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Abstract

In this paper, we investigate some combinatorial sequences based on the generalized Stirling
numbers and the \-analogues of r-Stirling numbers of the first kind, then derive their moment
representations in use of probabilistic methods. We also provide identities related to r-Stirling
numbers of the first kind, Stirling numbers and Daehee numbers.
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1. Introduction and Preliminaries
Throughout this paper, we use the following notations:
N= {1727?”"'}7220 = {051727}

Let s(n, k;r) denote the generalized Stirling numbers of the first kind of order & € N, which are defined
by the generating function[1, 2] to be

0 n n k
Zs(n,k;r)%:(lth)*Tw. (1)
n==k

In special case, when r = 0, s(n, k;r) = s(n, k) are called the Stirling numbers of the first kind.
Let S(n,k;r) denote the generalized Stirling numbers of the second kind of order k € N, which are
defined by the generating function[1, 2] to be

S . " _ rt(et_l)k
nz:;CS(n,k‘,r)a—e - (2)
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In special case, when r =0, S(n, k;r) = S(n, k) are called the Stirling numbers of the second kind.
Let SY) (n,k) denote the r-Stirling numbers of the first kind, which are defined by the generating
function[3] to be

e n n k
>80 k)L = 1y DD 3)
n=k

Let S’Yg\(n, k) denote the A-analogues of r-Stirling numbers of the first kind, which are defined by the

generating function[3] to be
( l’n,(1+)\t) )k;

N PN 2 (5

n=~k

When lim S (n, k) = Syx(n, k).
r— ’

Remark 1. /4] If f and g are exponential generating functions, and

then the coefficients of % in fg are given by
" " /n
—_ = rbn—r~
gl =3 ()

Remark 2. Throughout this paper, symbol E denotes the expectation operator defined by

+oo
Ef(X) = / F(@)p(a)d,

where random variable X is continuous, whose density function is p(x). Specially, when f(x) = z™, EX"
denotes n-order moment of random variable X.

1. When rovu ~ U[0,1], Bu™ = 1=
2. When rv X ~T(1,1), EX"™ =nl,
3. WhenrvY ~T(a,A),a>0,A>0, EY" = A7" < a >,.
Definition 1. The characteristic function of random variable X is defined as
o(t) = Ee™™ i? = —1,—00 < t < o0. (5)

When the moments of all orders of r.v. X exist, the following relation expression holds true,

Jo(t), @ =-1. (6)

Remark 3. [5] If random variable X is distributed as T'(a, \), where a, A > 0, its characteristic function is
it X it —a
olt) = Bt = (1 - Tye, ©
Remark 4. X and Y are two random variables, when Cov(X,Y)=0, we have E(XY)=EX-EY, where
Cou(X,Y)=E(XY)-EX)E(Y) (8)

Then we give five lemmas to introduce moment representations of some special combinatorial sequences.
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Lemma 1. [}] Assume that r.v uy,uz ~ U[0,1],then Harmonic numbers H, = > "+ have the following

moment representation,
H, =nE(l —uu)" ', n>1 (9)

Lemma 2. [}/ Suppose that r.v.s u1,ug, - ,i.0.d ~ U[0,1], rv.s T'1,Tg,--- ,idd ~ I'(1,1), rv u; and T';
are independent respectively for alli,j. When n,k > 1, Stirling numbers of the first kind s(n, k) satisfy

s(n, k) =(=1)""*F (Z) B(uily 4 usly 4 -+ 4w Ip)" "
(10)

n—1
:(_1)n7k <k B 1>E(U1F1 F+uglo + - +up_1 g1 + Fk)nilﬁ

It is demanded that s(n,0)=s(0,k)=0, s(0,0)=1.

Lemma 3. [// Suppose that r.v.s ui,ug, - ,t.0.d ~ U[0,1], rv.s T'1,Tg,--- ,idd ~ I'(1,1), rv u; and T';
are independent respectively for all i,j. When n,k > 1, Stirling numbers of the second kind S(n, k) satisfy

1
S(n, k) = (Z) Bup +ug+ - +up)" " = e k)!E(Fl + 2T 4+ k)", (11)

It is demanded that S(n,0)=S(0,k)=0, s(0,0)=1.

