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Abstract

This paper studies the numerical properties of §-methods for the alternately advanced and re-
tarded differential equation u'(t) = au(t)+bu(2[(t+1)/2]). Using two classes of §-methods, namely
the linear -method and the one-leg -method, the stability regions of numerical methods are
determined, and the conditions of oscillation for the #-methods are derived. Moreover, we
give the conditions under which the numerical stability regions contain the analytical stability
regions. It is shown that the -methods preserve the oscillation of the analytic solution. In
addition, the relationships between stability and oscillation are presented. Several numerical
examples are given.
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1. Introduction

In the last few decades there has been an increasing interest in the study of differential equation with
piecewise constant arguments (EPCA). EPCA describe hybrid dynamical systems, combine properties of both
differential and difference equations. For instance, the equation [12] u’(t) = u(t)(r — 377" dju([t —j])) can be
regarded as a semi-discretization [7, 5] of logistic equation with multi-delay v’ (t) = w(¢)(r — Z;"':O du(t—Ty).

EPCA have been introduced by Shah and Wiener [14], Cooke and Wiener [3]. They have many applica-
tions in biomedical models [1] and the stabilization of hybrid control systems with feedback discrete controller
[8]. So more and more research activities on EPCA are carried out. There exists an extensive literature
dealing with EPCA, such as the stability [2], the oscillation [21], the periodicity [17] and contractivity [13].
The general theory and basic results for EPCA have been thoroughly developed in the book of Wiener [22].

In addition to the research on the qualitative property of EPCA, much studies have been concentrated
on the numerical analysis of EPCA recently. The convergence and the stability of numerical methods for
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a variety of EPCA have been addressed in [16, 23, 19, 9, 24]. In [10, 11], oscillation of numerical solutions
for the same equation z’(t) + ax(t) + a1z([t — 1]) = 0 are investigated, respectively. However, until now
the author are not aware of any published results on the stability and oscillation of numerical solutions of
EPCA simultaneously except for [18, 15]. In [18, 15], EPCA with [t + 1/2] and 2[(¢ 4+ 1)/2] were considered,
respectively. Different from them, in our paper, we consider both stability and oscillation of the 8-methods
for EPCA with 2[(¢ + 1)/2], and discuss their relationships quantitatively.

Consider the EPCA

u'(t) = au(t) + bu (2 [t_;l]) , u(0) = up, (1)
where a, b, ug are real constants and ug is a given initial value. Here as usual [-] denotes the greatest integer
function. Equations like (1) have stimulated great interest and have been considered by Cooker and Wiener
[4], Jayasree and Deo [6], Wiener and Aftabizadeh [20]. In (1) the argument deviation ¢ — 2[(¢ + 1)/2]
is a piecewise linear periodic function. Moreover, T(t) is negative for ¢ € [2n — 1,2n) and positive for
t € [2n,2n + 1). Therefore, (1) is advanced type on [2n — 1,2n) and retarded type on [2n,2n + 1). So (1) is
EPCA of alternately advanced and retarded type. The aim of the current paper is to study the stability and

oscillation of the numerical solutions in the #-methods for (1). The problems of numerical method preserves
stability and oscillation and the relationships between stability and oscillation are also investigated.

2. Stability and Oscillation of Analytic Solution
For convenience, we give some known results that are required later.
Definition 1. [22] A solution of (1) on [0,00) is a function u(t) which satisfies the following conditions :
(1) u(t) is continuous on [0,00),

(ii) The derivative u'(t) exists at each point t in [0,00), with the possible exception of the points t = 2n —1
for n € N, where one-sided derivatives exist,

(iil) (1) is satisfied on each interval [2n — 1,2n 4+ 1) for n € N.
Theorem 1. [22] Equation (1) has on [0,00) a unique solution u(t) given by

Q4 (1) (]
u(t) = (1) (55%) " w, a0,

0, (1) (]
u(t) = (T®) (52%) " w, a=0,

where )
t
0 (0) = e+ (6"~ a0, a(0) = 1+ 0,70 =0~ 2|52
Theorem 2. [22] The solution u(t) = 0 of (1) is asymptotically stable if and only if any one of the following
conditions is satisfied:

—a((ji'f)lz) <b< —a, for a>0,
b > —a((j:r)? ,or b< —a, for a<0, (3)

b<0, for a=0.

