Journal of Progressive Research in Mathematics

www.scitecresearch.com/journals

Some New Discrete Inequalities of Opial and Lasota's Type

Kai-Chen Hsu ${ }^{1}$, Kuei-Lin Tseng ${ }^{2}$
${ }^{1}$ Department of Applied Mathematics, Aletheia University Tamsui, New Taipei City 25103, Taiwan
${ }^{2}$ Department of Applied Mathematics, Aletheia University
Tamsui, New Taipei City 25103, Taiwan

Abstract

In this paper, we establish some new discrete inequalities of Opial and Lasota's type which reduce to some inequalities in [4].

Keywords: Hölder's inequality; Opial inequality; Lasota inequality; Forward difference operator; Backward difference operator.

1. Introduction

In this paper, we denote $\left\{x_{i}\right\}_{i=0}^{N}$ by a sequence of real numbers, the operators Δ and ∇ by $\Delta x_{i}=x_{i+1}-x_{i}$ and $\nabla x_{i}=x_{i}-x_{i-1}$, and [•] by the greatest integer function. The empty sums is taken to be 0 .

In 1960, Opial [7] established the following important integral inequality:

Theorem A. Let $f(x) \in \mathrm{C}^{1}[0, h]$ be such that $f(0)=f(h)=0$, and $f(x)>0$ in $(0, h)$. Then

$$
\begin{equation*}
\int_{0}^{h}\left|f(x) f^{\prime}(x)\right| d x \leq \frac{h}{4} \int_{0}^{h}\left(f^{\prime}(x)\right)^{2} d x, \tag{1.1}
\end{equation*}
$$

where $\frac{h}{4}$ is the best possible.

The inequality (1.1) is known in the literature as Opial inequality. For some results which generalize, improve and extend this famous integral inequality (see [1]-[11]).

In [4], Lasota provided discrete versions of Opial inequality (1.1) about the forward difference operator as following:

Theorem B. Let $\left\{x_{i}\right\}_{i=0}^{N}$ be a sequence of numbers, and $x_{0}=x_{N}=0$. Then, the following inequality holds

$$
\begin{equation*}
\sum_{i=1}^{N-1}\left|x_{i} \Delta x_{i}\right| \leq \frac{1}{2}\left[\frac{N+1}{2}\right] \sum_{i=0}^{N-1}\left(\Delta x_{i}\right)^{2} \tag{1.2}
\end{equation*}
$$

If N is even, then the inequality (1.2) is sharp.

Also, we have the following three Theorems C-E (see [1]):

Theorem C. Let $\left\{x_{i}\right\}_{i=0}^{\tau}$ be a sequence of numbers, and $x_{0}=0$. Then, the following inequality holds

$$
\begin{equation*}
\sum_{i=1}^{\tau-1}\left|x_{i} \Delta x_{i}\right| \leq \frac{\tau-1}{2} \sum_{i=0}^{\tau-1}\left(\Delta x_{i}\right)^{2} \tag{1.3}
\end{equation*}
$$

Theorem D. Let $\left\{x_{i}\right\}_{i=\tau}^{N}$ be a sequence of numbers, and $x_{N}=0$. Then, the following inequality holds

$$
\begin{equation*}
\sum_{i=\tau}^{N-1}\left|x_{i} \Delta x_{i}\right| \leq \frac{N-\tau+1}{2} \sum_{i=\tau}^{N-1}\left(\Delta x_{i}\right)^{2} \tag{1.4}
\end{equation*}
$$

Theorem E. Let $\left\{x_{i}\right\}_{i=0}^{\tau}$ be a sequence of numbers, and $x_{0}=0$. Then, the following inequality holds

$$
\begin{equation*}
\sum_{i=1}^{\tau}\left|x_{i} \nabla x_{i}\right| \leq \frac{\tau+1}{2} \sum_{i=1}^{\tau}\left(\nabla x_{i}\right)^{2} \tag{1.5}
\end{equation*}
$$

We shall establish some new results which are the generalizations of Theorems B-E.

