightarrow{s} \quad{ }^{-\alpha} H D^{n+1}(K \otimes A) \\
& \rightarrow \cdots \tag{8}
\end{align*}
$$

for the periodic operators. From (7) and (8) we have;

$$
{ }^{\alpha} H D^{*}(K \otimes A)=\quad{ }^{\alpha} H R^{*}(K \otimes A)=0, \quad \alpha= \pm 1
$$

Example 3.6:

Let $u=\mathcal{F}(H) / k$ be the Calkin algebra then,

$$
{ }^{\alpha} H R^{*}(u)={ }^{\alpha} H D^{*}(u)=0 .
$$

Example 3.7:

Let H be the Hilbert space with infinite dimensional and $\mathcal{F}(\mathrm{H})$ be the algebra of bounded operators on H.Then

$$
{ }^{\alpha} H R^{*}(\mathcal{F}(H))=0 \text { and } \quad{ }^{\alpha} H D^{*}(\mathcal{F}(H))=0
$$

References:

[1] Alaa H. N., "On the Homology Theory of Operator Algebras", International Journal of Mathematics and Mathematical Sciences, 2012, pages 1-13, December. DOI: 10.1155/2012/368527
[2] Alaa H.N., On the relative dihedral cohomology of Banach algebras", Modern Applied Science; 2019, Vol. 13, No. 10; DOI: 10.5539/mas. v13n10p1.
[3] Loday J-L., "Cyclic Homology of Algebras ", Springer Berlin Heidelberg, (1998), vol 301., https://doi.org/10.1007/978-3-662-11389-9_2.
[4] Thiel H., "An introduction to hochschild and cyclic homology", Term paper for Math 215B Algebraic Topology", Spring 2006, UC Berkeley.
[5] Y. Gh. Gouda, The relative dihedral homology of involutivealgebras, Internat. J. Math. \& Math. Sci. Vol.2, N0.4(1999) 807-815.
[6] Krasauskas R L, \& Lapin S V, \&Solov'ev Yu P, "Dihedral homology and cohomology basic notions and constructions", Mathematics of the USSR-Sbornik, 1988, volume 61, issue 1, P2347. DOI: 10.1070/sm1988v061n01 abeh003190.
[7] E. Christensen and A. M. Sinclair, "On the vanishing of H^{n} (A, A") for certain c^{*}-algebras". Pacific J. of Math. 137, No. 1. (1989), 55-63.
[8] Alaa H. N. Mohamed \& Mohsen A. H. Eid, "Study of the homology theory of fuzzy algebra", International J. of Research, Volume 06, Issue, 3March 2019.
[9] Alaa Hassan Noreldeen Mohamed, "On the cohomology of relative Banach algebras", Modern Applied Science; Vol. 13, No. 10; 2019.doi:10.5539/mas. v13n10p1.
[10] Alaa H. N. Mohamed, "Study of the d-infinity differential module" International Journal of Mathematical Analysis, Vol. 13, 2019, no. 10, 487 - 494, https://doi.org/10.12988/ijma.2019.9849.
[11] Alaa Hassan Noreldeen and S. A. Abo-Quota, "Operations on the dihedral homology theory", Applied Mathematical Sciences, Vol. 13, 2019, no. 20, 983 - 990. https://doi.org/10.12988/ams.2019.98122.
[12] Alaa Hassan Noreldeen, Treatment of operator algebras through cohomology theory, Inf. Sci. Lett. 9, No. 1, 1-5 (2020).
[13] Alaa Hassan Noreldeen Mohamed, Perturbation differential a-infinity algebra, Appl. Math. Inf. Sci. 14, No. 3, 1-5 (2020), http://dx.doi.org/10.18576/amis/Alaa
[14] Alaa Hassan Noreldeen, Differential graded algebras and derived E ∞-algebras, Appl. Math. Inf. Sci. 14, No. 4, 673-678 (2020)
[15] Alaa Hassan \&Hegagi M. Ali and Samar Aboquota, (Some properties in the (co)homology theory of lie algebra), Aust. J. Math. Anal. Appl.,Vol. 17 (2020), No. 2, Art. 9, 9 pp., ISSN: 1449-5910