Definition 2. A nontrivial solution of (1) is said to be oscillatory if there exists a sequence {t;}72, such that
ty — 00 as k — oo and u(ty)u(ty—1) < 0. Otherwise, it is called non-oscillatory. We say (1) is oscillatory
if all nontrivial solutions of (1) are oscillatory. We say (1) is non-oscillatory if all nontrivial solutions of
(1) are non-oscillatory.

Theorem 3. [22] A necessary and sufficient condition for all solutions of (1) to be oscillatory is

b< -2 or b>-2— a#0,

er—1 er—17

b<—-1 or b>1, a=0.



Q. Wang, X.Y. Liu

3. Stability and Oscillation of the #-Methods

3.1. The Difference Scheme and Convergence

Let h = 1/m be a given stepsize with integer m > 1 and the gridpoints ¢, be defined by t, = nh
(n=1,2,3,---). We consider the application of the linear #-method to (1),

U1 = tn + B {o <aun+1 + buh(2[(”“2)h“})> L(1-0) (aun + buh(Q[nh;l])) } (@)

and the one-leg #-method to (1),

U1 = tn + {a (Otnsr + (1 — O)un) + buc” (2 {W;h“] ) } , (5)

where 0 < # < 1 is a parameter, u, is approximation to the exact solution u(t) at the gridpoints ¢,
(n=1,2,3,---), u"(2[(nh + 1)/2]) and u"(2[((n + 1)h + 1)/2]) are approximations to u(2[(t + 1)/2]) at t,
and t,1, respectively. Let n =2km +1,l = —-m,—-m+1,--- , m—2m—1fork>1and!=0,1,--- ,m—1
for k = 0. Then u"(2[(nh+1)/2]), u"(2[((n+1)h+1)/2]) and u"(2[((n+6)h+1)/2]) can be defined as uakm,
according to Definition 1. As a result, relations (4) and (5) are reduced to the same recurrence relation

Uskm+141 = R(2)Uokmtt + 2(R(2) — Duggm, a#0, 6)
U2km+14+1 = U2km+1 + hbU2km, a =0,

where z = ha and R(z) =1+ z/(1 — 6z) is the stability function of the #-methods.
In fact, in each interval [2n—1,2n+1), (1) can be seen as ordinary differential equation, so the convergence
of the #-methods is obtained.

Theorem 4. [16] The §-methods applied to (1) are of order 1 when 0 # 1/2 and of order 2 when 6 = 1/2.

3.2. Numerical Stability
In the rest of the paper, we always suppose h < 1/|al, then it follows from (6) that

Ukmy1 = (14 hlb)usgm,
1+b
UQ(k4+1)m = 1i_bu2kma

for a = 0 and

Uzkm+1 = W (1) uzkm, (7)
U(k41)ym = AMU2km, (8)
for a # 0, where
b W(m)
_ 1,0 1 _ v
W(l) = R(z)" + a(R(z) 1), A Wem)’

Definition 3. The 8-methods are called asymptotically stable at (a,b) if there exists a constant M such that
uy, defined by relation (4) or (5) tends to zero as n — oo for all h = 1/m and any given ug.

Definition 4. The set of all points (a,b) at which the 0-methods are asymptotically stable is called the
asymptotic stability region denoted by S.

Hence we have the following theorem for stability.
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Theorem 5. The 0-methods are asymptotically stable if any one of the following conditions is satisfied:

—Mm'ﬂ)<b<—a7 for a >0,

(R(z)™-1)? e
b< —a or b>—%, for a <0, 9)

b<0, for a=0.

