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Abstract  

In this paper, we establish some new discrete inequalities of Opial and Lasota's type which reduce to 
some inequalities in [4]. 
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1. Introduction 

    In this paper, we denote {𝑥𝑖}𝑖=0
𝑁  by a sequence of real numbers, the operators ∆ and ∇ by ∆𝑥𝑖 = 𝑥𝑖+1 − 𝑥𝑖  and 

∇𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1, and [∙] by the greatest integer function. The empty sums is taken to be 0. 

In 1960, Opial [7] established the following important integral inequality: 

 

Theorem A. Let 𝑓(𝑥) ∈ C1[0, ℎ] be such that 𝑓(0) = 𝑓(ℎ) = 0, and 𝑓(𝑥) > 0 in (0, ℎ). Then 

 

∫ |𝑓(𝑥)𝑓′(𝑥)|𝑑𝑥 ≤
ℎ

4
∫ (𝑓′(𝑥))

2
𝑑𝑥,

ℎ

0

ℎ

0

                                                               (1.1) 

where 
ℎ

4
 is the best possible. 

 

    The inequality (1.1) is known in the literature as Opial inequality. For some results which generalize, improve 

and extend this famous integral inequality (see [1]-[11]). 

    In [4], Lasota provided discrete versions of Opial inequality (1.1) about the forward difference operator as 

following: 

 

Theorem B. Let {𝑥𝑖}𝑖=0
𝑁  be a sequence of numbers, and 𝑥0 = 𝑥𝑁 = 0. Then, the following inequality holds 

 

∑|𝑥𝑖∆𝑥𝑖| ≤
1

2
[
𝑁 + 1

2
] ∑(∆𝑥𝑖)

2

𝑁−1

𝑖=0

𝑁−1

𝑖=1

.                                                                (1.2) 

If N is even, then the inequality (1.2) is sharp. 

 

Also, we have the following three Theorems C-E (see [1]): 
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Theorem C. Let {𝑥𝑖}𝑖=0
𝜏  be a sequence of numbers, and 𝑥0 = 0. Then, the following inequality holds 

 

∑|𝑥𝑖∆𝑥𝑖| ≤
𝜏 − 1

2
∑(∆𝑥𝑖)

2

𝜏−1

𝑖=0

𝜏−1

𝑖=1

.                                                                    (1.3) 

 

Theorem D. Let {𝑥𝑖}𝑖=𝜏
𝑁  be a sequence of numbers, and 𝑥𝑁 = 0. Then, the following inequality holds 

 

∑|𝑥𝑖∆𝑥𝑖| ≤
𝑁 − 𝜏 + 1

2
∑(∆𝑥𝑖)

2

𝑁−1

𝑖=𝜏

𝑁−1

𝑖=𝜏

.                                                              (1.4) 

 

Theorem E. Let {𝑥𝑖}𝑖=0
𝜏  be a sequence of numbers, and 𝑥0 = 0. Then, the following inequality holds 

 

∑|𝑥𝑖∇𝑥𝑖| ≤
𝜏 + 1

2
∑(∇𝑥𝑖)

2

𝜏

𝑖=1

𝜏

𝑖=1

.                                                                    (1.5) 

 

We shall establish some new results which are the generalizations of Theorems B-E. 

 

2. Main Results 

Throughout this section, let 𝑚, 𝑛 > 0 and 𝑐(𝑚, 𝑛) =
1

𝑚+𝑛
max{𝑚, 𝑛}. 

    We state and prove the following theorems: 

 

Theorem 1. Let {𝑥𝑖}𝑖=0
𝑙  be a sequence of real numbers with 𝑥0 = 0. Then we have the following inequality 

 

∑|𝑥𝑖||∆𝑥𝑖|
𝑚 ≤ 𝑐(𝑚, 1)𝑙 ∑|∆𝑥𝑖|

𝑚+1

𝑙

𝑖=0

𝑙

𝑖=1

.                                                          (2.1) 

 

Proof. Since 𝑥0 = 0, we have the following identity 

 

𝑥𝑖 = ∑ ∆𝑥𝑗 ,   𝑖 = 1,2, … , 𝑙.