Lemma 4. [6] Assume r.v.s uy,us, ..., i.i.d ~ U[0,1], T'1,Tq, ..., i.i.d ~ T'(1,1), and for all i,7, r.v u; and
I'; are independent. When n,m —k € Z>o, k € N, we have the following moment representation,

D = (—=&)"B(uiTy + - +uplp)",  n>0. (12)

Lemma 5. [6] Assume r.v.s uy,us, ..., i.4.d ~ U[0,1], T1,Ty, ..., i4.d ~T(1,1), rvo.X ~ T'(r,2),r>0,and
foralli,j, rvu; and I'; are independent.we have the following moment representation,

T - n—r n k —Tr n—
CGP = (-1) (k()r)!E(ulFl o u, D)FTEXYTR D e (13)
k=r

2. Moment Representations of the generalized Stirling numbers

In this section, we use probabilistic method to derive moment representations about the generalized Stirling
numbers of the first kind,the generalized Stirling numbers of the second kind,r-Stirling numbers of the first
kind and the A-analogues of r-Stirling numbers of the first kind.

Theorem 1. Assume that r.v.s uy,us, ..., i.i.d ~ U[0,1], T'1, Ty, ..., i.i.d ~T'(1,1), rv.X ~ T'(r,1),r>0,and
foralli,j, rvu; and I'; are independent. When n >k, k € N, we have

s(n,k;r) = (=1)"* (Z) B(X +uily +ugly + -+ 4w Tp)" k. (14)

Proof. The generating function of the generalized Stirling numbers of the first kind is known as
o0

(In(1 +¢))*

tn
s(n,k;r)ﬁ =(1+1¢)" o ,

n=~k
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Taking the coefficients of ¢ in the left-hand side of Eq.(15), we get

k!

n!

= [(-it)") Y BX"

n>0

= [(=it)" ] Y BX" i (

n>0

— (-] Y EX"

n>0

— (In(1 —4t))*
(it)" In(1 —it))k
—it

n!

(Z;fb)'" » (it)T:‘ °

m>1

=[(=it)"] > EX"—

n>0

=[(—it)"] > EX"

n>0

=[(—it)"] Y  EX"

n>0

= =iy BXT

n>0

=[(-it)"] > EX"

n>0

WIS S ).
it)" &
oty v
i) =
oy v

(Z’:;)'n ( Z Eu™ (it)m)k

m>0

n=0mi+---+mp=n

( n
my, Mo, -« Mg

( . )
mi, Mo, My

n=0mi+---+mr=n

n=0mi+---+mr=n

n!

) 0o
(l ) ZE(ulI‘l +uQF2++uka)"(
n=0

(n,k;r) = [t"]In(1 + )*(1 + )" = [(—it)"] In(1 — it)*(1 —at)™"
(it)"
!

= [(—it)"] Z(Z <Z> EX" *E(uil'y + usly + - 4+ up Iy )¥) (Z:L)'n

n>0 k=0

= [(_Zt) };E(X +u 'y +uglg 4+ -+ - + Uka) (n)'

From Eq.(16), we can see that

k' . _ n—k - n—k 1
(ki) = (=1) kZ:OE(X +urly + usly 4 - - + u Ty =

thus we have
n

s(n, k;r) = (=1)"* (k) E(X +uily +usly + -+ 4w Tp)" k.

Corollary 1. In theorem 1, when k = n, we obtain the equation:
s(n,n;r) = 1.