Proof. Tt is easy to see from (7) and (8) that u,, — 0 as n — oo if and only if ugg,, — 0 as k — co. Therefore,
the #-methods are asymptotically stable if and only if

R(z)™+2(R(z)™~1)
R(z) "+ L(R(z) 1)

%Z <1, for a=0,

<1, for a#0,

thus we have
(a+b)R(2)*™ — bR(2)™

-1 1, fi 1
< o+ b—bR()™ <1, for a#0, (10a)
b<0, for a=0. (10b)
Case 1. If a4+ b—bR(2)™ > 0, then (10a) becomes
2m 1
ps AR LR <ot (11)

(R(z)™—1)*"
If a > 0 then R(z) > 1, in view of (11) we obtain b < —a, hence

_a((]éti((;)im_ﬁ)12)<b<—a7 for a>0. (12)

If a < 0 then 0 < R(z) < 1, by (11) we have b > —a. It is obvious that

a(R(z)*™ +1)
R EEE

then by (11) we have

a(R(2)*™ + 1)
(R(z)™ —1)2°
Case 2. If a + b — bR(2)™ < 0, then (10a) yields

b>— for a <0. (13)

(L(R(Z)Qm J; 1) 7 (a + b)R(Z)Zm >a+b.

(R(z)™ —1)?
In a way analogues to the discussion in Case 1, we obtain
b< —a, for a<0. (14)

By means of (10), (12), (13) and (14), the proof is finished. O

3.3. Numerical Oscillation and Non-oscillation
Theorem 6. The following statements are equivalent:
(i) {un} is oscillatory,

(i1) {uakm} is oscillatory,
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(iii) b<—}g(1:§fn): orb> g fora#0 and b < -1 orb>1 fora=0.

Proof. Firstly, when a # 0, we only need to prove that the following two statements: (a) {u,} is not

oscillatory and (b) {uakm } is not oscillatory are equivalent. It is easy to know that (a) implies (b). Conversely,

if (b) holds, we have A = (R(2)™ +b(R(2)™ —1)/a)/(R(z)"™+b(R(z)"™ —1)/a) > 0, from which we obtain
b

R(=)" + -~ (R(z)™ = 1) > 0, R(x) ™" + S(R(z)*m ~1)>0,

or

R(z)™ + S(R(Z)m ~1) <0,R(z)™™ + S(R(z)’m ~1) <0,

by simple computation, we have

_aR(x)™ che a
R(z)m —1 R(z)™ —1
Thus for any [ =1,2,--- ,m — 1, we get
aR(z)! aR(z)™ a a
— — b
RE-1° Rem—1" "Rem-1 R@E -1
which is equivalent to
b b
R(2)' + a(R(z)l —1)>0,R(z)""+ a(R(z)fl —-1)>0.

From (7) we know that {u, } is not oscillatory. Thus (a) and (b) are equivalent, that is to say, (i) and (ii) are
equivalent. In what follows, we prove (ii) and (iii) are equivalent. It is known to us that {usgm, } is oscillatory
if and only if A = (R(2)™ + b(R(z)™ —1)/a)/(R(z)™™ + b(R(z)~™ — 1)/a) < 0, which is equivalent to

aR(z)™ a
b < —m or b> W,

so (ii) and (iii) are equivalent. The case of @ = 0 can be got in the same way. Therefore the theorem is
proved. O

4. Preservation of Stability and Oscillation

Let us consider the following four problems

/(1) = 2u(t) ~ 272 L)), w(0) =1, (15)
V() = —3u(t) + 34u2[ L), w(0) = 1, (16)
() = dut) - 4.2u(2[#]), w(0) = 1, (17)
u'(t) = —bu(t) + 5.1@2[%}), u(0) = 1. (18)