𝑖−1

𝑗=0

                                                                      (2.2) 

Hence the following inequality holds 

 

∑|𝑥𝑖||∆𝑥𝑖|
𝑚 ≤ ∑[∑|∆𝑥𝑗||∆𝑥𝑖|

𝑚

𝑖−1

𝑗=0

]

𝑙

𝑖=1

𝑙

𝑖=1

.                                                             (2.3) 

Using the inequality 

α𝛽𝑚 ≤
1

𝑚 + 1
𝛼𝑚+1 +

𝑚

𝑚 + 1
𝛽𝑚+1(𝛼, 𝛽 > 0)                                                  (2.4) 
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and the definition of 𝑐(𝑚, 1), we have the following inequality 

 

∑[∑|∆𝑥𝑗||∆𝑥𝑖|
𝑚

𝑖−1

𝑗=0

]

𝑙

𝑖=1

                                                                                           (2.5) 

≤ ∑ [∑(
|∆𝑥𝑗|

𝑚+1

𝑚 + 1
+

𝑚

𝑚 + 1
|∆𝑥𝑖|

𝑚+1)

𝑖−1

𝑗=0

]

𝑙

𝑖=1

 

≤ 𝑐(𝑚, 1)∑ (∑|∆𝑥𝑗|
𝑚+1

𝑖−1

𝑗=0

+ 𝑖|∆𝑥𝑖|
𝑚+1)

𝑙

𝑖=1

 

= 𝑐(𝑚, 1) ∑[(𝑙 − 𝑖)|∆𝑥𝑖|
𝑚+1 + 𝑖|∆𝑥𝑖|

𝑚+1]

𝑙

𝑖=0

                                                                 

= 𝑐(𝑚, 1)𝑙 ∑|∆𝑥𝑖|
𝑚+1

𝑙

𝑖=0

.                                   

Using the inequalities (2.3) and (2.5), we derive the inequality (2.1). This completes the proof. 

 

Remark 1. In the inequality (2.1), let 𝑚 = 1 and 𝑙 = 𝜏 − 1. Then the inequality (2.1) reduces to the inequality (1.3). 

 

Theorem 2. Let {𝑥𝑖}𝑖=0
𝑙  be a sequence of real numbers with 𝑥0 = 0. Then we have the following inequality 

 

∑|𝑥𝑖+1||∆𝑥𝑖|
𝑚 ≤ 𝑐(𝑚, 1)(𝑙 + 1) ∑|∆𝑥𝑖|

𝑚+1

𝑙−1

𝑖=0

𝑙−1

𝑖=0

.                                                    (2.6) 

 

Proof. Since 𝑥0 = 0, we have the following identity 

 

𝑥𝑖+1 = ∑∆𝑥𝑗 ,   𝑖 = 0,1, … , 𝑙 − 1.

𝑖

𝑗=0

                                                                (2.7) 

 

Using the inequality (2.4), the identity (2.7) and the definition of 𝑐(𝑚, 𝑛), we have the following inequality 

 

                                    ∑|𝑥𝑖+1||∆𝑥𝑖|
𝑚

𝑙−1

 𝑖=0

≤ ∑[∑|∆𝑥𝑗||∆𝑥𝑖|
𝑚

𝑖

𝑗=0

]

𝑙−1

𝑖=0

 

 ≤ ∑[∑(
|∆𝑥𝑗|

𝑚+1

𝑚 + 1
+

𝑚

𝑚 + 1
|∆𝑥𝑖|

𝑚+1)

𝑖

𝑗=0

]

𝑙−1

𝑖=0

 

             ≤ 𝑐(𝑚, 1)∑ (∑|∆𝑥𝑗|
𝑚+1

𝑖

𝑗=0

+ (𝑖 + 1)|∆𝑥𝑖|
𝑚+1)