2. Main Results

Throughout this section, let $m, n>0$ and $c(m, n)=\frac{1}{m+n} \max \{m, n\}$.
We state and prove the following theorems:

Theorem 1. Let $\left\{x_{i}\right\}_{i=0}^{l}$ be a sequence of real numbers with $x_{0}=0$. Then we have the following inequality

$$
\begin{equation*}
\sum_{i=1}^{l}\left|x_{i}\right|\left|\Delta x_{i}\right|^{m} \leq c(m, 1) l \sum_{i=0}^{l}\left|\Delta x_{i}\right|^{m+1} \tag{2.1}
\end{equation*}
$$

Proof. Since $x_{0}=0$, we have the following identity

$$
\begin{equation*}
x_{i}=\sum_{j=0}^{i-1} \Delta x_{j}, \quad i=1,2, \ldots, l . \tag{2.2}
\end{equation*}
$$

Hence the following inequality holds

$$
\begin{equation*}
\sum_{i=1}^{l}\left|x_{i}\right|\left|\Delta x_{i}\right|^{m} \leq \sum_{i=1}^{l}\left[\sum_{j=0}^{i-1}\left|\Delta x_{j}\right|\left|\Delta x_{i}\right|^{m}\right] \tag{2.3}
\end{equation*}
$$

Using the inequality

$$
\begin{equation*}
\alpha \beta^{m} \leq \frac{1}{m+1} \alpha^{m+1}+\frac{m}{m+1} \beta^{m+1}(\alpha, \beta>0) \tag{2.4}
\end{equation*}
$$

and the definition of $c(m, 1)$, we have the following inequality

$$
\begin{align*}
& \sum_{i=1}^{l}\left[\sum_{j=0}^{i-1}\left|\Delta x_{j}\right|\left|\Delta x_{i}\right|^{m}\right] \tag{2.5}\\
\leq & \sum_{i=1}^{l}\left[\sum_{j=0}^{i-1}\left(\frac{\left|\Delta x_{j}\right|^{m+1}}{m+1}+\frac{m}{m+1}\left|\Delta x_{i}\right|^{m+1}\right)\right] \\
\leq & c(m, 1) \sum_{i=1}^{l}\left(\sum_{j=0}^{i-1}\left|\Delta x_{j}\right|^{m+1}+i\left|\Delta x_{i}\right|^{m+1}\right) \\
= & c(m, 1) \sum_{i=0}^{l}\left[(l-i)\left|\Delta x_{i}\right|^{m+1}+i\left|\Delta x_{i}\right|^{m+1}\right] \\
= & c(m, 1) l \sum_{i=0}^{l}\left|\Delta x_{i}\right|^{m+1} .
\end{align*}
$$

Using the inequalities (2.3) and (2.5), we derive the inequality (2.1). This completes the proof.

Remark 1. In the inequality (2.1), let $m=1$ and $l=\tau-1$. Then the inequality (2.1) reduces to the inequality (1.3).

Theorem 2. Let $\left\{x_{i}\right\}_{i=0}^{l}$ be a sequence of real numbers with $x_{0}=0$. Then we have the following inequality

$$
\begin{equation*}
\sum_{i=0}^{l-1}\left|x_{i+1}\right|\left|\Delta x_{i}\right|^{m} \leq c(m, 1)(l+1) \sum_{i=0}^{l-1}\left|\Delta x_{i}\right|^{m+1} . \tag{2.6}
\end{equation*}
$$

Proof. Since $x_{0}=0$, we have the following identity

$$
\begin{equation*}
x_{i+1}=\sum_{j=0}^{i} \Delta x_{j}, \quad i=0,1, \ldots, l-1 . \tag{2.7}
\end{equation*}
$$