We apply the #-methods to (15)-(18), respectively. In view of Theorem 4 we know that the §-methods are
convergent. From Figure 1 (the figure of the analytic solution of (18) should be seen by zooming in), we can
see that the analytic solutions of (15) and (16) are both asymptotically stable, but their numerical solutions
are not both asymptotically stable. The analytic solutions of (17) and (18) are both oscillatory, but their
numerical solutions are not both oscillatory. That is to say, for one problem, the analytic solutions and the
numerical solutions may have the same or the different stability and oscillatory properties. It is known to
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Figure 1: The analytic solution (blue line) and the numerical solution (red line). Left of first row: (15)
with 6 = 0.3 and m = 50, right of first row: (16) with 6 = 0.8 and m = 10, left of second row: (17) with
0 = 0.6 and m = 40, right of second row: (18) with 6 =1 and m = 5.
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us that the numerical method which can preserve the corresponding properties of original problem is useful
and practical. Therefore, it is necessary to study the conditions under which the numerical solution and the
analytic solution have the same stability and oscillatory properties.

In this section, we investigate the conditions under which the analytical stability region is contained
in the numerical stability region and the conditions under which the numerical solution and the analytic
solution are oscillatory simultaneously.

4.1. Preservation of Stability

We introduce the set consisting of all points (a,b) € R? at which (1) is asymptotically stable as H. In
the following we will investigate which conditions lead to H C S. For convenience, we divide H and S into
three parts, respectively:

Hy={(a,b) € H:a=0},H; ={(a,b) € H\ Hy : a < 0},
Hy ={(a,b) € H\ Hyp:a > 0},5 = {(a,b) € S:a=0},
S1={(a,b) € S\ So:a < 0},5 ={(a,b) € S\ So:a>0}.
Obviously, H = HyU Hy U Hy, S = 5o U 51 U S, and
HnNH;j=9,5NS;=0¢,H,NS; =9, i#j,ij=0,1,2.
Thus H C S is equivalent to H; C S; (1 =0,1,2).

Theorem 7. Hy C Sy if and only if 0 < 6 < 1/2 and Hy C Sy if and only if 0 < 6 < (1), where
Y(x)=1/z—1/(e* —1).

Proof. By virtue of Theorems 2 and 5, we obtain that H; C S if and only if

a(R(2)?™ +1) < a(e?® +1)

(R(z)™ = 1) = (e*=1)%"

that is
R(2)*™ +1 e 4+ 1

(R(z)™ =1)> = (e* = 1)*’

(19)

it is a simple matter to verify that the function f(x) = (z2+1)/(z —1)? is increasing in [0, 1) and decreasing
in (1, 00), so (19) reduces to R(z) < e*, as a consequence of Lemma 3 in [16], we have 0 < § < 1/2. Similarly,
the case of Hy C S5 can be proved. O

Theorem 8. For all 6 with 0 < 0 <1, we have Hy = Sy.

4.2. Preservation of Oscillation

Definition 5. We call that the §-methods preserve oscillation of (1) if (1) oscillates, which implies that
there is an ho such that (7) oscillates for h < hg.

Theorem 9. If a # 0, then the 6-methods preserve the oscillation of (1) if either of the following conditions
1$ satisfied:

(i) 1/2<60 <1 fora>0 and h < hq,
(if) 0 <0 <1/2 fora <0 and h < ha,
where hy = 1/a, ho = —1/a.
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Proof. According to Theorems 3 and 6, the #-methods preserve the oscillation of (1) if and only if

ae® aR(z)™ a a
— — > . 20
e*—17~ R(z)m-1 o e*—17 R(z)m—1 (20)

When a > 0, we get
e R(z)™
>
e*—17 R(z)m—-1
Since the function z/(x — 1) is decreasing, so it follows from (21) that R(z)™ > e®, then by Lemma 3 in [16],
we get 1/2 < 0 < 1. The other case can be proved in a similar way. O

or e* <R(z)™. (21)

As a direct application of Theorem 9, we obtain the following theorem naturally.

Theorem 10. If a # 0, then the 0-methods preserve the non-oscillation of (1) if either of the following
conditions is satisfied:

(1) 0<0<y(1) fora>0 and h < hq,
(ii) P(=1) <0 <1 fora <0 and h < ha,
where Y(x) =1/x —1/(e* — 1), hy = 1/a and hy = —1/a.

Theorem 11. If a =0, then the 0-methods preserve the oscillation and non-oscillation of (1) for any 6.