𝑙−1

𝑖=0

 

http://www.scitecresearch.com/journals/index.php/jprm


                                                                                                 Journal of Progressive Research in Mathematics(JPRM) 

                                                                                                                                                          ISSN: 2395-0218   

 
Volume 4, Issue 2 available at www.scitecresearch.com/journals/index.php/jprm                                                   297|  

               = 𝑐(𝑚, 1) ∑[(𝑙 − 𝑖)|∆𝑥𝑖|
𝑚+1 + (𝑖 + 1)|∆𝑥𝑖|

𝑚+1]

𝑙−1

𝑖=0

 

                                                                   = 𝑐(𝑚, 1)(𝑙 + 1) ∑|∆𝑥𝑖|
𝑚+1

𝑙−1

𝑖=0

 

 

which is the inequality (2.6). This completes the proof. 

 

Theorem 3. Let {𝑥𝑖}𝑖=𝑙+1
𝑁  be a sequence of real numbers with 𝑥𝑁 = 0. Then we have the following inequality 

 

∑ |𝑥𝑖||∆𝑥𝑖|
𝑚 ≤ 𝑐(𝑚, 1)(𝑁 − 𝑙) ∑ |∆𝑥𝑖|

𝑚+1

𝑁−1

𝑖=𝑙+1

𝑁−1

𝑖=𝑙+1

.                                                   (2.8) 

 

Proof. Let 𝑥𝑖 = 𝑦𝑁−𝑖 where 𝑖 = 𝑙 + 1, 𝑙 + 2,… , 𝑁. Then 

 

∆𝑥𝑖 = −∆𝑦𝑁−𝑖−1 and  𝑦0 = 0 

 

where 𝑖 = 𝑙 + 1, 𝑙 + 2,… , 𝑁 − 1. Using the inequality (2.6), we have the following inequality 

 

∑ |𝑥𝑖||∆𝑥𝑖|
𝑚

𝑁−1

𝑖=𝑙+1

= ∑ |𝑦𝑖+1||∆𝑦𝑖|
𝑚

𝑁−𝑙−2

𝑖=0

                                              

       ≤ 𝑐(𝑚, 1)(𝑁 − 𝑙) ∑ |∆𝑦𝑖|
𝑚+1

𝑁−𝑙−2

𝑖=0

 

      = 𝑐(𝑚, 1)(𝑁 − 𝑙) ∑ |∆𝑥𝑖|
𝑚+1

𝑁−1

𝑖=𝑙+1

 

which is the inequality (2.8). This completes the proof. 

 

Remark 2. In the inequality (2.8), let 𝑚 = 1 and 𝑙 = 𝜏 − 1. Then the inequality (2.8) reduces to the inequality (1.4). 

 

Theorem 4. Let {𝑥𝑖}𝑖=0
𝑁  be a sequence of real numbers with 𝑥0 = 𝑥𝑁 = 0. Then we have the following inequality 

 

∑|𝑥𝑖||∆𝑥𝑖|
𝑚 ≤ 𝑐(𝑚, 1) [

𝑁 + 1

2
] ∑|∆𝑥𝑖|

𝑚+1

𝑁−1

𝑖=0

𝑁−1

𝑖=1

,                                                     (2.9) 

where [
𝑁+1

2
] is the Gaussian integer of  

𝑁+1

2
. 

 If 𝑁 is even, then the inequality (2.9) is sharp. 