Using the inequality (2.4), the identity (2.7) and the definition of $c(m, n)$, we have the following inequality

$$
\begin{aligned}
\sum_{i=0}^{l-1}\left|x_{i+1}\right|\left|\Delta x_{i}\right|^{m} & \leq \sum_{i=0}^{l-1}\left[\sum_{j=0}^{i}\left|\Delta x_{j}\right|\left|\Delta x_{i}\right|^{m}\right] \\
& \leq \sum_{i=0}^{l-1}\left[\sum_{j=0}^{i}\left(\frac{\left|\Delta x_{j}\right|^{m+1}}{m+1}+\frac{m}{m+1}\left|\Delta x_{i}\right|^{m+1}\right)\right] \\
& \leq c(m, 1) \sum_{i=0}^{l-1}\left(\sum_{j=0}^{i}\left|\Delta x_{j}\right|^{m+1}+(i+1)\left|\Delta x_{i}\right|^{m+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =c(m, 1) \sum_{i=0}^{l-1}\left[(l-i)\left|\Delta x_{i}\right|^{m+1}+(i+1)\left|\Delta x_{i}\right|^{m+1}\right] \\
& =c(m, 1)(l+1) \sum_{i=0}^{l-1}\left|\Delta x_{i}\right|^{m+1}
\end{aligned}
$$

which is the inequality (2.6). This completes the proof.

Theorem 3. Let $\left\{x_{i}\right\}_{i=l+1}^{N}$ be a sequence of real numbers with $x_{N}=0$. Then we have the following inequality

$$
\begin{equation*}
\sum_{i=l+1}^{N-1}\left|x_{i}\right|\left|\Delta x_{i}\right|^{m} \leq c(m, 1)(N-l) \sum_{i=l+1}^{N-1}\left|\Delta x_{i}\right|^{m+1} \tag{2.8}
\end{equation*}
$$

Proof. Let $x_{i}=y_{N-i}$ where $i=l+1, l+2, \ldots, N$. Then

$$
\Delta x_{i}=-\Delta y_{N-i-1} \text { and } y_{0}=0
$$

where $i=l+1, l+2, \ldots, N-1$. Using the inequality (2.6), we have the following inequality

$$
\begin{aligned}
\sum_{i=l+1}^{N-1}\left|x_{i}\right|\left|\Delta x_{i}\right|^{m} & =\sum_{i=0}^{N-l-2}\left|y_{i+1}\right|\left|\Delta y_{i}\right|^{m} \\
& \leq c(m, 1)(N-l) \sum_{i=0}^{N-l-2}\left|\Delta y_{i}\right|^{m+1} \\
& =c(m, 1)(N-l) \sum_{i=l+1}^{N-1}\left|\Delta x_{i}\right|^{m+1}
\end{aligned}
$$

which is the inequality (2.8). This completes the proof.

Remark 2. In the inequality (2.8), let $m=1$ and $l=\tau-1$. Then the inequality (2.8) reduces to the inequality (1.4).

Theorem 4. Let $\left\{x_{i}\right\}_{i=0}^{N}$ be a sequence of real numbers with $x_{0}=x_{N}=0$. Then we have the following inequality

$$
\begin{equation*}
\sum_{i=1}^{N-1}\left|x_{i}\right|\left|\Delta x_{i}\right|^{m} \leq c(m, 1)\left[\frac{N+1}{2}\right] \sum_{i=0}^{N-1}\left|\Delta x_{i}\right|^{m+1} \tag{2.9}
\end{equation*}
$$

where $\left[\frac{N+1}{2}\right]$ is the Gaussian integer of $\frac{N+1}{2}$.
If N is even, then the inequality (2.9) is sharp.