5. Relationships Between Stability and Oscillation

Stability and oscillation are very important aspects in the research of differential equations and numerical
analysis, thus it is meaningful to consider the relationships between them. Let

a ae® a(e** +1)
A = —_— A R — A: = -
1 ea_17 2 ea—l’ 3 (ea_1)27
and
a aR(z)™ a(R(2)*™ +1)

Aq(m) = Az(m) = —

R(z)m — 1 R(z)m — 1’
Combing Theorems 2, 3, 5 and 6, we obtain the following theorems.
Theorem 12. For a > 0, the analytic solution of (1) is

(i
(ii

(iii

) oscillatory and unstable if b € (—oo, A3) or b € (Ay,+00),
) oscillatory and asymptotically stable if b € (As, As),

) non-oscillatory and asymptotically stable if b € (Ag, —a),
(iv) non-oscillatory and unstable if b € (—a, A7),
for a <0, the analytic solution of (1) is

(i
(ii
(iii
(iv

) oscillatory and asymptotically stable if b € (—oo, As) or b € (As, +0),
) non-oscillatory and asymptotically stable if b € (As, —a),

) non-oscillatory and unstable if b € (—a, A7),

) oscillatory and unstable if b € (A1, A3).

Theorem 13. For a > 0, the numerical solution of (1) is
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(i
(i

(iii

) oscillatory and unstable if b € (—oo, Az(m)) or b € (A1 (m), +00),
) oscillatory and asymptotically stable if b € (Az(m), Aa(m)),

) mon-oscillatory and asymptotically stable if b € (A2(m), —a),

(iv) non-oscillatory and unstable if b € (—a, A1(m)),
for a <0, the numerical solution of (1) is

(i) oscillatory and asymptotically stable if b € (—oo, A3(m)) or b € (As(m), +00),

(iii) non-oscillatory and unstable if b € (—a, A;(m)),
(iv
Theorem 14. For a =0, the analytic solution and the numerical solution of (1) both are
(i
(i

(iii

)
(ii) non-oscillatory and asymptotically stable if b € (Az(m), —a),
)
) oscillatory and unstable if b € (A1(m), As(m)).

) oscillatory and asymptotically stable if b € (—oo0, —1),

) non-oscillatory and asymptotically stable if b € (—1,0),
) non-oscillatory and unstable if b € (0,1),

(iv) oscillatory and unstable if b € (1, +00).
6. Numerical Experiments

Firstly, we consider the following three problems

V() = —15u(t) + 2.7u(2[¥}), uw(0) = 1, (22)
() = 1.1u(t) — 2.6u(2[¥})7 w(0) = 1, (23)
() = —4u(2[#]), w(0) = 1. (24)

From condition (3), we can see that (—1.5,2.7) € Hy, (1.1,—2.6) € Hy and (0,—4) € Hy. We use the
f-methods with the stepsize h = 1/m to get the numerical solution at ¢ = 12, where the analytic solutions
are u(12) &~ 0.5612, u(12) ~ 0.5583 and u(12) =~ 0.0467 for (22), (23) and (24), respectively. In Tables 1
and 2, we list the absolute errors (AE) and the relative errors (RE) between the numerical solution and the
analytic solution at ¢ = 12 and the ratio of the errors of the case m = 50 over that of m = 100. From these
tables, we can see that the numerical solution converges to the analytic solution by the original order, that
is to say, the 8-methods conserve their order of convergence, which is consistent with Theorem 4.

In Figures 2-4, we draw the numerical solutions with different parameters for these three problems,
respectively. We can see that the stability of numerical solution is influenced by h and 6.