In theorem 1, when k = 1, we obtain the equation:

n—1

8(71, ]_;r) = (_l)n—l Z k'</{j :i 1) <Tr>p_k-1 -
k=0
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Proof.
s(n, 1;7) =(=1)"'nE(X +ul)"*

n—1
—ca ey (M) o

k=0

—(~1)"'n Z - (= D' g xyn—r=1 guryt

—k—1)!
n—1

1 n!
_(_1\n—1
=(=1) ,;Jk+1(n—k_1)!<r>"*’“*l

n—1
_ n
=(—1)"! E k!<k+ 1) <7 >pogot -
k=0

In theoreml1, when k = 1,7 = 1,n > 1, we obtain the equation:

s(n,1;1) = (=1)" Y (n)nBE(1 — uyus)" L.

Proof.
el — 1 n! |
s(n,1;1) =(—1) ;} oy gy 1)!(n—k— 1)!
n—1 1
=D n) )
k1

n—1

I
|
—_
~—
3
|
-
—~
S
~—
3
!
—
|
<
—_
<
no

Proof.

s(n,n — 1, 1) = —nE(X + u1F1 + UQFQ + -+ un_lfn_l)

1 1
= n(l4 s+ =

2 2
—n(1+ 20
~ n(n+1)
=Tt

(19)

(20)

O

Theorem 2. Assume that r.v.s uy,us, ..., i.i.d ~ U[0,1], T'1,Ty, ..., i.i.d ~T(1,1), rv.X ~ T'(r,1),r>0,and
for alli,3, r.v u; and I'; are independent. When n > k, k € N, we have the second moment representation

of the generalized Stirling numbers of the first kind

s(n, k; r Z LEXTL—mE(ulFl +uslg + -+ + ukrk)m—k. (21>
— —k)!
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Proof.

S s k) = (1 44y (0"

n

- i(z”: (”) (-nHrmEX"TT™ (7:) (—1)™FB(uaTy + upT + -+ + ukl‘k)m—k)%n!

[ele] n B n)m B - tn
=Y O (=1 ’fk!(in)k)!EX” "B (uily + ugly + - - - + D)™ k)ﬁ

By comparing the coefficients of %, theorem 2 is proved. O

Corollary 2. In theorem 2, taking r = 2, we obtain the equation:
1 k
s(n, k;2) = ECG”' (22)

Corollary 3. From corollary 2, when k = 1,n > 1,the following relationship holds true,

s(n,1;2) = CG,= Y (Z) mDyy1Chpp, 1> 1.[6] (23)

m=1

Theorem 3. Suppose that r.v.s ui,us, ..., i.i.d ~ U[0,1], T'1,Ta, ..., i.i.d ~ T'(1,1), then the generalized
Stirling numbers of the second kind S(n, k;r) satisfy

S(n,kir) = (m(f)/j%kﬂ“"’”E(ul +up+ )" (24)
m=k o
- (1) oy BT+ 20 AT, (25)

Proof.

n=0 n! n==k
=500 (1)t

n

= E(Z TT?% <TZ)E(U1 +us + -+ uk)m—k)%
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S(n, k) = E(Ty + 205 + - - + k['y)" % therefore

1
(n—k)!

- - n n—m 1 mfktn
3 Stk = 00 () g A 2R b

n=k m=~k

By comparing the coeflicients of %, we obtain theorem 3.

Corollary 4. In theorem 3, taking k = n,r = 1, we obtain the equation:
S(n,n;1) = 1.
In theorem 3, taking k = 1,r = 1, we obtain the equation:

S(n,1,1) = Z B(un)™ ! = (Z)—?”l.

m:l m=1

In theorem 3, taking k =n — 1,7 = 1, we obtain the equation:

S(n,nfl,l):@.
Proof. .
n)m m—n
Ston=1,1)= 3 (m—n:—i)!(n—l)!E(ul+“2+"'+un1) o

m=n—1
=n+nE(u; +uz+ -+ uUp_1)
nn—1) n(n+1)

In theorem 3, taking k = 2,r = 1, we obtain the equation:

3"+1
2

S(n,2;1) = —2m,
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Proof.