Proof. (1) Let $l=\left[\frac{N+1}{2}\right]$. Then $N-l \leq l$. Using the inequalities (2.1) and (2.8), we have the following inequality

$$
\begin{aligned}
\sum_{i=1}^{N-1}\left|x_{i}\right|\left|\Delta x_{i}\right|^{m} & =\sum_{i=1}^{l}\left|x_{i}\right|\left|\Delta x_{i}\right|^{m}+\sum_{i=l+1}^{N-1}\left|x_{i}\right|\left|\Delta x_{i}\right|^{m} \\
& \leq c(m, 1)\left\{l \sum_{i=0}^{l}\left|\Delta x_{i}\right|^{m+1}+(N-l) \sum_{i=l+1}^{N-1}\left|\Delta x_{i}\right|^{m+1}\right\} \\
& \leq c(m, 1) l \sum_{i=0}^{N-1}\left|\Delta x_{i}\right|^{m+1}
\end{aligned}
$$

which is the inequality (2.9).
(2) Suppose $m=1$ and N is even. Then $\frac{1}{2}\left[\frac{N+1}{2}\right]=\frac{N}{4}$. Let

$$
x_{i}=\frac{1}{2} N-\left|i-\frac{1}{2} N\right|(0 \leq i \leq N-1) .
$$

Then, we have

$$
\begin{gathered}
x_{0}=x_{N}=0,\left|\Delta x_{i}\right|=1 \quad(0 \leq i \leq N-1), \\
\sum_{i=1}^{N-1}\left|x_{i} \Delta x_{i}\right|=\frac{1}{4} N^{2} \text { and } \sum_{i=0}^{N-1}\left|\Delta x_{i}\right|^{2}=N .
\end{gathered}
$$

Hence, the equality holds in the inequality (2.9) and from which the inequality (2.9) is sharp. This completes the proof.

Remark 3. In the inequality (2.9), let $m=1$. Then the inequality (2.9) reduces to the inequality (1.2).

Theorem 5. Let $\left\{x_{i}\right\}_{i=0}^{l}$ be a sequence of real numbers with $x_{0}=0, n>1$. Then we have the following inequality

$$
\begin{equation*}
\sum_{i=1}^{l}\left|x_{i}\right|^{n}\left|\Delta x_{i}\right|^{m} \leq c(m, 1) l^{n} \sum_{i=0}^{l}\left|\Delta x_{i}\right|^{m+n} \tag{2.10}
\end{equation*}
$$

Proof. Using the identity (2.2), the Hölder's inequality with indices $n /(n-1), n$, and the inequality

$$
\begin{equation*}
\alpha^{n} \beta^{m} \leq \frac{n}{m+n} \alpha^{m+n}+\frac{m}{m+n} \beta^{m+n} \leq c(m, n)\left(\alpha^{m+n}+\beta^{m+n}\right) \tag{2.11}
\end{equation*}
$$

where $\alpha, \beta>0$, we have the following inequality

$$
\sum_{i=1}^{l}\left|x_{i}\right|^{n}\left|\Delta x_{i}\right|^{m} \leq \sum_{i=1}^{l}\left[\left(\sum_{j=0}^{i-1}\left|\Delta x_{j}\right|\right)^{n}\left|\Delta x_{i}\right|^{m}\right]
$$

$$
\begin{aligned}
& \leq \sum_{i=1}^{l}\left[\left(\sum_{j=0}^{i-1} 1\right)^{\frac{n-1}{n}}\left(\sum_{j=0}^{i-1}\left|\Delta x_{j}\right|^{n}\right)^{\frac{1}{n}}\right]^{n}\left|\Delta x_{i}\right|^{m} \\
& =\sum_{i=1}^{l} i^{n-1} \sum_{j=0}^{i-1}\left|\Delta x_{j}\right|^{n}\left|\Delta x_{i}\right|^{m} \\
& \leq l^{n-1} \sum_{i=1}^{l} \sum_{j=0}^{i-1}\left|\Delta x_{j}\right|^{n}\left|\Delta x_{i}\right|^{m} \\
& \leq c(m, n) l^{n-1} \sum_{i=1}^{l}\left[\sum_{j=0}^{i-1}\left(\left|\Delta x_{j}\right|^{m+n}+\left|\Delta x_{i}\right|^{m+n}\right)\right] \\
& =c(m, n) l^{n-1} \sum_{i=0}^{l}\left[(l-i)\left|\Delta x_{i}\right|^{m+n}+i\left|\Delta x_{i}\right|^{m+n}\right] \\
& =c(m, n) l^{n} \sum_{i=0}^{l}\left|\Delta x_{i}\right|^{m+n}
\end{aligned}
$$

which is the inequality (2.10). This completes the proof.