 

Proof. (1) Let 𝑙 = [
𝑁+1

2
]. Then 𝑁 − 𝑙 ≤ 𝑙. Using the inequalities (2.1) and (2.8), we have the following inequality 
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∑|𝑥𝑖||∆𝑥𝑖|
𝑚

𝑁−1

𝑖=1

= ∑|𝑥𝑖||∆𝑥𝑖|
𝑚

𝑙

𝑖=1

+ ∑ |𝑥𝑖||∆𝑥𝑖|
𝑚

𝑁−1

𝑖=𝑙+1

                     

                                       ≤ 𝑐(𝑚, 1) {𝑙 ∑|∆𝑥𝑖|
𝑚+1

𝑙

𝑖=0

+ (𝑁 − 𝑙) ∑ |∆𝑥𝑖|
𝑚+1

𝑁−1

𝑖=𝑙+1

} 

 ≤ 𝑐(𝑚, 1)𝑙 ∑|∆𝑥𝑖|
𝑚+1

𝑁−1

𝑖=0

             

which is the inequality (2.9).  

(2) Suppose 𝑚 = 1 and 𝑁 is even. Then  
1

2
[
𝑁+1

2
] =

𝑁

4
.  Let 

 

𝑥𝑖 =
1

2
𝑁 − |𝑖 −

1

2
𝑁| (0 ≤ 𝑖 ≤ 𝑁 − 1). 

 

Then, we have 

𝑥0 = 𝑥𝑁 = 0, |∆𝑥𝑖| = 1  (0 ≤ 𝑖 ≤ 𝑁 − 1), 

 

∑|𝑥𝑖∆𝑥𝑖| =
1

4
𝑁2

𝑁−1

𝑖=1

and ∑|∆𝑥𝑖|
2 = 𝑁

𝑁−1

𝑖=0

. 

 

Hence, the equality holds in the inequality (2.9) and from which the inequality (2.9) is sharp. This completes the 

proof. 

 

Remark 3. In the inequality (2.9), let 𝑚 = 1. Then the inequality (2.9) reduces to the inequality (1.2). 

 

Theorem 5. Let {𝑥𝑖}𝑖=0
𝑙  be a sequence of real numbers with 𝑥0 = 0, 𝑛 > 1. Then we have the following inequality 

 

∑|𝑥𝑖|
𝑛|∆𝑥𝑖|

𝑚 ≤ 𝑐(𝑚, 1)𝑙𝑛 ∑|∆𝑥𝑖|
𝑚+𝑛

𝑙

𝑖=0

𝑙

𝑖=1

.                                                       (2.10) 

 

Proof. Using the identity (2.2), the Hölder's inequality with indices 𝑛/(𝑛 − 1),𝑛, and the inequality 

 

𝛼𝑛𝛽𝑚 ≤
𝑛

𝑚 + 𝑛
𝛼𝑚+𝑛 +

𝑚

𝑚 + 𝑛
𝛽𝑚+𝑛 ≤ 𝑐(𝑚, 𝑛)(𝛼𝑚+𝑛 + 𝛽𝑚+𝑛)                                   (2.11) 

 

where 𝛼, 𝛽 > 0, we have the following inequality 

 

                                              ∑|𝑥𝑖|
𝑛|∆𝑥𝑖|

𝑚

𝑙

𝑖=1

≤ ∑[(∑|∆𝑥𝑗|

𝑖−1

𝑗=0

)

𝑛

|∆𝑥𝑖|
𝑚]

𝑙

𝑖=1
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                ≤ ∑

[
 
 
 

(∑1

𝑖−1

𝑗=0

)

𝑛−1

𝑛

(∑|∆𝑥𝑗|
𝑛

𝑖−1

𝑗=0

)

1

𝑛

]
 
 
 
𝑛

𝑙

𝑖=1

|∆𝑥𝑖|
𝑚 

                                                                           = ∑𝑖𝑛−1

𝑙

𝑖=1

∑|∆𝑥𝑗|
𝑛
|∆𝑥𝑖|

𝑚

𝑖−1

𝑗=0

 

                                                                           ≤ 𝑙𝑛−1 ∑ ∑|∆𝑥𝑗|
𝑛
|∆𝑥𝑖|

𝑚

𝑖−1

𝑗=0

𝑙

𝑖=1

 