Sn,21) = > m()2)'2'E(u1 +ug) ™2

m—2
k um 2—k
(m — QIQIEZ( > U2

=0

n! 1 1 1
Im—2—k)Wkk+1m—k—1

o)

I|
)

m

Il
&Mz

3
w

Il
=3
M=~
]
=S
\
2

3
||
N
B
I
o

I
N |
R

3 3
N—
= 3
Il |
°© N}
N
3

2
S
- ;(; (;)2’” ;%Z))
- %[3”_271—1—2(2”—11—1)]
= %(371 —2ntl ).

O

Theorem 4. Assume that r.v.s uy, ua, ..., i.i.d ~ U[0,1], T'1,Tg, ..., i.i.d ~ T'(1 ,1), ro.X ~T(r—n+1,1),r
n+1>0,and for all i,j, r.v u; , I'; and X are independent. When n > k, k € N, we have the moment
representation of r-Stirling numbers of the first kind

S (n, k) = (=1)"* (k> B(=X +uiTy +uply + - - - 4w, D)%, (30)
Proof. The generating function of the r-Stirling numbers of the first kind is known as
(oo}
. " In(1 + t))*
>osi k) = 1y A EDF o ) (31)

Taking the coefficients of ¢ in the left-hand side of Eq.(31), we get

%S§T)(n,k) = [t"](In(1 +t))k(1 Loy

= [(—f)"_k]( 7 In(7— t))k(l —t)

= [ §>jo<r>n =

= [(=)"* ) BTy +uals + -+ + upTx) tT; do<r—nt1>, (nﬁ
= =

= [(=)""] Z:()E(ull“l +usly 4wl ;)E

SR (1) Bl + koo ukmnme(fX)m%"!

= [(—=t)" "] ;)E(—X +urly +ugly 4 - + ukl"k)”%.
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we can see that

k! (r) _ n—k = n—k 1
551 (n, k) = (=1) kZZ()E(—X+U1F1+u2F2+~-+Uka) (n—k)!’

thus we have

S (n k) = (1) F (Z) E(=X 4wl +usly + -+ 4+ upT)" .

O
The generating function of the A-analogues of r-Stirling numbers of the first kind is known as
= () o e In(1+ At) , tF
;smm,k)a = (1205 (=)
thus
o Nt t" 1 In(1+ M)
}%s;;(n,k) = S1a(n, k), Saln, k) = S ()" (32)

n=~k

Theorem 5. Suppose that r.v.s ui,us, ..., i.i.d ~ U[0,1], T'1,T'y, ..., i.i.d ~ I'(1,1),and r.v u;, T'; are
independent for all i, j, When n >k, k € N, we have the moment representation of S1x(n, k),

Sia(n k) = (=\)"F (Z) E(uiTy 4+ ualg + -+ - + upTg)" ", (33)
Proof.
> "1 In(1+At),,  t* In(1+At),
;SL)\('H’]{)E - y(f) - E(T) ) (34)
= 1 In(14 Xt)
;&ank)ﬁ = E(T) ) (35)

Taking the coefficients of t"~* in the left-hand side of Eq.(35), we get

In(1 + At)

$1a(n, k)5 = frrot (PEE A
= (3 A Ly
= [ (Y (A B
m>0
=" Y <m1 m:mng(ul)ml...E(uk)mkmly...mkzz

mi+-+mrp=n

tn
= " (=N)"E(uiTy + ugly + - + ukrk)nﬁ
1
— ()R n—k
= (=N)"""E(uily + usly + -+ 4w Ty k)

thus we have
Sia(n, k) = (=\)"* (Z)E(Ulfl +uply + -+ - 4w L))"k,
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Corollary 5. Under the circumstance of theorem 6,according to the moment representation of k-order

Twisted Daehee numbers,we have Si x(n, k) = (Z)wak,w taking k = 1, we obtain the equation

Sia(n,1) =nDp_q 2, (36)
taking A = 1, we obtain the equation
Y Sk
S11(n, k) =s(n, k) = i Dy _,. (37)