Remark 4. In the inequality (2.10), let $n \rightarrow 1^{+}$. Then the inequality (2.10) reduces to the inequality (2.1).

Theorem 6. Let $\left\{x_{i}\right\}_{i=0}^{l}$ be a sequence of real numbers with $x_{0}=0, n>1$. Then we have the following inequality

$$
\begin{equation*}
\sum_{i=0}^{l-1}\left|x_{i+1}\right|^{n}\left|\Delta x_{i}\right|^{m} \leq c(m, n) l^{n-1}(l+1) \sum_{i=0}^{l-1}\left|\Delta x_{i}\right|^{m+n} \tag{2.12}
\end{equation*}
$$

Proof. Using the identity (2.7), the Hölder's inequality with indices $n /(n-1), n$, and the inequality (2.11), we have the following inequality

$$
\begin{aligned}
\sum_{i=1}^{l-1}\left|x_{i+1}\right|^{n}\left|\Delta x_{i}\right|^{m} & \leq \sum_{i=0}^{l-1}\left[\left(\sum_{j=0}^{i}\left|\Delta x_{j}\right|\right)^{n}\left|\Delta x_{i}\right|^{m}\right] \\
& \leq \sum_{i=0}^{l-1}\left[\left(\sum_{j=0}^{i} 1\right)^{\frac{n-1}{n}}\left(\sum_{j=0}^{i}\left|\Delta x_{j}\right|^{n}\right)^{\frac{1}{n}}\right]^{n}\left|\Delta x_{i}\right|^{m} \\
& =\sum_{i=0}^{l-1}(i+1)^{n-1} \sum_{j=0}^{i}\left|\Delta x_{j}\right|^{n}\left|\Delta x_{i}\right|^{m} \\
& \leq l^{n-1} \sum_{i=0}^{l-1} \sum_{j=0}^{i}\left|\Delta x_{j}\right|^{n}\left|\Delta x_{i}\right|^{m} \\
& \leq c(m, n) l^{n-1} \sum_{i=0}^{l-1}\left[\sum_{j=0}^{i}\left(\left|\Delta x_{j}\right|^{m+n}+\left|\Delta x_{i}\right|^{m+n}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =c(m, n) l^{n-1} \sum_{i=0}^{l-1}\left[(l-i)\left|\Delta x_{i}\right|^{m+n}+(i+1)\left|\Delta x_{i}\right|^{m+n}\right] \\
& =c(m, n) l^{n-1}(l+1) \sum_{i=0}^{l-1}\left|\Delta x_{i}\right|^{m+n}
\end{aligned}
$$

which is the inequality (2.12). This completes the proof.

Remark 5. In the inequality (2.12), let $n \rightarrow 1^{+}$. Then the inequality (2.12) reduces to the inequality (2.6).

Theorem 7. Let $\left\{x_{i}\right\}_{i=l+1}^{N}$ be a sequence of real numbers with $x_{N}=0, n>1$. Then we have the following inequality

$$
\begin{equation*}
\sum_{i=l+1}^{N-1}\left|x_{i}\right|^{n}\left|\Delta x_{i}\right|^{m} \leq c(m, n)(N-l-1)^{n-1}(N-l) \sum_{i=l+1}^{N-1}\left|\Delta x_{i}\right|^{m+n} \tag{2.13}
\end{equation*}
$$