                           ≤ 𝑐(𝑚, 𝑛)𝑙𝑛−1 ∑[∑(|∆𝑥𝑗|
𝑚+𝑛

+ |∆𝑥𝑖|
𝑚+𝑛)

𝑖−1

𝑗=0

]

𝑙

𝑖=1

 

                            = 𝑐(𝑚, 𝑛)𝑙𝑛−1 ∑[(𝑙 − 𝑖)|∆𝑥𝑖|
𝑚+𝑛 + 𝑖|∆𝑥𝑖|

𝑚+𝑛]

𝑙

𝑖=0

 

= 𝑐(𝑚, 𝑛)𝑙𝑛 ∑|∆𝑥𝑖|
𝑚+𝑛

𝑙

𝑖=0

                 

which is the inequality (2.10). This completes the proof. 

 

Remark 4. In the inequality (2.10), let 𝑛 → 1+. Then the inequality (2.10) reduces to the inequality (2.1). 

 

Theorem 6. Let {𝑥𝑖}𝑖=0
𝑙  be a sequence of real numbers with 𝑥0 = 0, 𝑛 > 1. Then we have the following inequality 

 

∑|𝑥𝑖+1|
𝑛|∆𝑥𝑖|

𝑚 ≤ 𝑐(𝑚, 𝑛)𝑙𝑛−1(𝑙 + 1)∑|∆𝑥𝑖|
𝑚+𝑛

𝑙−1

𝑖=0

𝑙−1

𝑖=0

.                                             (2.12) 

 

Proof. Using the identity (2.7), the Hölder's inequality with indices 𝑛/(𝑛 − 1), 𝑛, and the inequality (2.11), we 

have the following inequality 

 

                                       ∑|𝑥𝑖+1|
𝑛|∆𝑥𝑖|

𝑚

𝑙−1

𝑖=1

≤ ∑ [(∑|∆𝑥𝑗|

𝑖

𝑗=0

)

𝑛

|∆𝑥𝑖|
𝑚]

𝑙−1

𝑖=0

 

           ≤ ∑

[
 
 
 

(∑1

𝑖

𝑗=0

)

𝑛−1

𝑛

(∑|∆𝑥𝑗|
𝑛

𝑖

𝑗=0

)

1

𝑛

]
 
 
 
𝑛

𝑙−1

𝑖=0

|∆𝑥𝑖|
𝑚 

                                                                        = ∑(𝑖 + 1)𝑛−1

𝑙−1

𝑖=0

∑|∆𝑥𝑗|
𝑛
|∆𝑥𝑖|

𝑚

𝑖

𝑗=0

 

                                                                        ≤ 𝑙𝑛−1 ∑ ∑|∆𝑥𝑗|
𝑛
|∆𝑥𝑖|

𝑚

𝑖

𝑗=0

𝑙−1

𝑖=0

 

                     ≤ 𝑐(𝑚, 𝑛)𝑙𝑛−1 ∑[∑(|∆𝑥𝑗|
𝑚+𝑛

+ |∆𝑥𝑖|
𝑚+𝑛)

𝑖

𝑗=0

]

𝑙−1

𝑖=0
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                                   = 𝑐(𝑚, 𝑛)𝑙𝑛−1 ∑[(𝑙 − 𝑖)|∆𝑥𝑖|
𝑚+𝑛 + (𝑖 + 1)|∆𝑥𝑖|

𝑚+𝑛]

𝑙−1

𝑖=0

 

                                                                        = 𝑐(𝑚, 𝑛)𝑙𝑛−1(𝑙 + 1)∑|∆𝑥𝑖|
𝑚+𝑛

𝑙−1

𝑖=0

 

which is the inequality (2.12). This completes the proof. 

 

Remark 5. In the inequality (2.12), let  𝑛 → 1+. Then the inequality (2.12) reduces to the inequality (2.6). 