Theorem 6. Suppose that r.v.s ui,us, ..., 1.4.d ~ U[0,1], T'1,Ts, ..., i.i.d ~ I'(1,1),and rv u;, T'; are
independent for all i, j, When n > k, k € N, we have the moment representation of A-analogues of r-Stirling
numbers of the first kind,

n—k
r n\/n—k L _k—
S%,,i(”a k) = me (k) ( m )(—)\)n =M B(uiTy 4 uala + -+ 4 ugl) " (1) . (38)
Proof. The generating function of A-analogues of r-Stirling numbers of the first kind is known as
n In(1+ M), tF

S () .
;Sum, B)— = (M5 (=) (39)

Taking the coefficients of t”~* in the left-hand side of Eq.(39), we get

) kL b n W17 t"
Sialn k) =[t"""] > (=N"E(uily +usly + -+ + wil'y) 1 2. Mna s
’ n=0 " n=0 :

= [t" ] Z(Z <m> (=A)"""E(uily +uglg + -+ + ukrk)n_m(r)m,k)a

n=0 m=0

n—~k
—k
=2 <"m )(—)‘)"_m_kE(Ulpl +uala + -+ weTe)" " ()

3. Identities of the generalized Stirling numbers and Special Com-
binatorial Sequences

In this section, we use moment forms of special combinatorial sequences, characteristic function and gener-
ating function method to investigate the relationships among the generalized Stirling numbers of the first
kind s(n, k; r),the A-analogues of r-Stirling numbers of the first kind SY; (n, k),the Daehee numbers and the
Stirling numbers of the first kind, then we obtain combinatorial identities about them.

Theorem 7. Under the circumstance of theorem 1,the generalized Stirling numbers of the first kind s(n, k; )
and the Stirling numbers of the first kind s(n, k) have the following equation:

n—k n
s(n, kyr) = (-1)" (z) <r>ps(n—1k). (40)

=0

Proof.
Sk =ul'1 +usl'o + -+ - +upl'y (41)
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s(n, k;r) = (=1)"*F (Z) E(X 4 8,)" %
n—k
0

— (~1)nk <Z>E lz:: (” ; k) Xl gt
n—k

= (= )lw(nﬁ'_l Z EXZW(—I)"“ (n/; l) ESph-

:nif <)<T>ls(n—l,k).

O

Corollary 6. Under the circumstance of theorem 7,the higher-order Daehee numbers D;k) = (-1)"E(u 1+
<+ uply)" = (—1)"ES} we obtain the equation

n—k
s(n, k;r) = (1) F (Z) 3 <” , k) EX" ksl
=0
wk n\ (n—k
D s (k) < l > <r >y DM (42)
=0

when k= 1,7 = 1, we obtain the equation:

n—1

s(n,1;1) = Z(—l)”*“l?—:Dl. (43)

=0

Theorem 8. Under the circumstance of theorem 6,we obtain the equation:

S, ) = Z()( D r (1)

m=

)y z< )( )A”—k—mz)g“)km(r)m,A, (45)

n_z ('” >/\" K= (0, k + 1) (P (46)

(45)(46)is obviously true,next prove(47),
Proof.
RN =k
552(717 k‘) = Z ( ) ( )(_)\)n—k—mE(ulrl +uslg + -+ + ukrk)n_k_m(r)m,)\

k m
m=0

n—=k
() e s
m=0 \k+m
n—k
_ (kr;;?)'()\)" K51, k) (7)o
-0 k!
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Corollary 7. Under the circumstance of theorem 5, we obtain the equation:

Sia(n, k) = A""Fs(n, k). (47)

because s(n, k) = (—1)"F (Z:i)E(ulI‘l +uolo + - +up_1Tp_1 + Tx)" %, thus we have the second moment

representation of Sy x(n, k),

n—1

51,)\(717 k‘) = (_/\)n—k (,l{} B 1)E(U1F1 +usl'g + - +up_1 1 + Fk)n_k. (48)

Corollary 8. Under the circumstance of theorem 5 and theorem 6,the A-analogues of r-Stirling numbers of
the first kind and S1(n, k) have the following equation:

n—k

Sian,k) = 3~ (1) (Z) S1.(n = Ky 1) (P - (49)

m=0
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