Proof. Let $x_{i}=y_{N-i}$ where $i=l+1, l+2, \ldots, N$. Then

$$
\Delta x_{i}=-\Delta y_{N-i-1} \text { and } y_{0}=0
$$

where $i=l+1, l+2, \ldots, N-1$. Using the inequality (2.12), we have the following inequality

$$
\begin{aligned}
\sum_{i=l+1}^{N-1}\left|x_{i}\right|^{n}\left|\Delta x_{i}\right|^{m} & =\sum_{i=0}^{N-l-2}\left|y_{i+1}\right|^{n}\left|\Delta y_{i}\right|^{m} \\
& \leq c(m, n)(N-l-1)^{n-1}(N-l) \sum_{i=0}^{N-l-2}\left|\Delta y_{i}\right|^{m+n} \\
& =c(m, n)(N-l-1)^{n-1}(N-l) \sum_{i=l+1}^{N-1}\left|\Delta x_{i}\right|^{m+n}
\end{aligned}
$$

which is the inequality (2.13). This completes the proof.

Remark 6. In the inequality (2.13), let $n \rightarrow 1^{+}$. Then the inequality (2.13) reduces to the inequality (2.8).

Theorem 8. Let $\left\{x_{i}\right\}_{i=0}^{N}$ be a sequence of real numbers with $x_{0}=x_{N}=0, n>1$. Then we have the following inequality

$$
\begin{equation*}
\sum_{i=1}^{N-1}\left|x_{i}\right|^{n}\left|\Delta x_{i}\right|^{m} \leq c(m, n)\left[\frac{N+1}{2}\right]^{n} \sum_{i=0}^{N-1}\left|\Delta x_{i}\right|^{m+n} \tag{2.14}
\end{equation*}
$$

Proof. Let $l=\left[\frac{N+1}{2}\right]$. Then $N-l-1 \leq N-l \leq l$. Using the inequalities (2.10) and (2.13), we have the following inequality

$$
\sum_{i=1}^{N-1}\left|x_{i}\right|^{n}\left|\Delta x_{i}\right|^{m}=\sum_{i=1}^{l}\left|x_{i}\right|^{n}\left|\Delta x_{i}\right|^{m}+\sum_{i=l+1}^{N-1}\left|x_{i}\right|^{n}\left|\Delta x_{i}\right|^{m}
$$

$$
\begin{aligned}
\leq & c(m, n)\left[l^{n} \sum_{i=0}^{l}\left|\Delta x_{i}\right|^{m+n}\right. \\
& \left.+(N-l-1)^{n-1}(N-l) \sum_{i=l+1}^{N-1}\left|\Delta x_{i}\right|^{m+n}\right] \\
\leq & c(m, n) l^{n} \sum_{i=0}^{N-1}\left|\Delta x_{i}\right|^{m+n}
\end{aligned}
$$

which is the inequality (2.14). This completes the proof.

Under the conditions of Theorems 2 and 6, we have the following corollaries and remarks.

Corollary 1. Let $\left\{x_{i}\right\}_{i=0}^{l}$ be a sequence of real numbers with $x_{0}=0$. Then we have the following inequality

$$
\begin{equation*}
\sum_{i=1}^{l}\left|x_{i}\right|\left|\nabla x_{i}\right|^{m} \leq c(m, 1)(l+1) \sum_{i=1}^{l}\left|\nabla x_{i}\right|^{m+1} . \tag{2.15}
\end{equation*}
$$

Proof. Since

$$
\sum_{i=1}^{l}\left|x_{i}\right|\left|\nabla x_{i}\right|^{m}=\sum_{i=0}^{l-1}\left|x_{i+1}\right|\left|\Delta x_{i}\right|^{m}
$$

it follows from the inequality (2.6) that

$$
\begin{aligned}
\sum_{i=1}^{l}\left|x_{i}\right|\left|\nabla x_{i}\right|^{m} & \leq c(m, 1)(l+1) \sum_{i=0}^{l-1}\left|\Delta x_{i}\right|^{m+1} \\
& =c(m, 1)(l+1) \sum_{i=1}^{l}\left|\nabla x_{i}\right|^{m+1}
\end{aligned}
$$

which is the inequality (2.15). This completes the proof.