 

Theorem 7. Let {𝑥𝑖}𝑖=𝑙+1
𝑁  be a sequence of real numbers with 𝑥𝑁 = 0, 𝑛 > 1. Then we have the following inequality 

 

∑ |𝑥𝑖|
𝑛|∆𝑥𝑖|

𝑚 ≤ 𝑐(𝑚, 𝑛)(𝑁 − 𝑙 − 1)𝑛−1(𝑁 − 𝑙) ∑ |∆𝑥𝑖|
𝑚+𝑛

𝑁−1

𝑖=𝑙+1

𝑁−1

𝑖=𝑙+1

.                                (2.13) 

 

Proof. Let 𝑥𝑖 = 𝑦𝑁−𝑖 where 𝑖 = 𝑙 + 1, 𝑙 + 2,… , 𝑁. Then 

 

∆𝑥𝑖 = −∆𝑦𝑁−𝑖−1 and  𝑦0 = 0 

 

where 𝑖 = 𝑙 + 1, 𝑙 + 2,… , 𝑁 − 1. Using the inequality (2.12), we have the following inequality 

∑ |𝑥𝑖|
𝑛|∆𝑥𝑖|

𝑚

𝑁−1

𝑖=𝑙+1

= ∑ |𝑦𝑖+1|
𝑛|∆𝑦𝑖|

𝑚

𝑁−𝑙−2

𝑖=0

                                        

                                          ≤ 𝑐(𝑚, 𝑛)(𝑁 − 𝑙 − 1)𝑛−1(𝑁 − 𝑙) ∑ |∆𝑦𝑖|
𝑚+𝑛

𝑁−𝑙−2

𝑖=0

 

                                         = 𝑐(𝑚, 𝑛)(𝑁 − 𝑙 − 1)𝑛−1(𝑁 − 𝑙) ∑ |∆𝑥𝑖|
𝑚+𝑛

𝑁−1

𝑖=𝑙+1

 

which is the inequality (2.13). This completes the proof. 

 

Remark 6. In the inequality (2.13), let 𝑛 → 1+. Then the inequality (2.13) reduces to the inequality (2.8). 

 

Theorem 8. Let {𝑥𝑖}𝑖=0
𝑁  be a sequence of real numbers with 𝑥0 = 𝑥𝑁 = 0, 𝑛 > 1. Then we have the following 

inequality 

∑|𝑥𝑖|
𝑛|∆𝑥𝑖|

𝑚 ≤ 𝑐(𝑚, 𝑛) [
𝑁 + 1

2
]
𝑛

∑|∆𝑥𝑖|
𝑚+𝑛

𝑁−1

𝑖=0

𝑁−1

𝑖=1

.                                              (2.14) 

 

Proof. Let 𝑙 = [
𝑁+1

2
]. Then 𝑁 − 𝑙 − 1 ≤ 𝑁 − 𝑙 ≤ 𝑙. Using the inequalities (2.10) and (2.13), we have the following 

inequality 

 

∑|𝑥𝑖|
𝑛|∆𝑥𝑖|

𝑚

𝑁−1

𝑖=1

= ∑|𝑥𝑖|
𝑛|∆𝑥𝑖|

𝑚

𝑙

𝑖=1

+ ∑ |𝑥𝑖|
𝑛|∆𝑥𝑖|

𝑚

𝑁−1

𝑖=𝑙+1
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                             ≤ 𝑐(𝑚, 𝑛) [𝑙𝑛 ∑|∆𝑥𝑖|
𝑚+𝑛

𝑙

𝑖=0

                   

                                                  +(𝑁 − 𝑙 − 1)𝑛−1(𝑁 − 𝑙) ∑ |∆𝑥𝑖|
𝑚+𝑛

𝑁−1

𝑖=𝑙+1

] 

         ≤ 𝑐(𝑚, 𝑛)𝑙𝑛 ∑|∆𝑥𝑖|
𝑚+𝑛

𝑁−1

𝑖=0

 

 

which is the inequality (2.14). This completes the proof. 

 

Under the conditions of Theorems 2 and 6, we have the following corollaries and remarks. 