Next, consider the following six problems

t+1

W(t) = ~08u(t) + 432l L), w(0)=1, (25)
W (t) = 2.7u(t) — 4u(2[#]), w(0) = 1, (26)
() = —3.7u(2[%]), uw(0) = 1, (27)
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0=0 0=0.5 =1
AE RE AE RE AE RE

m=3  5.5870e-01 9.9550e-01 1.7130e-01 3.0510e-01 2.6870e+-01 4.7875e+01
m=>5  5.2950e-01 9.4340e-01 6.8000e-02 1.2120e-01  5.5981e+0  9.9744e+0
m =10  4.1520e-01 7.3990e-01 1.7700e-02 3.1600e-02  1.3647e+0  2.4316e+0
m =20 2.6990e-01 4.8090e-01 4.5000e-03 8.0000e-03  4.9010e-01  8.7320e-01
m =40 1.5530e-01 2.7670e-01 1.1000e-03 2.0000e-03  2.0930e-01  3.7290e-01
m=>50 1.2790e-01 2.2780e-01 7.1868e-04 1.3000e-03  1.6240e-01  2.8930e-01
m =100 6.7800e-02 1.2080e-01 1.7975e-04 3.2026e-04  7.6400e-02  1.3610e-01

Ratio 1.8864 1.8858 3.9982 4.0592 2.1257 2.1256

Table 1: Computational results of #-methods for (22)
0=0 0=0.5 =1
AFE RE AFE RE AE RE

m=3  5.0650e-01 9.0710e-01  9.6300e-02 1.7250e-01 1.0353e+01 1.8542e+01
m=25  4.2910e-01 7.6860e-01 3.2700e-02 5.8500e-02  2.393%9e+0  4.2875e+0
m =10  2.9450e-01 5.2750e-01  8.0000e-03 1.4300e-02  6.8300e-01 1.2233e+0
m =20 1.7660e-01 3.1620e-01 2.0000e-03  3.5000e-03  2.6830e-01  4.8050e-01
m =40 9.7300e-02 1.7430e-01 4.9404e-04 8.8484e-04 1.1990e-01  2.1470e-01
m =250  7.9400e-02 1.4220e-01 3.1613e-04 5.6619e-04  9.3800e-02  1.6810e-01
m =100 4.1300e-02 7.4100e-02 7.9013e-05 1.4151e-04 4.5000e-02  8.0500e-02

Ratio 1.9225 1.9190 4.0010 4.0011 2.0844 2.0882

Table 2: Computational results of -methods for (23)

Figure 2: The numerical solution of (22) with § = 0.4, m = 50 (blue line) and 6§ = 1, m = 10 (red line).
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10 20 30 40 50 60

Figure 3: The numerical solution of (23) with 6 = 0.35, m = 40 (blue line) and § = 0.8,m =5 (red line).

40 50 60

Figure 4: The numerical solution of (24) with m = 80.

11



Q. Wang, X.Y. Liu

2t 1

-4

Figure 5: The analytic solution and the numerical solution of (25) with # = 0.15 and m = 30.

t+1

u'(t) = —1.5u(t) + 1.4u(2[TD, u(0) =1, (28)
(1) = 3.6u(t) (2T, u(0) =1, (29)
() = —o.7u(2[%1), w(0) = 1. (30)

For (25)-(30), the analytic solutions of the first three problems are oscillatory; the analytic solutions of
the last three problems are non-oscillatory by Theorem 3. In Figures 5-10, we plot the figures of the analytic
solutions and the numerical solutions, respectively. From these figures, we can see that the numerical
solutions of the first three problems are oscillatory; the numerical solutions of the last three problems are
non-oscillatory, which are coincide with Theorem 6.

What is more, in Figure 5, let § = 0.15, m = 30, we can compute that A; ~ 1.4528, Ay ~ —0.6528, A3 ~
3.1708, A1 (m) ~ 1.4482, A3(m) ~ —0.6482 and As(m) =~ 3.1468. Obviously, b = 4.3 € (As,+o0) and
b = 4.3 € (A3(m),+o0). So the analytic solution and the numerical solution of (25) are both oscillatory
and asymptotically stable. That is, the relationships between stability and oscillation are in agreement with
Theorems 12 and 13. For (22)-(24), (26)-(30), we can verify them analogously (see Figures 2-4, 6-10).
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Figure 7: The analytic solution and the numerical solution of (27) with m = 60.
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