Remark 7. In the inequality (2.15), let $m=1$ and $l=\tau$. Then the inequality (2.15) reduces to the inequality (1.5).

Corollary 2. Let $\left\{x_{i}\right\}_{i=0}^{l}$ be a sequence of real numbers with $x_{0}=0, n>1$. Then we have the following inequality

$$
\begin{equation*}
\sum_{i=1}^{l}\left|x_{i}\right|^{n}\left|\nabla x_{i}\right|^{m} \leq c(m, 1)(l+1)^{n} \sum_{i=1}^{l}\left|\nabla x_{i}\right|^{m+n} \tag{2.16}
\end{equation*}
$$

Proof. Since

$$
\sum_{i=1}^{l}\left|x_{i}\right|^{n}\left|\nabla x_{i}\right|^{m}=\sum_{i=0}^{l-1}\left|x_{i+1}\right|^{n}\left|\Delta x_{i}\right|^{m}
$$

it follows from the inequality (2.12) that

$$
\begin{aligned}
\sum_{i=1}^{l}\left|x_{i}\right|^{n}\left|\nabla x_{i}\right|^{m} & \leq c(m, n) l^{n-1}(l+1) \sum_{i=0}^{l-1}\left|\Delta x_{i}\right|^{m+n} \\
& \leq c(m, n)(l+1)^{n} \sum_{i=0}^{l-1}\left|\Delta x_{i}\right|^{m+n} \\
& =c(m, n)(l+1)^{n} \sum_{i=1}^{l}\left|\nabla x_{i}\right|^{m+n}
\end{aligned}
$$

which is the inequality (2.16). This completes the proof.

Remark 8. For $x_{i}=i, 0 \leq i \leq l$ in the inequality (2.16), we note that

$$
\begin{aligned}
\sum_{i=1}^{l} i^{n} & \leq c(m, n)(l+1)^{n} l \\
& <\max \{m, n\} \frac{(l+1)^{n+1}-1}{n+1} \\
& <\max \{m, n\} \int_{1}^{l+1} t^{n} d t
\end{aligned}
$$

which shows that the inequality (2.16) gives a better estimate than that obtained by simply comparing areas. Moreover, for $n \rightarrow 1^{+}$, this gives the well-known identity $\sum_{i=1}^{l} i=l(l+1) / 2$.

Acknowledgements

This research was partially supported by Grant NSC 100-2115-M-156-005.

References

[1] R. P. Agarwal and P. Y. H. Pang (1995). Opial inequalities with application in differential and difference equations, Kluwer Academic Publishers.
[2] D. Bainov and P. Simeonov (1992). Integral Inequalities and Applications, Kluwer Academic Publishers.
[3] L.-K. Hua (1965). On an inequality of Opail, Scientia Sinica 14, 789-790.
[4] A. Lasota (1968). A discrete boundary value problem, Ann. Polon. Math. 20, 183-190.
[5] J. Myjak (1971). Boundary value problems for nonlinear differential and difference equations of the second order, Zeszyty Nauk. Univ. Jagiellonsi, Prace Math. 15, 113-123.
[6] C. Olech (1960). A simple proof of a certain result of Z. Opial, Ann. Polon. Math. 8, 61-63.
[7] Z. Opial (1960). Sur uneinegalite, Ann. Polon. Math. 8, 29-32.
[8] B. G. Pachpatte (1990). On Opial like discrete inequalities, An. Sti. Univ. A1. I. Cuza Iasi, Mat. 36, 237-240.
[9] B. G. Pachpatte (2005). A Note on Opial Type Finite Difference Inequalities, Tamsui Oxford J. Math. Sci. 21(1), 33-39.
[10] J. S. W. Wong (1967). A discrete analogue of Opial's inequality, Canadian Math. Bull. 10, 115-118.
[11] G.-S. Yang (1966). On a certain result of Z. Opial, Proc. Japan Acad. 42, 78-83.