 

Corollary 1. Let {𝑥𝑖}𝑖=0
𝑙  be a sequence of real numbers with 𝑥0 = 0. Then we have the following inequality 

 

∑|𝑥𝑖||∇𝑥𝑖|
𝑚 ≤ 𝑐(𝑚, 1)(𝑙 + 1)∑|∇𝑥𝑖|

𝑚+1

𝑙

𝑖=1

.

𝑙

𝑖=1

                                                   (2.15) 

Proof. Since 

∑|𝑥𝑖||∇𝑥𝑖|
𝑚 = ∑|𝑥𝑖+1||∆𝑥𝑖|

𝑚

𝑙−1

𝑖=0

,

𝑙

𝑖=1

 

it follows from the inequality (2.6) that 

 

∑|𝑥𝑖||∇𝑥𝑖|
𝑚 ≤ 𝑐(𝑚, 1)(𝑙 + 1) ∑|∆𝑥𝑖|

𝑚+1

𝑙−1

𝑖=0

𝑙

𝑖=1

 

                           = 𝑐(𝑚, 1)(𝑙 + 1)∑|∇𝑥𝑖|
𝑚+1

𝑙

𝑖=1

 

which is the inequality (2.15). This completes the proof. 

 

Remark 7. In the inequality (2.15), let 𝑚 = 1 and 𝑙 = 𝜏. Then the inequality (2.15) reduces to the inequality (1.5). 

 

Corollary 2. Let {𝑥𝑖}𝑖=0
𝑙  be a sequence of real numbers with 𝑥0 = 0, 𝑛 > 1. Then we have the following inequality 

 

∑|𝑥𝑖|
𝑛|∇𝑥𝑖|

𝑚 ≤ 𝑐(𝑚, 1)(𝑙 + 1)𝑛 ∑|∇𝑥𝑖|
𝑚+𝑛

𝑙

𝑖=1

.

𝑙

𝑖=1

                                                 (2.16) 

Proof. Since 

 

∑|𝑥𝑖|
𝑛|∇𝑥𝑖|

𝑚 = ∑|𝑥𝑖+1|
𝑛|∆𝑥𝑖|

𝑚

𝑙−1

𝑖=0

,

𝑙

𝑖=1
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it follows from the inequality (2.12) that 

∑|𝑥𝑖|
𝑛|∇𝑥𝑖|

𝑚 ≤ 𝑐(𝑚, 𝑛)𝑙𝑛−1(𝑙 + 1) ∑|∆𝑥𝑖|
𝑚+𝑛

𝑙−1

𝑖=0

𝑙

𝑖=1

 

                       ≤ 𝑐(𝑚, 𝑛)(𝑙 + 1)𝑛 ∑|∆𝑥𝑖|
𝑚+𝑛

𝑙−1

𝑖=0

 

                       = 𝑐(𝑚, 𝑛)(𝑙 + 1)𝑛 ∑|∇𝑥𝑖|
𝑚+𝑛

𝑙

𝑖=1

 

which is the inequality (2.16). This completes the proof. 

 

Remark 8. For 𝑥𝑖 = 𝑖, 0 ≤ 𝑖 ≤ 𝑙 in the inequality (2.16), we note that 

∑𝑖𝑛
𝑙

𝑖=1

≤ 𝑐(𝑚, 𝑛)(𝑙 + 1)𝑛𝑙                

               < 𝑚𝑎𝑥{𝑚, 𝑛}
(𝑙 + 1)𝑛+1 − 1

𝑛 + 1
 

       < 𝑚𝑎𝑥{𝑚, 𝑛}∫ 𝑡𝑛𝑑𝑡
𝑙+1

1

, 

which shows that the inequality (2.16) gives a better estimate than that obtained by simply comparing areas. 

Moreover, for 𝑛 → 1+, this gives the well-known identity ∑ 𝑖𝑙
𝑖=1 = 𝑙(𝑙 + 1)/2. 
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